JPS607554B2 - Method for solidifying fine powder incineration residue - Google Patents

Method for solidifying fine powder incineration residue

Info

Publication number
JPS607554B2
JPS607554B2 JP53056625A JP5662578A JPS607554B2 JP S607554 B2 JPS607554 B2 JP S607554B2 JP 53056625 A JP53056625 A JP 53056625A JP 5662578 A JP5662578 A JP 5662578A JP S607554 B2 JPS607554 B2 JP S607554B2
Authority
JP
Japan
Prior art keywords
incineration residue
incineration
solidification
added
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53056625A
Other languages
Japanese (ja)
Other versions
JPS54149273A (en
Inventor
美津雄 遊佐
千秋 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP53056625A priority Critical patent/JPS607554B2/en
Publication of JPS54149273A publication Critical patent/JPS54149273A/en
Publication of JPS607554B2 publication Critical patent/JPS607554B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】 本発明は、各種水処理工程から排出される汚泥の焼却処
理により生じた微粉状焼却残澄の固化処理方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for solidifying finely powdered incineration residue produced by incineration of sludge discharged from various water treatment processes.

従釆、前記微粉状焼却残澄は埋立処分をすることが多い
が、大都市においては廃棄物処分に伴う微粉状焼却残澄
の発生量も多く、埋立地を求めることが甚だ困難となっ
てきている。
However, in large cities, large amounts of fine powder incineration residue are generated as a result of waste disposal, making it extremely difficult to find land for landfill. ing.

また、これら微粉状焼却残澄中には重金属などの有害物
質が含有されている場合もあり、そのまま埋立材などと
して投棄すれば、風雨によって飛散したり、地下水や雨
水に重金属が溶出し、水質士壌汚染などの公害問題にな
る。したがって、近時これら微粉状焼却残造を焼結し、
暁結物として安定な形で処分あるいは再利用することが
考えられてきた。しかしながら、微粉状焼却残澄を嘘結
する場合、暁給炉内において微粉状焼却残澄は、その暁
結温度に蓬するや否や相互に日頃次融着し、いわゆる雪
ダルマ式に肥大化して塊状となり、暁給炉の円滑な作動
を妨げると共にその排出をも困難とし、さらに排出機構
を損傷するなどの損害を生ずることがある。さらに、こ
のように塊状化した生成物を再利用するためには、破砕
機構を別途に設けて再処理を要するという不利益をとも
なうことになる。また、直接汚泥を暁結して暁結物を得
ようとする場合、暁結炉へ投入する前に汚泥を成形して
取扱いおよび再利用に便なる形状としても、汚泥中には
一般にかなりの有機物を含んでいるから、焼結炉内にお
いて成形物は著しく発泡〜膨張して変形したり、クラッ
クを生ずることとなって再利用に便な繊密な屍結物を得
ることができないため、焼結線作を断念せざるを得ない
In addition, these fine powdered incineration residues may contain harmful substances such as heavy metals, and if they are dumped as landfill materials, they may be scattered by wind and rain, or the heavy metals may be leached into groundwater or rainwater, resulting in poor water quality. This will lead to pollution problems such as air pollution. Therefore, recently these fine powdered incineration residues are sintered,
Consideration has been given to disposing or reusing it in a stable form as a resultant material. However, when pulverized incineration residue is solidified, the pulverized incineration residue is constantly fused to each other as soon as it reaches the dawning temperature in the dawn feeding furnace, and becomes enlarged in a so-called snowball style. It becomes a lump, which impedes the smooth operation of the feeder and makes it difficult to discharge, and may even cause damage such as damage to the discharge mechanism. Furthermore, in order to reuse such agglomerated products, a separate crushing mechanism is required and reprocessing is required, which is a disadvantage. In addition, when attempting to directly freeze sludge to obtain a solids, even if the sludge is shaped into a shape that is convenient for handling and reuse before being fed into the dawning furnace, there is generally a considerable amount of material in the sludge. Because it contains organic matter, the molded product will foam or expand significantly in the sintering furnace, become deformed, or crack, making it impossible to obtain a delicate corpse that is convenient for reuse. I have no choice but to give up on sintered wire production.

すなわち「微粉状焼却残澄を暁結して繊密な暁続物を得
るために、焼給炉を競結温度に上昇保持すると、生成物
は融着塊化するためt繊密で再利用に便な競結物を得る
ことができる温度範囲(以下焼結温度範囲と称す)が全
くないかもあるいはきわめて狭少である。また、汚泥を
直接暁結して繊密な焼結物を得るために、屍結炉を汚泥
の焼結温度に上昇保持すると、著しく発泡、膨張し〜か
つ融着塊化するために、繊密で再利用に便な焼結物を得
ることができない。
In other words, ``In order to obtain a fine agglomerate by agglomerating the pulverized incineration residue, the incineration furnace is raised and maintained at a condensation temperature, and the product is fused and agglomerated, so it cannot be reused as a fine agglomerate. The temperature range (hereinafter referred to as the sintering temperature range) in which a sintered material that is convenient for use can be obtained may not be present at all or may be extremely narrow.Also, it is possible to directly sinter the sludge to obtain a dense sintered material. Therefore, if the sludge sintering furnace is raised and maintained at the sintering temperature of the sludge, the sludge foams, expands, and forms a fused lump, making it impossible to obtain a sintered product that is delicate and easy to reuse.

このように実際上暁結不可能な場合が多いために、微粉
状焼却残澄を焼結物とすることが有効であることが知ら
れていても、簡単には繁用できない不便、不経済があっ
た。
In many cases, it is actually impossible to sinter the pulverized incineration residue, so even though it is known that it is effective to sinter the pulverized incineration residue, it is inconvenient and uneconomical that it cannot be easily used. was there.

本発明は、これら従来の諸欠点を排除し「微粉状焼却残
澄にオートクレープによる低温(100〜30000)
処理と、焼緒炉による高温(700〜1400℃)処理
の二段処理を適用して、繊密で強固な、埋立てまたは再
利用に便な焼結物を容易に得る有効な固化方法を提供す
ることを目的とするものである。
The present invention eliminates these conventional drawbacks and has developed a method for processing fine powder incineration residue by autoclaving at low temperatures (100 to 30,000 ℃).
We have developed an effective solidification method that uses a two-stage process of sintering and high-temperature (700-1400°C) processing using a sintering furnace to easily obtain a dense and strong sintered product that is easy to landfill or reuse. The purpose is to provide

本発明は、各種水処理工程から排出される汚泥の焼却処
理により生じた微粉状焼却残澄に焼結結合剤を添加混合
し、必要に応じて固化促進剤を添加混合し、カルシウム
成分の存在下で成形したるのち水蒸気オートクレープ処
理を行って成形物の強度を高め、さらにこれを焼結炉に
投入して焼結物を得ることを特徴とするものである。
The present invention involves adding and mixing a sintering binder to the finely powdered incineration residue produced by incineration of sludge discharged from various water treatment processes, and adding and mixing a solidification accelerator as necessary to eliminate the presence of calcium components. After molding, the molded product is subjected to steam autoclave treatment to increase the strength of the molded product, and the molded product is then placed in a sintering furnace to obtain a sintered product.

なお、前記水蒸気オートクレ−ブ処理を行って強度を高
めた成形物を焼結するには、別途に競結炉を設けること
なく、前段の汚泥の焼却処理に使用した焼却炉にフィー
ドバックして、いわゆる閉回路方式にて嘘結を行うこと
もでき「 このとき競結物は焼却炉から焼却灰(焼却残
燈)と共に排出されるから、節によって焼結物を節分す
る。
In addition, in order to sinter the molded product whose strength has been increased by performing the steam autoclave treatment, there is no need to provide a separate competitive furnace; It is also possible to carry out sintering using the so-called closed circuit method.At this time, the sintered material is discharged from the incinerator together with the incinerated ash (incineration ash), so the sintered material is divided into knots.

また、焼結炉を焼却炉と別途に設けるときは、焼結炉と
して回転窯、倒炎式丸(角)葉、電気炉その他の連続的
あるいは非連続的な焼給炉を使用することができる。本
発明において使用する暁給結合剤としては、微粉状焼却
残澄そのものよりも融点が低い粉体又は顎粒状物質がよ
くし‐例えばガラス類、水ガラス、棚素化合物、アルカ
リ金属の炭酸塩、長石類、氷晶石などがあり、また上記
微粉状焼却残燈より低融点の焼却残澄を用いることもで
きその添加量としては5〜5の重量%好ましくは10〜
3の重量%であることが望ましい。
In addition, when a sintering furnace is installed separately from an incinerator, a rotary kiln, an overturned flame round (square) leaf furnace, an electric furnace, or other continuous or discontinuous incinerator may be used as the sintering furnace. can. The carbon-feeding binder used in the present invention is preferably a powder or granular material with a melting point lower than that of the finely powdered incineration residue itself, such as glasses, water glass, shelf element compounds, carbonates of alkali metals, There are feldspars, cryolite, etc., and incineration residue having a lower melting point than the above-mentioned fine powder incineration residue can also be used, and the amount added is 5 to 5% by weight, preferably 10 to 5%.
3% by weight is preferred.

さらに本発明においては、オートクレ−ブ処理において
微粉状焼却残澄中にカルシウム成分が存在することが必
要でありこのために、微粉状焼却残澄中にカルシウム成
分が十分含有されている場合はよいが、不十分な場合に
はカルシウム成分を添加することが必要であり、この場
合残澄中のカルシウム成分の割合は1の重量%(生石灰
換算)以上であることが望ましい。
Furthermore, in the present invention, it is necessary that a calcium component be present in the fine powdered incineration residue in the autoclave treatment, and for this reason, it is preferable that the fine powdered incineration residue contains sufficient calcium components. However, if it is insufficient, it is necessary to add a calcium component, and in this case, it is desirable that the proportion of calcium component in the residual liquid is 1% by weight or more (calculated as quicklime).

添加するカルシウム成分の形態としては、炭酸カルシウ
ム、生石灰、硫酸カルシウム、塩化カルシウムし消石灰
などのものがあるが、これらのうち消石灰が最適であり
、場合によってはカルシウム成分を用いて脱水した各種
汚泥を焼却して得られた残澄を用いることもできる。ま
た、オートクレープ処理において微粉状焼却残澄中にカ
ルシウム成分が十分であっても、必要に応じて固化促進
剤としてけいそう士、けし、華、けし・酸白土、桂石、
石英、けし、酸ガラス、水ガラス、砂等のけし、酸買物
質、カオリナィトもペントナィト、バーラィト、ゼオラ
ィト、ハロサィト等の粘土類、水酸化アルミニウム、酸
化アルミニウム等のアルミニウム化合物、又は上記物質
を含むフライアッシュ、赤泥等の廃棄物を単独あるいは
複数を組合せて適当量(例えば1〜3の重量%好ましく
は10〜2の重量%)添加するとよく、前記焼結結合剤
中に固化促進剤をも兼ねる物質があるときは、あらため
て固化促進剤を添加する必要はなL、。
The calcium component to be added can be in the form of calcium carbonate, quicklime, calcium sulfate, calcium chloride, and slaked lime. Of these, slaked lime is the most suitable, and in some cases, various types of sludge that have been dehydrated using calcium components can be added. It is also possible to use the residue obtained by incineration. In addition, even if the calcium component is sufficient in the finely powdered incineration residue in the autoclape process, if necessary, as a solidification accelerator, diatom, poppy, flower, poppy/acid clay, kaiseki, etc.
Poppy seeds such as quartz, poppy, acid glass, water glass, sand, acid-purifying substances, clays such as kaolinite, pentonite, barite, zeolite, hallosite, aluminum compounds such as aluminum hydroxide, aluminum oxide, or fried foods containing the above substances. A suitable amount (for example, 1 to 3% by weight, preferably 10 to 2% by weight) of waste such as ash or red mud may be added alone or in combination, and a solidification accelerator may also be added to the sintered binder. If there is a substance that serves both purposes, there is no need to add a solidification accelerator.

このように焼結結合剤とカルシウム成分を含み、必要に
応じて固化促進剤を添加混合した微粉状焼却磯澄は、固
体同志の接触点数を増加させるために適当な大きさに成
形されるが、この成形には加圧プレス、転動造粒、押出
し成形等従来の技術をそのまま利用できる。
In this way, the finely powdered incinerated isosumi, which contains a sintered binder and a calcium component, and is mixed with a solidification accelerator if necessary, is molded into an appropriate size to increase the number of contact points between solids. For this molding, conventional techniques such as pressure pressing, rolling granulation, and extrusion molding can be used as they are.

かくて成形された残湾は、水蒸気を媒体として用いるオ
ートクレープ中に納められ、加圧水蒸気の存在下に放置
されることにより固化し、さらにこのオートクレープ処
理生成物を焼結するものであり、適用すべき焼結温度は
オートクレープ処理生成物の状態、特に暁結結合剤を構
成する成分によって異なるが、およそ700〜1000
oo、特殊な場合には1000〜1400qoで5〜6
分間程度の焼緒を行うことで効果的な処理ができる。以
上述べたように本発明によれば、微粉状焼却残隣そのも
のの焼結温度以下で微粉状焼却残澄を暁結することがで
きるから、競緒工程において成形物が融着塊化せず、ま
た発泡膨張をもしないから、繊密で強固な埋立て又は再
利用に便な競続物を得ることができて二次公害を発生す
ることなく処分できしかも焼結温度範囲をかなり広くと
れて焼結炉の温度制御もきわめて容易になり、微粉状焼
却残溝の処分あるいは再利用するに便利な状態に処理す
ることが可能となると共に著しく容易で安価なコストで
固化処理することができるなどの利益がある。
The thus formed Zanwan is placed in an autoclave using steam as a medium, solidified by being left in the presence of pressurized steam, and the autoclaved product is further sintered. The sintering temperature to be applied depends on the state of the autoclaved product, in particular on the components constituting the sintering binder, but is approximately 700 to 1000 sintered.
oo, 1000-1400qo in special cases, 5-6
Effective treatment can be achieved by burning for about a minute. As described above, according to the present invention, since the fine powder incineration residue can be sintered at a temperature lower than the sintering temperature of the fine powder incineration residue itself, the molded product does not become a fused lump in the competitive process. In addition, since it does not foam and expand, it is possible to obtain a compact and strong competitor that is easy to landfill or reuse, and it can be disposed of without causing secondary pollution, and the sintering temperature range can be widened considerably. This makes it extremely easy to control the temperature of the sintering furnace, making it possible to process the pulverized incineration residue into a state convenient for disposal or reuse, and to solidify it extremely easily and at low cost. There are benefits such as

即ち、特に得られる競結物の性状がオートクレープ処理
のみによって得られる固化物と比べても著しく優れてい
るので再利用範囲が広いし、焼却工程に入る固形物の強
度が大きいため、従来の焼結方式に認められた粉化現象
が生じないので、糠結炉へのダストの融着、炉外へのダ
ストの飛散などがなく、運転操作が容易である。
In other words, the properties of the resulting compacted material are significantly superior to that of the solidified material obtained only by autoclaving, so it can be reused in a wide range of areas, and the solid material entering the incineration process has a high strength, making it far superior to conventional solidified material. Since the powdering phenomenon observed in the sintering method does not occur, there is no dust fusion to the brazing furnace or dust scattering outside the furnace, and operation is easy.

また、暁綾前にCr6十の還元処理がオートクレープ処
理によって行なわれているから、焼給工程中でのCよ+
の発生も防止できる等の顕著な効果がある。次に本発明
方法の実施例を示す。
In addition, since the reduction treatment of Cr60 was carried out by autoclave treatment before the dawn, the C+ during the burning process was
It has remarkable effects such as being able to prevent the occurrence of. Next, examples of the method of the present invention will be shown.

実施例 1 某都市下水処理場排水汚泥を脱水、乾燥、焼却して得た
焼却残澄の組成は表−1の通りであった。
Example 1 The composition of the incineration residue obtained by dewatering, drying, and incinerating wastewater sludge from a certain city sewage treatment plant was as shown in Table 1.

表−1 この残澄に、競結結合剤として、ほう酸ソーダを20%
wt添加混合し、圧縮成形機にて圧力500k9f′の
にて成形し長さ1仇肋、直径10肌の成形体を得た。
Table 1 Add 20% sodium borate to this residual liquid as a competitive binder.
wt was added and mixed, and molded using a compression molding machine at a pressure of 500k9f' to obtain a molded product with a length of 1 rib and a diameter of 10 skins.

この成形体をオートクレープ内に入れ圧力5気圧にて6
0分間水熱処理を施し、固化物を得た。この固化物をさ
らに小型バッチキルンにて1100『03時間焼結し、
焼綾物を得た。その焼給物の性状を表−2に示す。又比
較対象物として暁給結合剤を添加しないものをも示した
This molded body was placed in an autoclave at a pressure of 5 atm.
Hydrothermal treatment was performed for 0 minutes to obtain a solidified product. This solidified product was further sintered in a small batch kiln for 1100 hours,
I got baked twill. The properties of the burnt material are shown in Table 2. Also shown is a sample to which no Akatsuki binder was added for comparison.

これにより焼鯖結合剤の添加により、焼結物の強度が増
大し、重金属(cr)の熔出性も改善されることがわか
る。長一2 * 熔出性は、環境庁告示第5号(昭和52王3月14
日付)に基づいて実験した(以下同じ)また、暁結結合
剤の他に、さらに固化促進剤として硝子粉末を10%w
t添加した試料に、全く同一の水熱処理及び暁結処理を
施して得た焼結物の強度と、港出性を表−3に示す。
This shows that the addition of the sintered mackerel binder increases the strength of the sintered product and improves the elution of heavy metals (CR). Choichi 2 * Meltability is determined by Environment Agency Notification No. 5 (March 14, 1972).
In addition to the Akatsuki binder, we also added 10%w of glass powder as a solidification accelerator.
Table 3 shows the strength and portability of the sintered product obtained by subjecting the sample to which T was added to exactly the same hydrothermal treatment and freezing treatment.

表−3 これにより固化促進剤を添加混合すると、より一層強度
が増大し、溶出量も低下することがわかる。
Table 3 This shows that when a solidification accelerator is added and mixed, the strength is further increased and the amount of elution is reduced.

実施例 2 実施例1で用いた汚泥を脱水、乾燥した後、小型連続ロ
ータリーキルンにて焼却し残澄を得た。
Example 2 The sludge used in Example 1 was dehydrated and dried, and then incinerated in a small continuous rotary kiln to obtain a residue.

(最高炉内温度1100qo)この残澄の組成は「表−
1で示したものと全く同じであった。この残澄に焼結結
合剤としてほう酸ソーダを20%wt、固化促進剤とし
て硝子粉末を10%M添加混合して、実施例1と同様の
成形条件、オートクレープ条件にて固化物を製造した。
(Maximum furnace temperature 1100qo) The composition of this residual liquid is shown in the table below.
It was exactly the same as shown in 1. To this residual liquid, 20% wt of sodium borate as a sintering binder and 10% M of glass powder as a solidification accelerator were added and mixed, and a solidified product was produced under the same molding and autoclaving conditions as in Example 1. .

この固化物を、先の小型連続ロータリーキルン内に投入
し汚泥の焼却と、固化物の暁結を同時に行なわせ、得ら
れた焼却残澄を、目開き2肋の節で節別して、競結物を
得た。
This solidified material is put into the small-sized continuous rotary kiln, where the sludge is incinerated and the solidified material is solidified at the same time. I got it.

この焼結物の強度は240kgf′の、crの溶出量は
0.01脚以下であり、実施例4で得た焼給物と同等の
性状である。
The strength of this sintered material was 240 kgf', and the amount of Cr elution was less than 0.01 leg, and the properties were the same as those of the sintered material obtained in Example 4.

これにより実施例1の如く汚泥焼却用の炉と、固化物暁
給用の炉を別個に用いる必要は必ずしもなく、本実施例
の如く、一基の炉で2つの行程を同時に進行させること
ができ装置建設費及び運転費が大幅に削減されうる。実
施例 3 実施例1で用いた焼却残澄に「競結結合剤として表−4
に示すものを所定量添加混合し、実施例1と同様の成形
条件、オートクレープ条件、焼結条件にて処理して得た
競結物の強度と溶出性は、表−4の通りであった。
As a result, it is not necessarily necessary to use a furnace for sludge incineration and a furnace for feeding solidified material separately as in Example 1, and it is possible to proceed with two processes at the same time in one furnace as in this example. Equipment construction costs and operating costs can be significantly reduced. Example 3 The incineration residue used in Example 1 was treated with Table 4 as a competitive binder.
Table 4 shows the strength and dissolution properties of a compact obtained by adding and mixing a predetermined amount of the materials shown in Table 4 and processing it under the same molding conditions, autoclave conditions, and sintering conditions as in Example 1. Ta.

表−4 夫この残酒の融点は1200℃である。Table-4 The melting point of this leftover sake is 1200°C.

これにより表−4に示した如き硝子類、水ガラス、柳素
化合物、アルカリ金属の炭酸塩「長石類、氷晶石、また
は被固化物質の焼却残澄より低融点の焼却残澄を、焼結
結合剤として用いると〜焼結物の性状が著しく改善され
ることがわかる。
As a result, incineration residues with a lower melting point than incineration residues of glasses, water glass, yellow compounds, alkali metal carbonates, feldspars, cryolite, or substances to be solidified, as shown in Table 4, are It can be seen that when used as a binding agent, the properties of the sintered product are significantly improved.

実施例 4某都市下水処理場では、汚泥の脱水に有機高
分子凝集剤を用いている。
Example 4 In a certain urban sewage treatment plant, an organic polymer flocculant is used for dewatering sludge.

この処理場から排出される脱水ケーキを乾燥し、800
ooにて2時間焼却して得た浅薄の化学組成は、表−5
の通りであった。表−5 この残経に、擬結結合剤としてソーダガラス粉末を10
%wt添加し、さらにカルシウム成分として、表−6に
示す量の生石灰を添加混合しブリケッティングマシンに
て長さ2仇肋、中2仇肋、厚さ10柳の豆炭状に成形し
た。
The dehydrated cake discharged from this treatment plant is dried and
The chemical composition of the shallow thin layer obtained by incineration for 2 hours at OO is shown in Table 5.
It was as follows. Table 5 Add 10% of soda glass powder to this afterglow as a pseudo-binding agent.
% wt was added, and as a calcium component, quicklime in the amount shown in Table 6 was added and mixed, and formed into a charcoal shape with a length of 2 ribs, a middle rib of 2 ribs, and a thickness of 10 willows using a briquetting machine.

この成形物を圧力20k9f/洲のオートクレープ中に
2時間静遣して水熱処理して固化物を得、さらにその固
化物を小型バッチキルンにて1100003時間焼結さ
せて焼結物を得た。この焼緒物の性状を表−6に示す。
表−6 この結果より、残澄にカルシウム成分を添加すると、暁
結物の性状は改善されトこの効果は残澄中のカルシウム
成分が10%以上になると著しいことがわかる。
This molded product was placed in an autoclave at a pressure of 20 k9f/s for 2 hours and subjected to hydrothermal treatment to obtain a solidified product, and the solidified product was further sintered in a small batch kiln for 1,100,003 hours to obtain a sintered product. The properties of this roasted product are shown in Table 6.
Table 6 From these results, it can be seen that when a calcium component is added to the residual liquid, the properties of the crystallites are improved, and this effect is remarkable when the calcium component in the residual liquid is 10% or more.

実施例 5 実施例4で用いた焼却残澄に、暁結結合剤としてソーダ
ガラス粉末を10%wt添加し、さらに浅薄中のCaの
農度が10%となるように、各種カルシウム成分を添加
混合し、実施例4と同一の成型条件、オートクレ−ブ条
件、暁結条件にて処理し、表−7に示す様な焼結物を得
た。
Example 5 To the incineration residue used in Example 4, 10% wt of soda glass powder was added as an agglomeration binder, and various calcium components were added so that the Ca content in the shallow thin layer was 10%. The materials were mixed and treated under the same molding conditions, autoclave conditions, and dawning conditions as in Example 4 to obtain sintered products as shown in Table 7.

表−7 これより表−7に示す各種カルシウム成分はいずれも効
果を発揮するが、特に消石灰の効果が著しいことがわか
る。
Table 7 It can be seen that all of the various calcium components shown in Table 7 are effective, but the effect of slaked lime is particularly remarkable.

実施例 6 某し尿処理場では、余剰汚泥を消石灰スラリーを用いて
脱水している。
Example 6 At a certain human waste treatment plant, excess sludge is dehydrated using slaked lime slurry.

本脱水ケーキを乾燥、焼却して得られた残澄の化学組成
は表−8に示す通りである。泰一8 実施例4で用いた焼却残澄に「本残溝を所定量添加し、
ソーダガラス粉末を10%M添加して、実施例4と同一
の成形条件、オートクレープ条件焼続条件にて処理し表
−9に示す如き性状の暁結物を得た。
The chemical composition of the residue obtained by drying and incinerating this dehydrated cake is shown in Table 8. Taiichi 8 Adding a predetermined amount of this residue to the incineration residue used in Example 4,
Soda glass powder was added in an amount of 10% M, and the mixture was treated under the same molding conditions, autoclave conditions, and sintering conditions as in Example 4, to obtain a compacted product having the properties shown in Table 9.

表−9 これより、カルシウム成分を含む汚泥の焼却残湾を、他
の残澄中にカルシウム成分として添加混合すると、焼結
物の強度が増し、綾出量も低下することがわかる。
Table 9 From this, it can be seen that when the incineration residue of sludge containing a calcium component is added and mixed into other residual liquid as a calcium component, the strength of the sintered product increases and the amount of sintered material decreases.

さらにその効果は、残湾中のカルシウム成分が生石灰換
算で10%M以上で著しい。実施例 7 実施例1で用いた焼却残澄に、表−10に示す固化促進
剤を所定量添加混合し、さらに10%Mのほう酸カルシ
ウム(コレマナイト)を添加して、実施例1と同一の成
形条件、オートクレープ条件「焼結条件にて処理し、競
給物を得た。
Furthermore, the effect is remarkable when the calcium component in Zanwan is 10%M or more in terms of quicklime. Example 7 A predetermined amount of the solidification accelerator shown in Table 10 was added to and mixed with the incineration residue used in Example 1, and 10%M calcium borate (colemanite) was added to produce the same solution as in Example 1. Competitive products were obtained by processing under molding conditions, autoclave conditions, and sintering conditions.

その暁結物の性状を表−10に示す。表−10 これより表−10に示す如き、けし、酸質物質、粘土類
、アルミニウム化合物又はこれら物質を含む廃棄物を固
化促進剤として用いることにより顕著な効果を得ること
ができる。
The properties of the crystallites are shown in Table 10. Table 10 As shown in Table 10, remarkable effects can be obtained by using poppy seeds, acidic substances, clays, aluminum compounds, or wastes containing these substances as solidification accelerators.

Claims (1)

【特許請求の範囲】 1 各種水処理工程から排出される汚泥の焼却処理によ
り生じた微粉状焼却残渣に焼結結合剤を添加混合し、必
要に応じて固化促進剤を添加混合し、カルシウム成分の
存在下で成形したるのち水蒸気オートクレーブ処理して
固化し、さらに焼結炉にて焼結することを特徴とする微
粉状焼却残渣の固化方法。 2 前記焼結工程が、前記汚泥の焼却処理に利用した焼
却炉を用いて処理されるものである特許請求の範囲第1
項記載の固化方法。 3 前記焼結結合剤が、前記微粉状焼却残渣より低融点
の物質を用いて処理されるものである特許請求の範囲第
1項又は第2項記載の固化方法。 4 前記微粉状焼却残渣中のカルシウム成分の割合を1
0重量%(生石灰換算)以上に調整して処理するもので
ある特許請求の範囲第1項、第2項又は第3項記載の固
化方法。 5 前記固化促進剤として、けい酸質物質、粘土類、ア
ルミニウム化合物、又はこれら物質を含む汚泥を単独あ
るいは複数用いて処理する特許請求の範囲第1項、第2
項、第3項又は第4項記載の固化方法。 6 前記カルシウム成分として、前記微粉状焼却残渣に
消石灰を添加して処理する特許請求の範囲第1項、第2
項又は第4項記載の固化方法。 7 前記カルシウム成分として、前記微粉状焼却残渣に
カルシウム分を含有する脱水汚泥を焼却して得られた残
渣を添加して処理する特許請求の範囲第1項、第2項又
は第4項記載の固化方法。
[Scope of Claims] 1. A sintered binder is added and mixed to the finely powdered incineration residue generated by incineration of sludge discharged from various water treatment processes, a solidification accelerator is added and mixed as necessary, and a calcium component is added and mixed. A method for solidifying finely powdered incineration residue, which comprises shaping it in the presence of a substance, solidifying it in a steam autoclave, and sintering it in a sintering furnace. 2. Claim 1, wherein the sintering step is performed using the incinerator used for incineration of the sludge.
Solidification method described in section. 3. The solidification method according to claim 1 or 2, wherein the sintered binder is treated with a substance having a lower melting point than the finely powdered incineration residue. 4 The ratio of calcium component in the fine powder incineration residue is 1
The solidification method according to claim 1, 2, or 3, wherein the solidification method is adjusted to 0% by weight (calculated as quicklime) or more. 5. Claims 1 and 2, in which the solidification promoter is treated using silicic acid substances, clays, aluminum compounds, or sludge containing these substances alone or in combination.
The solidification method according to item 3, item 3 or item 4. 6 Claims 1 and 2, in which the calcium component is treated by adding slaked lime to the finely powdered incineration residue.
The solidification method described in Section 4 or Section 4. 7. The method according to claim 1, 2, or 4, wherein the calcium component is treated by adding a residue obtained by incinerating dehydrated sludge containing calcium to the finely powdered incineration residue. Solidification method.
JP53056625A 1978-05-15 1978-05-15 Method for solidifying fine powder incineration residue Expired JPS607554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53056625A JPS607554B2 (en) 1978-05-15 1978-05-15 Method for solidifying fine powder incineration residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53056625A JPS607554B2 (en) 1978-05-15 1978-05-15 Method for solidifying fine powder incineration residue

Publications (2)

Publication Number Publication Date
JPS54149273A JPS54149273A (en) 1979-11-22
JPS607554B2 true JPS607554B2 (en) 1985-02-25

Family

ID=13032468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53056625A Expired JPS607554B2 (en) 1978-05-15 1978-05-15 Method for solidifying fine powder incineration residue

Country Status (1)

Country Link
JP (1) JPS607554B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512874Y2 (en) * 1986-08-06 1993-04-05

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180288A (en) * 1988-01-08 1989-07-18 Chugai Ro Co Ltd Treatment of ash from sludge inclinerator
JP2586251B2 (en) * 1991-08-26 1997-02-26 日本鋼管株式会社 Thermal decomposition method of harmful substances in fly ash discharged from refuse incinerator
CN105414146B (en) * 2015-11-04 2017-12-12 河南理工大学 Improve the method for large red mud soil and the method with red mud baking ceramsite after improvement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512874Y2 (en) * 1986-08-06 1993-04-05

Also Published As

Publication number Publication date
JPS54149273A (en) 1979-11-22

Similar Documents

Publication Publication Date Title
US20090183543A1 (en) Thermal Process For Separating Heavy Metals From Ash In Agglomerated Form
CN1654403A (en) Method for preparing light aggregate through burning fly ash by using garbage
NL8800513A (en) METHOD FOR MANUFACTURING A GRANULAR BUILDING MATERIAL FROM WASTE.
JP2000302498A (en) Production of artificial light-weight aggregate and artificial light-weight aggregate produced thereby
JPS607554B2 (en) Method for solidifying fine powder incineration residue
JP2007054828A (en) Treating method of fly ash
JP2706142B2 (en) Recycling method of steelmaking dusts in electric furnace with scrap preheating furnace
JPH01224204A (en) Insoluble industrial inorganic material producible from waste, production and use thereof
JPH1029841A (en) Production of artificial aggregate
JPS61284A (en) Oil-adsorbing granule
JP3086200B2 (en) Solidification and stabilization of molten fly ash
JPH08301641A (en) Production of artificial lightweight aggregate
JPS6114099B2 (en)
JPH0693260A (en) Soil additive
JP2005313032A (en) Manufacturing method for hydrothermally solidified material of paper sludge incineration ash
JP3097203B2 (en) Solidification method of incineration ash
WO1992020469A1 (en) Process for converting spent pot liner
JP2003238221A (en) Method of producing artificial aggregate
JPS633674B2 (en)
JP2000034179A (en) Production of water-holding granular sintered compact
JPS6054118B2 (en) Processing method for fine powder waste
JPS5819729B2 (en) Seikorohekiyoukiyuusuruni Textile Kiyoukakaijiyoutaino Seikomirhaikibutsudustkarano Seizouhou
JPS6048234B2 (en) Solidification treatment method for municipal waste dust
JPS6114100B2 (en)
JPS5837269B2 (en) Molding method for inorganic materials