JPS6074616A - Conducting pin for electron beam exposing device - Google Patents
Conducting pin for electron beam exposing deviceInfo
- Publication number
- JPS6074616A JPS6074616A JP58181999A JP18199983A JPS6074616A JP S6074616 A JPS6074616 A JP S6074616A JP 58181999 A JP58181999 A JP 58181999A JP 18199983 A JP18199983 A JP 18199983A JP S6074616 A JPS6074616 A JP S6074616A
- Authority
- JP
- Japan
- Prior art keywords
- chip
- sample
- electron beam
- substrate
- pin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000005468 ion implantation Methods 0.000 claims abstract description 5
- 239000010408 film Substances 0.000 abstract description 14
- 229910003460 diamond Inorganic materials 0.000 abstract description 13
- 239000010432 diamond Substances 0.000 abstract description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052796 boron Inorganic materials 0.000 abstract description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052594 sapphire Inorganic materials 0.000 abstract description 3
- 239000010980 sapphire Substances 0.000 abstract description 3
- 239000010409 thin film Substances 0.000 abstract description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 2
- 239000011574 phosphorus Substances 0.000 abstract description 2
- 239000010936 titanium Substances 0.000 abstract description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- 238000003776 cleavage reaction Methods 0.000 abstract 1
- 230000007017 scission Effects 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910000906 Bronze Inorganic materials 0.000 description 3
- 239000010974 bronze Substances 0.000 description 3
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000005219 brazing Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は電子ビーム露光装置に係り、特に描画時にシリ
コン等の基板を接地するための導通ピンに関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electron beam exposure apparatus, and more particularly to a conductive pin for grounding a substrate such as silicon during drawing.
LSIや超LSIの製作時に電子ビームを試料に照射し
て所望のパターンを描画するための電子ビーム露光装置
は広く利用され、その装置例は第1図に示す如きもので
ある。第1図に於いて、電子銃2より発射された電子ビ
ームはマスク3により所望の断面形状に整形され、電子
レンズ4から試料1上に結像される。上記電子レンズ4
と試料1間に配置されたX及びY方向の偏向電極(装置
)5X、5Yにはコンピュータ8からデジタル−アナロ
グ変換回路6X、6Y及び加算増幅回路7X。Electron beam exposure apparatuses are widely used for irradiating a sample with an electron beam to draw a desired pattern during the manufacture of LSIs and VLSIs, and an example of such apparatus is shown in FIG. In FIG. 1, an electron beam emitted from an electron gun 2 is shaped into a desired cross-sectional shape by a mask 3, and is imaged onto a sample 1 from an electron lens 4. Above electronic lens 4
The deflection electrodes (devices) 5X and 5Y in the X and Y directions arranged between the sample 1 and the sample 1 are connected to digital-to-analog conversion circuits 6X, 6Y and a summing amplifier circuit 7X from the computer 8.
7Yを介して偏向信号が供給される。コンピュータ8よ
りゲート信号をゲート回路10X、IOYに送るように
する。ゲート回路10X、IOYの出力は上記した加算
増幅回路7X、7Yに加えられコンピュータ8からの指
令に基づいて上記ゲート回路を開き電子銃2からの電子
ビームを試料1のX軸またはY軸方向に対して描画する
。A deflection signal is provided via 7Y. A gate signal is sent from the computer 8 to the gate circuits 10X and IOY. The outputs of the gate circuits 10X and IOY are applied to the above-mentioned summing amplifier circuits 7X and 7Y, and the gate circuits are opened based on instructions from the computer 8 to direct the electron beam from the electron gun 2 toward the X-axis or Y-axis direction of the sample 1. Draw against.
この際に試料1に電子ビームを照射するとシリコン等の
基板内に電荷が蓄積され、コンピュータ8から偏向装置
5X、5Yに与えられる所定位置に偏位させる電圧値だ
けでは所定位置に電子ビームが照射されずにずれを発生
ずる。At this time, when the sample 1 is irradiated with an electron beam, charges are accumulated in the substrate such as silicon, and the electron beam is irradiated at a predetermined position only by the voltage value given to the deflection devices 5X and 5Y from the computer 8 to deflect it to a predetermined position. Misalignment occurs without being fixed.
この様な弊害を除去するためには第1図で試料1の側面
を接地9する様にすればよい。In order to eliminate such a problem, the side surface of the sample 1 may be grounded 9 as shown in FIG.
第2図及び第3図は従来の試料に接地を施すための説明
に供する一部を断面とする試料の側面図であり、第2図
の実施例に於いて試料1としてシリコン基板を用いた場
合に酸化膜(SiO2)1aが形成されていない側壁1
bにステンレス鋼からなる導通ピン11のチップlla
を圧接するようになされる。尚12は導通ピン11を保
持する保持部材でスプリング13により試料1の側壁を
押圧し、該保持部材12は接地9されている。Figures 2 and 3 are side views of a sample with a part cut away to explain how to ground a conventional sample. In the embodiment shown in Figure 2, a silicon substrate was used as sample 1. In this case, the side wall 1 on which the oxide film (SiO2) 1a is not formed
b is the tip lla of the conductive pin 11 made of stainless steel;
It is made to press into contact with the A holding member 12 holds the conductive pin 11 and presses the side wall of the sample 1 with a spring 13, and the holding member 12 is grounded 9.
上記構成によれば試料側壁1bは凹凸が大きく結晶方向
がふぞろいなので導通ピン11のチップ11aが接する
場合に電荷を放電し易く、導通ピン11は該側壁1bを
破って突き立てられる。第3図に示す実施例は放電源1
4から試料1の底面ICに孔15を穿ち、該孔15にス
テンレス鋼からなる導通ピン11を挿入して接地してい
る。According to the above configuration, the sample side wall 1b has large irregularities and crystal orientations are uneven, so that when the tip 11a of the conductive pin 11 comes into contact with it, the charge is easily discharged, and the conductive pin 11 is pierced through the side wall 1b. The embodiment shown in FIG.
4, a hole 15 is bored in the bottom IC of the sample 1, and a conductive pin 11 made of stainless steel is inserted into the hole 15 and grounded.
上記した第2図及び第3図に示される構成によると、試
料に予め放電加工等により孔明は加工を施さなければな
らず、更に試料の厚み方向の側壁に導通ピンを突き立て
て圧接させるために試料を破る際に破壊させる弊害を生
ずる。According to the configuration shown in FIGS. 2 and 3 above, the holes must be processed in advance by electric discharge machining or the like on the sample, and the conductive pins are further inserted into the side wall in the thickness direction of the sample to make pressure contact. This causes the problem that the sample is destroyed when it is broken.
更に電子ビームを照射すると導通ピンのチップの摩耗が
激しく、ステンレス鋼の他はチタンまたハチタンナイト
ライド或いはタングステンカーバイド等の硬い物質を用
いても2〜3回の使用でチップが摩耗または襞間される
欠点を有する。Furthermore, when irradiated with an electron beam, the tip of the conductive pin will wear out severely, and even if hard materials such as titanium, hatitanium nitride, or tungsten carbide are used in addition to stainless steel, the tip will wear out or crack between the folds after 2 to 3 uses. It has some drawbacks.
本発明は上記従来の欠点に鑑み、導通ピンのチップが襞
間されないで且つ試料を破壊しない電子ビーム露光装置
用導通ピンを提供することを目的とするものである。SUMMARY OF THE INVENTION In view of the above-mentioned conventional drawbacks, it is an object of the present invention to provide a conductive pin for an electron beam exposure apparatus in which the tip of the conductive pin is not folded and the sample is not destroyed.
そして上記目的は本発明によればシリコン基板等の試料
を描画する電子ビーム露光装置において。According to the present invention, the above object is provided in an electron beam exposure apparatus for drawing a sample such as a silicon substrate.
ダイヤモンド針等の超硬質材料にイオンインプラチージ
ョンを施して導通性を付与し、上記試料に導通性を付与
した超硬質材料針を当接させて接地し、電子ビーム照射
により上記基板に蓄積される電荷を除去することを特徴
とする電子ビーム露光装置用導通ピンを提供することで
達成される。An ultra-hard material such as a diamond needle is subjected to ion implantation to give it conductivity, and the ultra-hard material needle with conductivity is brought into contact with the sample and grounded, and the electron beam irradiation causes the material to accumulate on the substrate. This can be achieved by providing a conduction pin for an electron beam exposure apparatus that is characterized by removing the electric charge generated by the electron beam exposure apparatus.
以下本発明の実施例を図面について詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.
第4図は本発明の導電ピンとして利用するダイヤモンド
針の拡大側面図、第5図は第4図のチップ部分の拡大図
であり、同図において導通ピン11はチタン等より構成
したチップ保持部16を截頭円錐形状となし、截頭部分
にチップ17がロー付け18されている。FIG. 4 is an enlarged side view of the diamond needle used as the conductive pin of the present invention, and FIG. 5 is an enlarged view of the tip portion of FIG. 16 is shaped like a truncated cone, and a tip 17 is brazed 18 to the truncated portion.
チップ17はダイヤモンド、ボロン、サファイア等の超
硬質材料が用いられ、その先端17aの曲率半径Rは3
μm〜15μmに選択し、該チップの外表面にはイオン
インプラチージョンによってボロン、燐、窒素等を15
0■程度で注入する。The tip 17 is made of ultra-hard material such as diamond, boron, sapphire, etc., and the radius of curvature R of the tip 17a is 3.
15 μm to 15 μm, and boron, phosphorus, nitrogen, etc. are added to the outer surface of the chip by ion implantation.
Inject at around 0.
注入電圧は大きい程よくイオン種は何を選択してもよい
が5 X 10’1個/−程度のドーズ量に選択すると
チップ17の外側表面から1ooo〜2000人厚程度
にアモルファス化した薄膜層17bが形成されてダイヤ
モンドは導通状態になされる。The higher the implantation voltage is, the better the ion species can be selected, but if the dose is selected to be about 5 x 10'1/-, the amorphous thin film layer 17b with a thickness of about 100 to 2000 layers from the outer surface of the chip 17 will be formed. is formed and the diamond becomes conductive.
5−
第6図はチップとしてダイヤモンドを注入イオンとして
ボロンを用い150■でドーズ量を可変させた場合の固
有抵抗Pを対数目盛で縦軸にとったも(7)il’1X
10”で10Mn、1xlOで数にΩの値を示している
。これらのデータから1×101に個/−前後でイオン
注入するのが最適である。5- Figure 6 shows the specific resistance P plotted on the vertical axis on a logarithmic scale when diamond is implanted as a tip and boron is used as the ion, and the dose is varied at 150μ.(7)il'1X
The value of Ω is shown in the numbers for 10" and 1x1O. From these data, it is optimal to implant ions at around 1x101 ions/-.
第7図は上述の如くダイヤモンド、サファイア等の超硬
質材料に導電性を付与した針をチップ保持部材16に固
定して、試料1の酸化膜1aが形成されている基板の表
面に100 g /寵’程度の押圧力を矢印A方向に加
えると窒化膜や酸化膜1aが1000人〜7000人厚
程度では該酸化膜1aが破れてチップが基板内に突きら
れて基板内に蓄積された電荷19はチップ17の導電膜
17b−導電性のチップ保持部材16を介して接地9さ
れる。In FIG. 7, as described above, a needle made of ultra-hard material such as diamond or sapphire that is made conductive is fixed to the chip holding member 16, and a 100 g/min is applied to the surface of the substrate on which the oxide film 1a of sample 1 is formed. When the nitride film or oxide film 1a is approximately 1,000 to 7,000 thick, the oxide film 1a is ruptured and the chip is pushed into the substrate, causing the charge accumulated in the substrate to be removed when a pressure of approximately 100° is applied in the direction of arrow A. 19 is grounded 9 via the conductive film 17b of the chip 17 and the conductive chip holding member 16.
第8図は本発明の導通ピン11を片持梁構成するり一部
21の先端に固定し、固定部2oに螺子22で固定させ
、試料1を矢印B方向に所定の押6−
圧力が加わる様に上動させて、試料1を固定させるよう
にしたものであり、この様にすれば酸化膜または窒化膜
1aが破れてダイヤモンドチ・ノブは基板内に突きささ
り電荷を接地出来る。上記実施例に利用するり一部21
及び固定部20と螺子22等は電子ビーム露光装置内に
挿入されるため電子ビームが影響を受けない燐青銅やア
ルミニウム等の非磁性材料を用いる必要がある。FIG. 8 shows that the conducting pin 11 of the present invention is configured as a cantilever beam and is fixed to the tip of the part 21, fixed to the fixing part 2o with a screw 22, and the sample 1 is pushed in the direction of arrow B with a predetermined pressure 6-. The sample 1 is fixed by being moved upward so that the diamond tip 1 is applied to the substrate.In this way, the oxide film or nitride film 1a is broken, and the diamond tip knob is inserted into the substrate, allowing the charge to be grounded. Part 21 used in the above example
Since the fixing part 20, screw 22, etc. are inserted into an electron beam exposure apparatus, it is necessary to use nonmagnetic materials such as phosphor bronze or aluminum that are not affected by the electron beam.
第9図は試料1を導通ピン11のチ・ノブ17方向に上
動させた場合のリード21の緩み状態を示すものでリー
ド21が212に示す位置迄、持ち上げられるとチップ
17は距1tili L 、だけ試料1の上面を摺動し
ながら酸化膜1aを破ることになり。FIG. 9 shows the loosened state of the lead 21 when the sample 1 is moved upward in the direction of the chi knob 17 of the conduction pin 11. When the lead 21 is lifted to the position shown at 212, the chip 17 is moved a distance of 1tili L. , the oxide film 1a is broken while sliding on the upper surface of the sample 1.
この間に試料表面をこすることでチ・ツブ17の寿命が
低下することを見出した。It has been found that rubbing the sample surface during this time reduces the life of the tip 17.
これら原因による寿命の低下を補償するための実施例を
第10図及び第11図について説明する。An embodiment for compensating for the reduction in life due to these causes will be described with reference to FIGS. 10 and 11.
第10図は片持梁を二重構造としたものであり第1のり
一部21は燐青銅で構成しチ・ノブ17をロー付したチ
ップ保持部材16の一端を第1のリード21先端に固着
し、該リードの他端をスペーサ23及び第2のり一部2
4を介して固定部20に固定する。スペーサ23及び固
定部20はアルミニウム等の非磁性材で構成され、第2
のリード24に導通ピン11の中間部すなわちチップ保
持部材16の下端部もロー付28によって固定されてい
る。FIG. 10 shows a cantilever with a double structure, the first glue part 21 is made of phosphor bronze, and one end of the chip holding member 16 to which the chi knob 17 is soldered is attached to the tip of the first lead 21. the other end of the lead with the spacer 23 and the second glue portion 2.
4 to the fixing part 20. The spacer 23 and the fixing part 20 are made of a non-magnetic material such as aluminum.
The intermediate portion of the conductive pin 11, that is, the lower end portion of the chip holding member 16 is also fixed to the lead 24 by brazing 28.
この構造で試料1を矢印B方向に上動させた時には第8
図に示す場合に比べてチップ17が試料表面で摺動する
摺動幅りを大幅に減少させる事が出来てその寿命回数は
倍に向上した。With this structure, when sample 1 is moved upward in the direction of arrow B, the eighth
Compared to the case shown in the figure, the sliding width of the tip 17 on the sample surface can be significantly reduced, and the number of times the tip can be used is doubled.
第11図に示すものは燐青銅のリード21の略々中央部
に導通ピン11を植立し、該リードの両端に同じく非磁
性材よりなる軸受部材25a。In the one shown in FIG. 11, a conductive pin 11 is installed approximately in the center of a lead 21 made of phosphor bronze, and bearing members 25a made of a non-magnetic material are provided at both ends of the lead.
25bを固定し、該軸受部材に固定部20に植立したロ
ッド26a、26bに摺動自在に挿通し。25b is fixed, and the rods 26a and 26b, which are set on the fixed portion 20, are slidably inserted into the bearing member.
固定部20.20と軸受25 a、25 b間にリード
全体を下方に偏倚させるためのスプリング27a、27
bを介在させる。Springs 27a, 27 for biasing the entire lead downward between the fixed part 20.20 and the bearings 25a, 25b
interpose b.
上記した構成に於いて試料1を矢印B方向に上動させれ
ばスプリング27a、27bの偏倚力に抗してリード2
1はロッド25 a、26 bに沿って平行に上動する
ために片持梁に比べてチップが摺動されることはない。In the above configuration, when the sample 1 is moved upward in the direction of arrow B, the lead 2 is moved against the biasing force of the springs 27a and 27b.
1 moves upward in parallel along the rods 25a and 26b, so the tip does not slide compared to a cantilever beam.
以上、詳細に説明したように1本発明の電子ビーム露光
装置用導通ピンによればダイヤモンド等の超硬質材料チ
ップにより試料の絶縁膜(酸化膜や窒化膜)を破る際に
基板を傷つける様なこともなく、その使用回数を200
00〜30000回とする事カ出来、且つ、導通ピンと
しての機能を充分に果たし電子ビーム照射時に試料内に
蓄積される電荷を完全に放電させる事が出来る特徴を有
する。As explained above in detail, the conductive pin for electron beam exposure equipment of the present invention does not damage the substrate when the insulating film (oxide film or nitride film) of the sample is broken with a tip of ultra-hard material such as diamond. The number of times it has been used has been increased to 200.
It has the characteristics that it can be used 00 to 30,000 times, and can sufficiently function as a conductive pin to completely discharge the charges accumulated in the sample during electron beam irradiation.
第1図は従来の電子ビーム露光装置用導通ピンの使用方
法を説明するための系統図、第2図は従来の導通ピンを
試料に装着する場合の試料の一部を断面とした説明図、
第3図は従来の試料に導通ピンを立てるために基板の底
部に放電によって孔明けを行う方法を説明するための試
料の側断面図。
9−
第4図は本発明に用いる導通ピンの拡大側面図。
第5図はチップ部分の拡大側断面図、第6図はダイヤモ
ンドにイオンをインプラチージョンする場合のドーズ量
と固有抵抗の関係を示す線図、第7図は導通ピンを試料
に圧接させた場合の状態を示す試料の側断面図、第8図
は本発明の導通ピン圧接装置の側面図、第9図は圧接状
態を示す動作拡大図、第10図は本発明の他の実施例を
示す導通ピン圧接装置の側面図、第11図は本発明の更
に他の実施例を示す導通ピン圧接装置の側面図である。
■・・・試料、 2・・・電子銃。
3・・・マスク、 4・・・電子レンズ。
5X、5Y・・・偏向電極、 6X、6Y・・・デジタ
ル−アナログ変換回路、 7X。
7Y・・・加算増幅回路、 8・・・コンピュータ、
9・・・接地、 11・・・導通ピン、 12・・・保
持部材。
14・・・放電源、 15・・・孔。
16・・・チップ保持部、 17・・・チン10−
プ、 17b・・・薄膜層、 21゜
24・・・リード、 22・・・螺子。
23・・・スペーサ、 25a、25b・・・軸受、
26a、26b・・・ロンド。
27a、27b・・・スプリング
11−
第2図
Nグ U)
派 派
第6図
ドース“量 →
第8図
2
改づト・・
第9図 21ct ’0’B1
− (コ
ー/−ニー、・
21 11Q
「−−“ −]
11゜
第10図
第11図FIG. 1 is a system diagram for explaining how to use a conventional conduction pin for an electron beam exposure device, and FIG. 2 is an explanatory diagram showing a cross section of a part of a sample when a conventional conduction pin is attached to a sample.
FIG. 3 is a side sectional view of a sample for explaining a conventional method of making holes in the bottom of a substrate by electric discharge in order to erect conductive pins in the sample. 9- FIG. 4 is an enlarged side view of a conduction pin used in the present invention. Figure 5 is an enlarged cross-sectional side view of the tip, Figure 6 is a diagram showing the relationship between dose and resistivity when implanting ions into diamond, and Figure 7 is a diagram showing the relationship between the dose and resistivity when implanting ions into diamond. Figure 7 shows the conductive pin pressed against the sample. FIG. 8 is a side view of the conductive pin pressure welding device of the present invention, FIG. 9 is an enlarged view of the operation showing the pressure welding state, and FIG. 10 is a side sectional view of the sample showing another embodiment of the present invention FIG. 11 is a side view of a conductive pin pressure welding device showing still another embodiment of the present invention. ■...Sample, 2...Electron gun. 3...Mask, 4...Electronic lens. 5X, 5Y... Deflection electrode, 6X, 6Y... Digital-analog conversion circuit, 7X. 7Y...Additional amplifier circuit, 8...Computer,
9...Grounding, 11...Conducting pin, 12...Holding member. 14... Discharge source, 15... Hole. 16... Chip holding part, 17... Chin 10-pu, 17b... Thin film layer, 21° 24... Lead, 22... Screw. 23... Spacer, 25a, 25b... Bearing,
26a, 26b...Rondo. 27a, 27b...Spring 11- Fig. 2 Ngu U) Sect Fig. 6 Dose Quantity → Fig. 8 2 Revised... Fig. 9 21ct '0'B1 - (Cor/- Knee,... 21 11Q "--" -] 11゜Figure 10Figure 11
Claims (1)
付与し、上記試料に導通性を付与した硬質材料針を当接
させて接地し、電子ビーム照射により上記基板に蓄積さ
れる電荷を除去することを特徴とする電子ビーム露光装
置用導通ピン。[Claims] In an electron beam exposure apparatus for drawing a sample. Performing ion implantation on a hard material to impart conductivity, bringing a hard material needle imparted with conductivity into contact with the sample and grounding it, and removing the charge accumulated on the substrate by electron beam irradiation. A conductive pin for electron beam exposure equipment featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58181999A JPS6074616A (en) | 1983-09-30 | 1983-09-30 | Conducting pin for electron beam exposing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58181999A JPS6074616A (en) | 1983-09-30 | 1983-09-30 | Conducting pin for electron beam exposing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6074616A true JPS6074616A (en) | 1985-04-26 |
JPH0544177B2 JPH0544177B2 (en) | 1993-07-05 |
Family
ID=16110549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58181999A Granted JPS6074616A (en) | 1983-09-30 | 1983-09-30 | Conducting pin for electron beam exposing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6074616A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015110527A1 (en) | 2014-01-22 | 2015-07-30 | Mapper Lithography Ip B.V. | Electrical charge regulation for a semiconductor substrate during charged particle beam processing |
NL2012497A (en) * | 2014-03-24 | 2015-12-10 | Mapper Lithography Ip Bv | Electrical charge regulation for a semiconductor substrate during charged particle beam processing. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5620701A (en) * | 1979-07-27 | 1981-02-26 | Hitachi Ltd | Scroll fluid machine |
-
1983
- 1983-09-30 JP JP58181999A patent/JPS6074616A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5620701A (en) * | 1979-07-27 | 1981-02-26 | Hitachi Ltd | Scroll fluid machine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015110527A1 (en) | 2014-01-22 | 2015-07-30 | Mapper Lithography Ip B.V. | Electrical charge regulation for a semiconductor substrate during charged particle beam processing |
JP2016513372A (en) * | 2014-01-22 | 2016-05-12 | マッパー・リソグラフィー・アイピー・ビー.ブイ. | Regulation of electrical charge for semiconductor substrates during charged attention beam processing |
NL2012497A (en) * | 2014-03-24 | 2015-12-10 | Mapper Lithography Ip Bv | Electrical charge regulation for a semiconductor substrate during charged particle beam processing. |
Also Published As
Publication number | Publication date |
---|---|
JPH0544177B2 (en) | 1993-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0769209B1 (en) | Method of manufacturing three-dimensional circuits | |
DE19648475B4 (en) | Contact structure, test cards and manufacturing process | |
EP0371069B1 (en) | Process for manufacturing microsensors with integrated signal processing | |
US6014032A (en) | Micro probe ring assembly and method of fabrication | |
DE10003282B4 (en) | Contact structure | |
DE69123216T2 (en) | Method and device for writing or engraving fine line patterns on insulating materials | |
DE2647242A1 (en) | ELECTROLITHOGRAPHIC DEVICE | |
EP2555219B1 (en) | Deflector, method of manufacturing deflector, and charged particle beam exposure apparatus | |
JP3884887B2 (en) | Drawing probe and manufacturing method thereof | |
EP0666595A1 (en) | Method of manufacture of a cubic integrated circuit structure | |
DE112016001535T5 (en) | Probe card for a tester of electronic devices with improved filter characteristics | |
DE2824308A1 (en) | METHOD OF IMPRESSION OF A VOLTAGE WITH AN ELECTRON BEAM | |
JPS62145881A (en) | Semiconductor device and manufacture thereof | |
DE19708766A1 (en) | Lithographic mask production without need for SOI wafer | |
JPH0529406A (en) | Semiconductor inspection apparatus | |
DE102019101657A1 (en) | Holding device for electrostatically holding a component with a base body joined by diffusion bonding and method for its production | |
JPS6074616A (en) | Conducting pin for electron beam exposing device | |
CN101310375A (en) | Probe card and method of fabricating the same | |
US4570071A (en) | Ionization detector | |
JP4435987B2 (en) | Method and apparatus for exposing a substrate | |
Honjo et al. | Miniature electron beam column with a silicon micro field emitter | |
DE2348323A1 (en) | Multi-component semiconductor integrated cct. - has metal terminal contacts on mesa edge of individual ccts. | |
JPH02125416A (en) | Electron beam exposure system | |
JP3254048B2 (en) | Metal pattern film forming method | |
CN114587366A (en) | Silicon nerve electrode with ultrahigh depth-to-width ratio and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |