JPS633674B2 - - Google Patents
Info
- Publication number
- JPS633674B2 JPS633674B2 JP55066220A JP6622080A JPS633674B2 JP S633674 B2 JPS633674 B2 JP S633674B2 JP 55066220 A JP55066220 A JP 55066220A JP 6622080 A JP6622080 A JP 6622080A JP S633674 B2 JPS633674 B2 JP S633674B2
- Authority
- JP
- Japan
- Prior art keywords
- fine powder
- waste
- water
- soluble
- sulfate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 30
- 239000002699 waste material Substances 0.000 claims description 29
- 239000000843 powder Substances 0.000 claims description 22
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 13
- 239000011575 calcium Substances 0.000 claims description 13
- 229910052791 calcium Inorganic materials 0.000 claims description 13
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 238000007711 solidification Methods 0.000 claims description 10
- 230000008023 solidification Effects 0.000 claims description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 8
- 239000003638 chemical reducing agent Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 159000000009 barium salts Chemical class 0.000 claims description 2
- 159000000008 strontium salts Chemical class 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims 1
- 150000003255 radium Chemical class 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000000047 product Substances 0.000 description 7
- 239000000834 fixative Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002956 ash Substances 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 3
- 229910001626 barium chloride Inorganic materials 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 239000004567 concrete Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 iron ions Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000010813 municipal solid waste Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 159000000010 radium salts Chemical class 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Processing Of Solid Wastes (AREA)
Description
本発明は、都市ゴミ、汚泥、ヘドロ等の焼却工
程から排出される焼却灰、ならびに各種ガス処理
工程から生じるダスト等の微粉状廃棄物の固化処
理方法に関するものである。
従来、これら微粉状廃棄物の処理又は処分方法
としては、直接埋立、海洋投棄が主流であつた
が、微粉体であるために取扱いが厄介であり、運
搬途中や埋立地において飛散、流出が著しく、さ
らには残渣中に含まれる重金属等の溶出が生じる
など、改善されなければならない点が多くあつ
た。
また、これら残渣の取扱いを容易にし、重金属
等の溶出を防止するために、各種の固化技術が提
案されているが、これら従来の固化技術としては
セメントやアスフアルト等の固化剤を添加する方
法や、加熱溶融したのち放冷固化する方法(溶融
法)などがあつた。これらのうち、固化剤を添加
する方法は、有害物質の封じ込めや埋立地の土質
の改善等に効果はあるが、固化剤の価格が高く、
日々排出される前記微粉状廃棄物の全量を固化す
ることは困難である。一方、前記溶融法は、廃棄
物の体積が著しく減少し、粒状若しくは塊状にな
るために取扱いが容易で、重金属等の有害物質を
封じ込めることもでき、すぐれた方法であるが、
廃棄物を高温に加熱保持する必要があり、エネル
ギを大量に使用する点で難がある。
近年、かかる問題点を解決でき、しかも省資
源、省エネルギも可能な固化方法として、水蒸気
オートクレーブを用いる方法が開発され、脚光を
あびている。この方法は、微粉状廃棄物を低コス
トで固化し、路盤材、砂などへの利用を可能とす
るすぐれた方法である。しかし微粉状廃棄物中に
多量の硫酸根が含まれる場合には、固化物から微
量の硫酸根が溶け出し、周囲のコンクリート製品
に悪影響を及ぼす懸念が生じるため、固化物をコ
ンクリート用人工骨材として用いる場合の障害と
なつていた。
本発明は、かかる現状に対して固化物からの硫
酸根の流出を完全に防止し、固化物をコンクリー
ト用人工骨材としても十分利用できる微粉状廃棄
物の固化処理方法を提供することを目的とするも
のである。
本発明は、微粉状廃棄物をカルシウム成分の存
在下で硫酸根固定剤を添加し、必要に応じて固化
促進剤又は還元剤の少くとも一方を混合して成型
し、水蒸気オートクレーブ処理して固化すること
を特徴とするものである。
本発明は、この硫酸根固定剤を用いる方法が非
常に有効なことを明らかにしたことにより完成さ
れたものである。すなわち、本発明者等は数多く
の実験的研究の結果、硫酸根固定剤として、水溶
性ストロンチウム塩、水溶性バリウム塩、水溶性
ラジウム塩、水溶性鉛塩及びこれらの物質を含む
廃棄物を単独あるいは複数組みあわせて用いると
効果的であることを確認した。これら硫酸根固定
剤の添加量の最適値は微粉状廃棄物によつて著し
く異なり、また、硫酸根固定剤の種類、添加方法
等によつても異なり、一概には規定できないが、
微粉状廃棄物中に含まれる硫酸根の全量を固定す
るに必要な理論量以上とするのが効果的である。
前記硫酸根固定剤の添加方法としては、粉体のま
ま添加混合するよりは水溶液として混合した方が
添加量を削減できる利点がある。
本発明においては、カルシウム成分の存在が必
要不可欠の条件であり、前記微粉状廃棄物中にカ
ルシウム成分が十分含有されている場合はカルシ
ウム成分を添加しなくてよいが、不十分な場合に
はカルシウム成分を予め添加して、混合物中のカ
ルシウム分を10重量%(生石灰換算、以下「%」
はすべて重量基準で表示してある)以上とすると
よい。また、添加するカルシウム成分の形態とし
ては、炭酸カルシウム、生石灰、硫酸カルシウ
ム、塩化カルシウム、消石灰等があり、これらを
単独又は複数組合わせて添加混合するが、これら
のうち消石灰が最適であり、場合によつてはカル
シウム成分を用いて脱水した各種汚泥を焼却して
得られる残渣を用いることもできる。
また、カルシウム成分が十分でも固化しにくい
場合には必要に応じて固化促進剤としてけいそう
土、けい華、けい酸白土、けい石、石英、けい酸
ガラス、水ガラス、砂等のけい酸質物質、カオリ
ナイト、ベントナイト、パーナイト、ゼオナイ
ト、ハロサイト等の粘土類、水酸化アルミニウ
ム、酸化アルミニウム等のアルミニウム化合物、
または上記物質を含むフライアツシユ、赤泥焼却
灰等の廃棄物を単独、あるいは、複数組合わせて
適当値(例えば1〜30%、好ましくは10〜30%)
添加して処理するのが効果的である。
さらに、重金属として6価クロムを大量に含む
微粉状廃棄物を処理するにあたつては、あらかじ
め還元剤を添加しておくことも有効である。この
場合還元剤としては、2価鉄イオンの塩、亜硫酸
又は亜硫酸塩、石炭カーボンブラツク、コークス
のもえ殻から、リグニン等の有機炭素類、マグネ
シウム、カルシウム、亜鉛等の金属あるいはこれ
らを含む廃棄物などを単独あるいは複数用い、固
体状のものは微粉末でまた、水溶性塩あるいは水
溶液はスプレーなどの形で用いることができる。
このように化学組成を調整された微粉状廃棄物
は、微粉同士の接触点数を増加させるために成型
されるが、この成型方法は、加圧、転動、押し出
し等従来の技術をそのまま利用できる。
かくして成型された廃棄物は水蒸気を媒体とし
て用いるオートクレーブ中に納められ、加圧水蒸
気の存在下に放置されることにより固化する。
水蒸気オートクレーブ工程において生じる反応
の機構に関しては反応生成物の同定や定量が難し
いために必ずしも明らかではないが、カルシウム
シリケート水和物あるいはカルシウムアルミネー
ト水和物の生成による微粉体相互の結合による固
化物強度の発現、廃棄物中の硫酸根と添加した固
定剤とによる難溶性塩の生成反応及び6価クロム
と還元剤とによる酸化還元反応などが同時に進行
しているものと考えられる。
以上述べたように本発明によれば微粉状廃棄物
をカルシウム成分の存在下で、硫酸根固定剤を添
加し、必要に応じて固化促進剤又は還元剤の少く
とも一方を混合して成型した後、水蒸気オートク
レーブ処理することにより、強固で、硫酸根の溶
出量の著しく少ない固化物を容易に得ることがで
きる。
即ち、本発明により微粉状廃棄物のハンドリン
グ性が改善され、重金属の溶出が防止されるのみ
ならず、路盤材や砂、さらには、コンクリート用
人工骨材としての再利用も可能となつた。
さらに、廃棄物の焼却処理工程から生じる熱や
水蒸気を直接、あるいは、蒸気ボイラー等を介し
て間接的に利用することができるから、本発明は
省エネルギ、省資源的プロセスとしても満足しう
るものであり、公害防止上極めて有用な効果を有
するのみならず、従来の諸問題も適確に排除し、
しかも処理コストも安価で、廃棄物を経済的に処
分できるなどの利益がある。
次に本発明の実施例を示す。
実施例 1
某下水処理場で発生した汚泥に消石灰と塩化第
二鉄を添加して脱水し、乾燥後焼却して得た焼却
灰の組成は次の通りであつた。
The present invention relates to a method for solidifying incinerated ash discharged from the incineration process of municipal garbage, sludge, sludge, etc., and fine powder waste such as dust generated from various gas processing processes. Traditionally, the mainstream methods for treating or disposing of these fine powder wastes have been direct landfilling and ocean dumping, but since they are fine powders, they are difficult to handle, and they are prone to scattering and spilling during transportation and at landfill sites. There were many issues that needed to be improved, such as the elution of heavy metals contained in the residue. In addition, various solidification techniques have been proposed to facilitate the handling of these residues and prevent the elution of heavy metals, etc., but these conventional solidification techniques include methods of adding solidifying agents such as cement and asphalt, There was a method of heating, melting, and then cooling and solidifying (melting method). Among these methods, the method of adding a solidifying agent is effective in containing harmful substances and improving the soil quality of a landfill, but the cost of the solidifying agent is high and
It is difficult to solidify the entire amount of the fine powder waste that is discharged every day. On the other hand, the melting method is an excellent method because the volume of the waste is significantly reduced and the waste becomes granular or lumpy, making it easy to handle and containing harmful substances such as heavy metals.
The problem is that the waste must be heated and maintained at a high temperature, which consumes a large amount of energy. In recent years, a method using a steam autoclave has been developed as a solidification method that can solve these problems and also save resources and energy, and has been attracting attention. This method is an excellent method for solidifying fine powder waste at low cost and making it possible to use it as roadbed material, sand, etc. However, if a large amount of sulfate radicals are contained in the fine powder waste, there is a concern that a small amount of sulfate radicals will leach out from the solidified material and have an adverse effect on surrounding concrete products. This has become an obstacle when used as a The purpose of the present invention is to provide a method for solidifying fine powder waste that completely prevents the outflow of sulfate radicals from the solidified material and allows the solidified material to be fully used as artificial aggregate for concrete. That is. The present invention involves adding a sulfuric acid radical fixing agent to fine powder waste in the presence of a calcium component, mixing with at least one of a solidification accelerator or a reducing agent as needed, molding the waste, and solidifying it by steam autoclaving. It is characterized by: The present invention was completed by revealing that the method using this sulfuric acid root fixative is very effective. That is, as a result of numerous experimental studies, the present inventors have found that water-soluble strontium salts, water-soluble barium salts, water-soluble radium salts, water-soluble lead salts, and wastes containing these substances are used alone as sulfate root fixing agents. It was also confirmed that it is effective when used in combination. The optimum amount of these sulfate fixatives to be added varies significantly depending on the type of fine powder waste, and also depends on the type of sulfate fixative, the method of addition, etc., and cannot be unconditionally defined.
It is effective to increase the amount above the theoretical amount required to fix the total amount of sulfate radicals contained in the fine powder waste.
As for the method of adding the sulfuric acid root fixing agent, mixing it as an aqueous solution has the advantage of reducing the amount added, rather than adding and mixing it as a powder. In the present invention, the presence of calcium component is an essential condition, and if the fine powder waste contains sufficient calcium component, it is not necessary to add calcium component, but if it is insufficient, Add calcium component in advance to reduce the calcium content in the mixture to 10% by weight (calcium equivalent, hereinafter referred to as "%")
(all are expressed on a weight basis) or higher. In addition, the forms of calcium components to be added include calcium carbonate, quicklime, calcium sulfate, calcium chloride, slaked lime, etc. These can be added singly or in combination, but slaked lime is the most suitable, and in some cases Depending on the situation, a residue obtained by incinerating various types of sludge dehydrated using calcium components may also be used. In addition, if the calcium content is sufficient but hard to solidify, silicic acid materials such as diatomaceous earth, silica, silicate clay, silica stone, quartz, silicate glass, water glass, and sand can be used as a solidification accelerator as necessary. substances, clays such as kaolinite, bentonite, pernite, zeonite, hallosite, aluminum compounds such as aluminum hydroxide, aluminum oxide,
Or waste such as fly ash, red mud incineration ash, etc. containing the above substances alone or in combination to an appropriate value (e.g. 1 to 30%, preferably 10 to 30%)
It is effective to add and process. Furthermore, when treating fine powder waste containing a large amount of hexavalent chromium as a heavy metal, it is also effective to add a reducing agent in advance. In this case, reducing agents include salts of divalent iron ions, sulfites or sulfites, coal carbon black, coke husks, organic carbons such as lignin, metals such as magnesium, calcium, zinc, etc., or wastes containing these. A solid substance can be used in the form of a fine powder, and a water-soluble salt or an aqueous solution can be used in the form of a spray. The fine powder waste whose chemical composition has been adjusted in this way is molded to increase the number of points of contact between the fine powders, and this molding method can use conventional techniques such as pressurization, rolling, extrusion, etc. . The thus shaped waste is placed in an autoclave using steam as a medium and solidified by being left in the presence of pressurized steam. The mechanism of the reaction that occurs in the steam autoclave process is not necessarily clear due to the difficulty in identifying and quantifying the reaction products, but it is possible that calcium silicate hydrate or calcium aluminate hydrate is produced, resulting in solidification due to the mutual bonding of fine powders. It is thought that the development of strength, the formation reaction of poorly soluble salts between the sulfate radicals in the waste and the added fixative, and the oxidation-reduction reaction between hexavalent chromium and the reducing agent are proceeding simultaneously. As described above, according to the present invention, fine powder waste is molded in the presence of a calcium component, with the addition of a sulfuric acid root fixing agent and, if necessary, at least one of a solidification accelerator or a reducing agent. Afterwards, by steam autoclave treatment, a solid solidified product that is strong and has a significantly small amount of sulfate radicals eluted can be easily obtained. That is, the present invention not only improves the handling of fine powder waste and prevents the elution of heavy metals, but also makes it possible to reuse it as roadbed material, sand, and even as artificial aggregate for concrete. Furthermore, since the heat and steam generated from the waste incineration process can be used directly or indirectly through a steam boiler, the present invention can be satisfied as an energy-saving and resource-saving process. It not only has an extremely useful effect on pollution prevention, but also accurately eliminates various conventional problems.
Moreover, the processing cost is low, and the waste can be disposed of economically. Next, examples of the present invention will be shown. Example 1 Sludge generated at a certain sewage treatment plant was dehydrated by adding slaked lime and ferric chloride, dried, and then incinerated. The composition of incinerated ash was as follows.
【表】
また、この焼却灰からの6価クロム溶出濃度は
1.5ppmであつた。
この焼却灰に種々の硫酸根固定剤を添加したの
ち、1ton/cm2の圧力で圧縮成型して直径20mm長さ
20mmのグリーンペレツトをつくり、20気圧で1時
間水蒸気オートクレーブ処理を施し、固化物を得
た。この固化物の強度及び環境庁告示第13号(昭
和48年)の方法による溶出試験結果を第1表に示
す。[Table] Also, the concentration of hexavalent chromium eluted from this incineration ash is
It was 1.5ppm. After adding various sulfuric acid root fixing agents to this incineration ash, it is compression molded at a pressure of 1 ton/cm 2 to a length of 20 mm in diameter.
A 20 mm green pellet was prepared and subjected to steam autoclave treatment at 20 atm for 1 hour to obtain a solidified product. Table 1 shows the strength of this solidified product and the results of the elution test according to the method specified in Environment Agency Notification No. 13 (1972).
【表】【table】
【表】
第1表の結果より、硫酸根固定剤の添加は、固
化物強度を低下させることなく、しかも、6価ク
ロム溶出量を増加させることなく、硫酸根の溶出
量を大幅に低減させることがわかる。
実施例 2
某都市ゴミ焼却場から排出されるEPダストの
組成は以下の通りであつた。[Table] From the results in Table 1, the addition of the sulfate radical fixative significantly reduces the amount of sulfate radicals eluted without reducing the strength of the solidified product or increasing the amount of hexavalent chromium eluted. I understand that. Example 2 The composition of EP dust discharged from a certain municipal garbage incinerator was as follows.
【表】
このEPダストに所定量の塩化バリウムを水溶
液の形で添加し、転動造粒機にて直径8〜10mmに
造粒した。このグリーンペレツトを20気圧で1時
間、水蒸気オートクレーブ処理して固化物を得、
固化物強度と硫酸根溶出濃度(実施例1と同じ方
法で試験)を測定した。
その結果を第2表に示す。[Table] A predetermined amount of barium chloride was added in the form of an aqueous solution to this EP dust, and granulated to a diameter of 8 to 10 mm using a rolling granulator. This green pellet was treated in a steam autoclave at 20 atmospheres for 1 hour to obtain a solidified product.
The solidified product strength and sulfate radical elution concentration (tested using the same method as in Example 1) were measured. The results are shown in Table 2.
【表】
このEPダストに含まれる硫酸根の全量を、硫
酸バリウムとして固定するに要する塩化バリウム
の理論量を計算すると、約5%であつた。
第2表の結果は、塩化バリウム5%以上の添加
で溶出する硫酸根の量が著しく低下することを示
している。以上から、硫酸根固定剤の添加量は、
廃棄物中に含まれる硫酸根の全量を難溶性塩とし
て固定するに要する理論量以上とすると良いこと
がわかる。[Table] The theoretical amount of barium chloride required to fix the total amount of sulfate radicals contained in this EP dust as barium sulfate was calculated to be approximately 5%. The results in Table 2 show that the amount of leached sulfate radicals is significantly reduced by adding 5% or more of barium chloride. From the above, the amount of sulfate root fixative added is:
It can be seen that it is better to keep the total amount of sulfate radicals contained in the waste at least the theoretical amount required to fix them as sparingly soluble salts.
Claims (1)
硫酸根固定剤を添加し、必要に応じて固化促進剤
又は還元剤の少なくとも一方を混合して成型した
後、水蒸気オートクレーブ処理して固化すること
を特徴とする微粉状廃棄物の固化処理方法。 2 前記硫酸根固定剤として、水溶性ストロンチ
ウム塩、水溶性バリウム塩、水溶性ラジウム塩、
水溶性鉛塩及びこれらの物質を含む廃棄物を、単
独又は複数組み合わせて用いる特許請求の範囲第
1項記載の固化処理方法。 3 前記硫酸根固定剤の添加量を、前記微粉状廃
棄物中に含まれる硫酸根の全量を固定するのに必
要な理論量以上とする特許請求の範囲第1項又は
第2項記載の固化処理方法。[Scope of Claims] 1 Fine powder waste is molded by adding a sulfuric acid radical fixing agent in the presence of a calcium component, and optionally mixing at least one of a solidification accelerator or a reducing agent, and then heated in a steam autoclave. A method for solidifying fine powder waste, characterized by processing and solidifying it. 2 As the sulfate root fixing agent, a water-soluble strontium salt, a water-soluble barium salt, a water-soluble radium salt,
The solidification treatment method according to claim 1, wherein a water-soluble lead salt and waste containing these substances are used alone or in combination. 3. Solidification according to claim 1 or 2, wherein the amount of the sulfate radical fixing agent added is greater than or equal to the theoretical amount necessary to fix the entire amount of sulfate radicals contained in the fine powder waste. Processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6622080A JPS56161881A (en) | 1980-05-19 | 1980-05-19 | Caking of pulverized waste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6622080A JPS56161881A (en) | 1980-05-19 | 1980-05-19 | Caking of pulverized waste |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56161881A JPS56161881A (en) | 1981-12-12 |
JPS633674B2 true JPS633674B2 (en) | 1988-01-25 |
Family
ID=13309525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6622080A Granted JPS56161881A (en) | 1980-05-19 | 1980-05-19 | Caking of pulverized waste |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56161881A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0282884A (en) * | 1988-09-20 | 1990-03-23 | Fujitsu General Ltd | High picture quality television receiver |
JPH0348967U (en) * | 1989-09-20 | 1991-05-13 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6866841B2 (en) | 2001-08-09 | 2005-03-15 | Epatentmanager.Com | Non-endocrine disrupting cytoprotective UV radiation resistant substance |
JP4746853B2 (en) * | 2004-07-12 | 2011-08-10 | 和光 加藤 | High purity metal hydroxide, purification method and production method thereof, hydroxide and oxide obtained by these methods, and synthetic resin composition and synthetic resin molded article |
JP4581715B2 (en) * | 2004-10-27 | 2010-11-17 | 三菱マテリアル株式会社 | Dust disposal method |
-
1980
- 1980-05-19 JP JP6622080A patent/JPS56161881A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0282884A (en) * | 1988-09-20 | 1990-03-23 | Fujitsu General Ltd | High picture quality television receiver |
JPH0348967U (en) * | 1989-09-20 | 1991-05-13 |
Also Published As
Publication number | Publication date |
---|---|
JPS56161881A (en) | 1981-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4307566B2 (en) | Methods for encapsulating hazardous waste materials | |
US5304709A (en) | Hazardous wast disposal method and composition | |
KR101459990B1 (en) | block composition using the sludge Ash and manufacturing method block | |
US11174185B2 (en) | Methods and systems for multi-stage encapsulation of wastes and production thereof into aggregate products | |
JPH067761A (en) | Method for treating residual incinerated waste and product obtained by said method | |
JPS61227899A (en) | Treatment of waste earth | |
HUT75350A (en) | Method for binding waste materials | |
JPS633674B2 (en) | ||
JP2583729B2 (en) | Detoxification and stabilization of waste containing hazardous heavy metals | |
KR100948658B1 (en) | Method for solidifying sewage sludge | |
JP2757074B2 (en) | Treatment method of salt dust from incineration plant | |
JP4209224B2 (en) | Method for producing calcium sulfide heavy metal fixing agent | |
US6476287B1 (en) | Sulfite treatment of spent industrial wastes | |
JPH09155319A (en) | Method for processing for making heavy metal-containing incineration ash, etc., and shredder dust pollution-free and manufacture of reuse material | |
US5976244A (en) | Fixation of hazardous wastes and related products | |
JPS6029555B2 (en) | Solidification treatment method for waste containing heavy metals | |
JPS5874794A (en) | Safe transportation of acidic sludge obtained from petroleum fraction and conversion thereof to solid fuel | |
JPS6029556B2 (en) | Method for solidifying powdery waste containing heavy metals | |
JPS6054118B2 (en) | Processing method for fine powder waste | |
JPS6134873B2 (en) | ||
JPH09122620A (en) | Material for waste treatment and method for waste treatment | |
JP2006102643A (en) | Calcium sulfide heavy metal solidifying agent, its production method, method for producing soil modification material and method for treating object to be treated | |
KR101324769B1 (en) | Menufacturing method of artificial soil and sludge solidified agent | |
US6680039B2 (en) | Sulfite treatment of spent industrial wastes | |
JPS607554B2 (en) | Method for solidifying fine powder incineration residue |