JPS633674B2 - - Google Patents

Info

Publication number
JPS633674B2
JPS633674B2 JP55066220A JP6622080A JPS633674B2 JP S633674 B2 JPS633674 B2 JP S633674B2 JP 55066220 A JP55066220 A JP 55066220A JP 6622080 A JP6622080 A JP 6622080A JP S633674 B2 JPS633674 B2 JP S633674B2
Authority
JP
Japan
Prior art keywords
fine powder
waste
water
soluble
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55066220A
Other languages
Japanese (ja)
Other versions
JPS56161881A (en
Inventor
Chiaki Igarashi
Noritsuna Saito
Yoshe Aoyanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP6622080A priority Critical patent/JPS56161881A/en
Publication of JPS56161881A publication Critical patent/JPS56161881A/en
Publication of JPS633674B2 publication Critical patent/JPS633674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、都市ゴミ、汚泥、ヘドロ等の焼却工
程から排出される焼却灰、ならびに各種ガス処理
工程から生じるダスト等の微粉状廃棄物の固化処
理方法に関するものである。 従来、これら微粉状廃棄物の処理又は処分方法
としては、直接埋立、海洋投棄が主流であつた
が、微粉体であるために取扱いが厄介であり、運
搬途中や埋立地において飛散、流出が著しく、さ
らには残渣中に含まれる重金属等の溶出が生じる
など、改善されなければならない点が多くあつ
た。 また、これら残渣の取扱いを容易にし、重金属
等の溶出を防止するために、各種の固化技術が提
案されているが、これら従来の固化技術としては
セメントやアスフアルト等の固化剤を添加する方
法や、加熱溶融したのち放冷固化する方法(溶融
法)などがあつた。これらのうち、固化剤を添加
する方法は、有害物質の封じ込めや埋立地の土質
の改善等に効果はあるが、固化剤の価格が高く、
日々排出される前記微粉状廃棄物の全量を固化す
ることは困難である。一方、前記溶融法は、廃棄
物の体積が著しく減少し、粒状若しくは塊状にな
るために取扱いが容易で、重金属等の有害物質を
封じ込めることもでき、すぐれた方法であるが、
廃棄物を高温に加熱保持する必要があり、エネル
ギを大量に使用する点で難がある。 近年、かかる問題点を解決でき、しかも省資
源、省エネルギも可能な固化方法として、水蒸気
オートクレーブを用いる方法が開発され、脚光を
あびている。この方法は、微粉状廃棄物を低コス
トで固化し、路盤材、砂などへの利用を可能とす
るすぐれた方法である。しかし微粉状廃棄物中に
多量の硫酸根が含まれる場合には、固化物から微
量の硫酸根が溶け出し、周囲のコンクリート製品
に悪影響を及ぼす懸念が生じるため、固化物をコ
ンクリート用人工骨材として用いる場合の障害と
なつていた。 本発明は、かかる現状に対して固化物からの硫
酸根の流出を完全に防止し、固化物をコンクリー
ト用人工骨材としても十分利用できる微粉状廃棄
物の固化処理方法を提供することを目的とするも
のである。 本発明は、微粉状廃棄物をカルシウム成分の存
在下で硫酸根固定剤を添加し、必要に応じて固化
促進剤又は還元剤の少くとも一方を混合して成型
し、水蒸気オートクレーブ処理して固化すること
を特徴とするものである。 本発明は、この硫酸根固定剤を用いる方法が非
常に有効なことを明らかにしたことにより完成さ
れたものである。すなわち、本発明者等は数多く
の実験的研究の結果、硫酸根固定剤として、水溶
性ストロンチウム塩、水溶性バリウム塩、水溶性
ラジウム塩、水溶性鉛塩及びこれらの物質を含む
廃棄物を単独あるいは複数組みあわせて用いると
効果的であることを確認した。これら硫酸根固定
剤の添加量の最適値は微粉状廃棄物によつて著し
く異なり、また、硫酸根固定剤の種類、添加方法
等によつても異なり、一概には規定できないが、
微粉状廃棄物中に含まれる硫酸根の全量を固定す
るに必要な理論量以上とするのが効果的である。
前記硫酸根固定剤の添加方法としては、粉体のま
ま添加混合するよりは水溶液として混合した方が
添加量を削減できる利点がある。 本発明においては、カルシウム成分の存在が必
要不可欠の条件であり、前記微粉状廃棄物中にカ
ルシウム成分が十分含有されている場合はカルシ
ウム成分を添加しなくてよいが、不十分な場合に
はカルシウム成分を予め添加して、混合物中のカ
ルシウム分を10重量%(生石灰換算、以下「%」
はすべて重量基準で表示してある)以上とすると
よい。また、添加するカルシウム成分の形態とし
ては、炭酸カルシウム、生石灰、硫酸カルシウ
ム、塩化カルシウム、消石灰等があり、これらを
単独又は複数組合わせて添加混合するが、これら
のうち消石灰が最適であり、場合によつてはカル
シウム成分を用いて脱水した各種汚泥を焼却して
得られる残渣を用いることもできる。 また、カルシウム成分が十分でも固化しにくい
場合には必要に応じて固化促進剤としてけいそう
土、けい華、けい酸白土、けい石、石英、けい酸
ガラス、水ガラス、砂等のけい酸質物質、カオリ
ナイト、ベントナイト、パーナイト、ゼオナイ
ト、ハロサイト等の粘土類、水酸化アルミニウ
ム、酸化アルミニウム等のアルミニウム化合物、
または上記物質を含むフライアツシユ、赤泥焼却
灰等の廃棄物を単独、あるいは、複数組合わせて
適当値(例えば1〜30%、好ましくは10〜30%)
添加して処理するのが効果的である。 さらに、重金属として6価クロムを大量に含む
微粉状廃棄物を処理するにあたつては、あらかじ
め還元剤を添加しておくことも有効である。この
場合還元剤としては、2価鉄イオンの塩、亜硫酸
又は亜硫酸塩、石炭カーボンブラツク、コークス
のもえ殻から、リグニン等の有機炭素類、マグネ
シウム、カルシウム、亜鉛等の金属あるいはこれ
らを含む廃棄物などを単独あるいは複数用い、固
体状のものは微粉末でまた、水溶性塩あるいは水
溶液はスプレーなどの形で用いることができる。 このように化学組成を調整された微粉状廃棄物
は、微粉同士の接触点数を増加させるために成型
されるが、この成型方法は、加圧、転動、押し出
し等従来の技術をそのまま利用できる。 かくして成型された廃棄物は水蒸気を媒体とし
て用いるオートクレーブ中に納められ、加圧水蒸
気の存在下に放置されることにより固化する。 水蒸気オートクレーブ工程において生じる反応
の機構に関しては反応生成物の同定や定量が難し
いために必ずしも明らかではないが、カルシウム
シリケート水和物あるいはカルシウムアルミネー
ト水和物の生成による微粉体相互の結合による固
化物強度の発現、廃棄物中の硫酸根と添加した固
定剤とによる難溶性塩の生成反応及び6価クロム
と還元剤とによる酸化還元反応などが同時に進行
しているものと考えられる。 以上述べたように本発明によれば微粉状廃棄物
をカルシウム成分の存在下で、硫酸根固定剤を添
加し、必要に応じて固化促進剤又は還元剤の少く
とも一方を混合して成型した後、水蒸気オートク
レーブ処理することにより、強固で、硫酸根の溶
出量の著しく少ない固化物を容易に得ることがで
きる。 即ち、本発明により微粉状廃棄物のハンドリン
グ性が改善され、重金属の溶出が防止されるのみ
ならず、路盤材や砂、さらには、コンクリート用
人工骨材としての再利用も可能となつた。 さらに、廃棄物の焼却処理工程から生じる熱や
水蒸気を直接、あるいは、蒸気ボイラー等を介し
て間接的に利用することができるから、本発明は
省エネルギ、省資源的プロセスとしても満足しう
るものであり、公害防止上極めて有用な効果を有
するのみならず、従来の諸問題も適確に排除し、
しかも処理コストも安価で、廃棄物を経済的に処
分できるなどの利益がある。 次に本発明の実施例を示す。 実施例 1 某下水処理場で発生した汚泥に消石灰と塩化第
二鉄を添加して脱水し、乾燥後焼却して得た焼却
灰の組成は次の通りであつた。
The present invention relates to a method for solidifying incinerated ash discharged from the incineration process of municipal garbage, sludge, sludge, etc., and fine powder waste such as dust generated from various gas processing processes. Traditionally, the mainstream methods for treating or disposing of these fine powder wastes have been direct landfilling and ocean dumping, but since they are fine powders, they are difficult to handle, and they are prone to scattering and spilling during transportation and at landfill sites. There were many issues that needed to be improved, such as the elution of heavy metals contained in the residue. In addition, various solidification techniques have been proposed to facilitate the handling of these residues and prevent the elution of heavy metals, etc., but these conventional solidification techniques include methods of adding solidifying agents such as cement and asphalt, There was a method of heating, melting, and then cooling and solidifying (melting method). Among these methods, the method of adding a solidifying agent is effective in containing harmful substances and improving the soil quality of a landfill, but the cost of the solidifying agent is high and
It is difficult to solidify the entire amount of the fine powder waste that is discharged every day. On the other hand, the melting method is an excellent method because the volume of the waste is significantly reduced and the waste becomes granular or lumpy, making it easy to handle and containing harmful substances such as heavy metals.
The problem is that the waste must be heated and maintained at a high temperature, which consumes a large amount of energy. In recent years, a method using a steam autoclave has been developed as a solidification method that can solve these problems and also save resources and energy, and has been attracting attention. This method is an excellent method for solidifying fine powder waste at low cost and making it possible to use it as roadbed material, sand, etc. However, if a large amount of sulfate radicals are contained in the fine powder waste, there is a concern that a small amount of sulfate radicals will leach out from the solidified material and have an adverse effect on surrounding concrete products. This has become an obstacle when used as a The purpose of the present invention is to provide a method for solidifying fine powder waste that completely prevents the outflow of sulfate radicals from the solidified material and allows the solidified material to be fully used as artificial aggregate for concrete. That is. The present invention involves adding a sulfuric acid radical fixing agent to fine powder waste in the presence of a calcium component, mixing with at least one of a solidification accelerator or a reducing agent as needed, molding the waste, and solidifying it by steam autoclaving. It is characterized by: The present invention was completed by revealing that the method using this sulfuric acid root fixative is very effective. That is, as a result of numerous experimental studies, the present inventors have found that water-soluble strontium salts, water-soluble barium salts, water-soluble radium salts, water-soluble lead salts, and wastes containing these substances are used alone as sulfate root fixing agents. It was also confirmed that it is effective when used in combination. The optimum amount of these sulfate fixatives to be added varies significantly depending on the type of fine powder waste, and also depends on the type of sulfate fixative, the method of addition, etc., and cannot be unconditionally defined.
It is effective to increase the amount above the theoretical amount required to fix the total amount of sulfate radicals contained in the fine powder waste.
As for the method of adding the sulfuric acid root fixing agent, mixing it as an aqueous solution has the advantage of reducing the amount added, rather than adding and mixing it as a powder. In the present invention, the presence of calcium component is an essential condition, and if the fine powder waste contains sufficient calcium component, it is not necessary to add calcium component, but if it is insufficient, Add calcium component in advance to reduce the calcium content in the mixture to 10% by weight (calcium equivalent, hereinafter referred to as "%")
(all are expressed on a weight basis) or higher. In addition, the forms of calcium components to be added include calcium carbonate, quicklime, calcium sulfate, calcium chloride, slaked lime, etc. These can be added singly or in combination, but slaked lime is the most suitable, and in some cases Depending on the situation, a residue obtained by incinerating various types of sludge dehydrated using calcium components may also be used. In addition, if the calcium content is sufficient but hard to solidify, silicic acid materials such as diatomaceous earth, silica, silicate clay, silica stone, quartz, silicate glass, water glass, and sand can be used as a solidification accelerator as necessary. substances, clays such as kaolinite, bentonite, pernite, zeonite, hallosite, aluminum compounds such as aluminum hydroxide, aluminum oxide,
Or waste such as fly ash, red mud incineration ash, etc. containing the above substances alone or in combination to an appropriate value (e.g. 1 to 30%, preferably 10 to 30%)
It is effective to add and process. Furthermore, when treating fine powder waste containing a large amount of hexavalent chromium as a heavy metal, it is also effective to add a reducing agent in advance. In this case, reducing agents include salts of divalent iron ions, sulfites or sulfites, coal carbon black, coke husks, organic carbons such as lignin, metals such as magnesium, calcium, zinc, etc., or wastes containing these. A solid substance can be used in the form of a fine powder, and a water-soluble salt or an aqueous solution can be used in the form of a spray. The fine powder waste whose chemical composition has been adjusted in this way is molded to increase the number of points of contact between the fine powders, and this molding method can use conventional techniques such as pressurization, rolling, extrusion, etc. . The thus shaped waste is placed in an autoclave using steam as a medium and solidified by being left in the presence of pressurized steam. The mechanism of the reaction that occurs in the steam autoclave process is not necessarily clear due to the difficulty in identifying and quantifying the reaction products, but it is possible that calcium silicate hydrate or calcium aluminate hydrate is produced, resulting in solidification due to the mutual bonding of fine powders. It is thought that the development of strength, the formation reaction of poorly soluble salts between the sulfate radicals in the waste and the added fixative, and the oxidation-reduction reaction between hexavalent chromium and the reducing agent are proceeding simultaneously. As described above, according to the present invention, fine powder waste is molded in the presence of a calcium component, with the addition of a sulfuric acid root fixing agent and, if necessary, at least one of a solidification accelerator or a reducing agent. Afterwards, by steam autoclave treatment, a solid solidified product that is strong and has a significantly small amount of sulfate radicals eluted can be easily obtained. That is, the present invention not only improves the handling of fine powder waste and prevents the elution of heavy metals, but also makes it possible to reuse it as roadbed material, sand, and even as artificial aggregate for concrete. Furthermore, since the heat and steam generated from the waste incineration process can be used directly or indirectly through a steam boiler, the present invention can be satisfied as an energy-saving and resource-saving process. It not only has an extremely useful effect on pollution prevention, but also accurately eliminates various conventional problems.
Moreover, the processing cost is low, and the waste can be disposed of economically. Next, examples of the present invention will be shown. Example 1 Sludge generated at a certain sewage treatment plant was dehydrated by adding slaked lime and ferric chloride, dried, and then incinerated. The composition of incinerated ash was as follows.

【表】 また、この焼却灰からの6価クロム溶出濃度は
1.5ppmであつた。 この焼却灰に種々の硫酸根固定剤を添加したの
ち、1ton/cm2の圧力で圧縮成型して直径20mm長さ
20mmのグリーンペレツトをつくり、20気圧で1時
間水蒸気オートクレーブ処理を施し、固化物を得
た。この固化物の強度及び環境庁告示第13号(昭
和48年)の方法による溶出試験結果を第1表に示
す。
[Table] Also, the concentration of hexavalent chromium eluted from this incineration ash is
It was 1.5ppm. After adding various sulfuric acid root fixing agents to this incineration ash, it is compression molded at a pressure of 1 ton/cm 2 to a length of 20 mm in diameter.
A 20 mm green pellet was prepared and subjected to steam autoclave treatment at 20 atm for 1 hour to obtain a solidified product. Table 1 shows the strength of this solidified product and the results of the elution test according to the method specified in Environment Agency Notification No. 13 (1972).

【表】【table】

【表】 第1表の結果より、硫酸根固定剤の添加は、固
化物強度を低下させることなく、しかも、6価ク
ロム溶出量を増加させることなく、硫酸根の溶出
量を大幅に低減させることがわかる。 実施例 2 某都市ゴミ焼却場から排出されるEPダストの
組成は以下の通りであつた。
[Table] From the results in Table 1, the addition of the sulfate radical fixative significantly reduces the amount of sulfate radicals eluted without reducing the strength of the solidified product or increasing the amount of hexavalent chromium eluted. I understand that. Example 2 The composition of EP dust discharged from a certain municipal garbage incinerator was as follows.

【表】 このEPダストに所定量の塩化バリウムを水溶
液の形で添加し、転動造粒機にて直径8〜10mmに
造粒した。このグリーンペレツトを20気圧で1時
間、水蒸気オートクレーブ処理して固化物を得、
固化物強度と硫酸根溶出濃度(実施例1と同じ方
法で試験)を測定した。 その結果を第2表に示す。
[Table] A predetermined amount of barium chloride was added in the form of an aqueous solution to this EP dust, and granulated to a diameter of 8 to 10 mm using a rolling granulator. This green pellet was treated in a steam autoclave at 20 atmospheres for 1 hour to obtain a solidified product.
The solidified product strength and sulfate radical elution concentration (tested using the same method as in Example 1) were measured. The results are shown in Table 2.

【表】 このEPダストに含まれる硫酸根の全量を、硫
酸バリウムとして固定するに要する塩化バリウム
の理論量を計算すると、約5%であつた。 第2表の結果は、塩化バリウム5%以上の添加
で溶出する硫酸根の量が著しく低下することを示
している。以上から、硫酸根固定剤の添加量は、
廃棄物中に含まれる硫酸根の全量を難溶性塩とし
て固定するに要する理論量以上とすると良いこと
がわかる。
[Table] The theoretical amount of barium chloride required to fix the total amount of sulfate radicals contained in this EP dust as barium sulfate was calculated to be approximately 5%. The results in Table 2 show that the amount of leached sulfate radicals is significantly reduced by adding 5% or more of barium chloride. From the above, the amount of sulfate root fixative added is:
It can be seen that it is better to keep the total amount of sulfate radicals contained in the waste at least the theoretical amount required to fix them as sparingly soluble salts.

Claims (1)

【特許請求の範囲】 1 微粉状廃棄物を、カルシウム成分の存在下で
硫酸根固定剤を添加し、必要に応じて固化促進剤
又は還元剤の少なくとも一方を混合して成型した
後、水蒸気オートクレーブ処理して固化すること
を特徴とする微粉状廃棄物の固化処理方法。 2 前記硫酸根固定剤として、水溶性ストロンチ
ウム塩、水溶性バリウム塩、水溶性ラジウム塩、
水溶性鉛塩及びこれらの物質を含む廃棄物を、単
独又は複数組み合わせて用いる特許請求の範囲第
1項記載の固化処理方法。 3 前記硫酸根固定剤の添加量を、前記微粉状廃
棄物中に含まれる硫酸根の全量を固定するのに必
要な理論量以上とする特許請求の範囲第1項又は
第2項記載の固化処理方法。
[Scope of Claims] 1 Fine powder waste is molded by adding a sulfuric acid radical fixing agent in the presence of a calcium component, and optionally mixing at least one of a solidification accelerator or a reducing agent, and then heated in a steam autoclave. A method for solidifying fine powder waste, characterized by processing and solidifying it. 2 As the sulfate root fixing agent, a water-soluble strontium salt, a water-soluble barium salt, a water-soluble radium salt,
The solidification treatment method according to claim 1, wherein a water-soluble lead salt and waste containing these substances are used alone or in combination. 3. Solidification according to claim 1 or 2, wherein the amount of the sulfate radical fixing agent added is greater than or equal to the theoretical amount necessary to fix the entire amount of sulfate radicals contained in the fine powder waste. Processing method.
JP6622080A 1980-05-19 1980-05-19 Caking of pulverized waste Granted JPS56161881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6622080A JPS56161881A (en) 1980-05-19 1980-05-19 Caking of pulverized waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6622080A JPS56161881A (en) 1980-05-19 1980-05-19 Caking of pulverized waste

Publications (2)

Publication Number Publication Date
JPS56161881A JPS56161881A (en) 1981-12-12
JPS633674B2 true JPS633674B2 (en) 1988-01-25

Family

ID=13309525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6622080A Granted JPS56161881A (en) 1980-05-19 1980-05-19 Caking of pulverized waste

Country Status (1)

Country Link
JP (1) JPS56161881A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282884A (en) * 1988-09-20 1990-03-23 Fujitsu General Ltd High picture quality television receiver
JPH0348967U (en) * 1989-09-20 1991-05-13

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866841B2 (en) 2001-08-09 2005-03-15 Epatentmanager.Com Non-endocrine disrupting cytoprotective UV radiation resistant substance
JP4746853B2 (en) * 2004-07-12 2011-08-10 和光 加藤 High purity metal hydroxide, purification method and production method thereof, hydroxide and oxide obtained by these methods, and synthetic resin composition and synthetic resin molded article
JP4581715B2 (en) * 2004-10-27 2010-11-17 三菱マテリアル株式会社 Dust disposal method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282884A (en) * 1988-09-20 1990-03-23 Fujitsu General Ltd High picture quality television receiver
JPH0348967U (en) * 1989-09-20 1991-05-13

Also Published As

Publication number Publication date
JPS56161881A (en) 1981-12-12

Similar Documents

Publication Publication Date Title
JP4307566B2 (en) Methods for encapsulating hazardous waste materials
US5304709A (en) Hazardous wast disposal method and composition
KR101459990B1 (en) block composition using the sludge Ash and manufacturing method block
US11174185B2 (en) Methods and systems for multi-stage encapsulation of wastes and production thereof into aggregate products
JPH067761A (en) Method for treating residual incinerated waste and product obtained by said method
JPS61227899A (en) Treatment of waste earth
HUT75350A (en) Method for binding waste materials
JPS633674B2 (en)
JP2583729B2 (en) Detoxification and stabilization of waste containing hazardous heavy metals
KR100948658B1 (en) Method for solidifying sewage sludge
JP2757074B2 (en) Treatment method of salt dust from incineration plant
JP4209224B2 (en) Method for producing calcium sulfide heavy metal fixing agent
US6476287B1 (en) Sulfite treatment of spent industrial wastes
JPH09155319A (en) Method for processing for making heavy metal-containing incineration ash, etc., and shredder dust pollution-free and manufacture of reuse material
US5976244A (en) Fixation of hazardous wastes and related products
JPS6029555B2 (en) Solidification treatment method for waste containing heavy metals
JPS5874794A (en) Safe transportation of acidic sludge obtained from petroleum fraction and conversion thereof to solid fuel
JPS6029556B2 (en) Method for solidifying powdery waste containing heavy metals
JPS6054118B2 (en) Processing method for fine powder waste
JPS6134873B2 (en)
JPH09122620A (en) Material for waste treatment and method for waste treatment
JP2006102643A (en) Calcium sulfide heavy metal solidifying agent, its production method, method for producing soil modification material and method for treating object to be treated
KR101324769B1 (en) Menufacturing method of artificial soil and sludge solidified agent
US6680039B2 (en) Sulfite treatment of spent industrial wastes
JPS607554B2 (en) Method for solidifying fine powder incineration residue