JPS6074430A - Photo-chemical vapor growth film apparatus - Google Patents

Photo-chemical vapor growth film apparatus

Info

Publication number
JPS6074430A
JPS6074430A JP18339283A JP18339283A JPS6074430A JP S6074430 A JPS6074430 A JP S6074430A JP 18339283 A JP18339283 A JP 18339283A JP 18339283 A JP18339283 A JP 18339283A JP S6074430 A JPS6074430 A JP S6074430A
Authority
JP
Japan
Prior art keywords
light
substrate
light source
reaction
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18339283A
Other languages
Japanese (ja)
Inventor
Hiromi Ito
博巳 伊藤
Masahiro Hatanaka
畑中 正宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18339283A priority Critical patent/JPS6074430A/en
Publication of JPS6074430A publication Critical patent/JPS6074430A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To increase a number of substrates to be processed at a time without expansion of structure by providing a light source which emits the light having excellent rectilinear propagation characteristic and convergence and also providing light shaping means. CONSTITUTION:A first cylindrical body 10 having the one opening end is provided with a reaction gas guiding port 11 at the other end and the reaction gas exhausting port 12 at the opening end part of side wall. A second cylindrical body 13 has the one opening end, the opening end part is removably affixed to the opening end part of cylindrical body 10 and is provided an inactive gas guiding port 14. A light source which emits the light having the excellent rectilinear propagation characteristic and convergence in the vertical direction to the plane of substrate 2 is provided within the light source chamber 17. An exciting light emitted from the light source 19 has a large diameter owing to a beam expander 20 and is shaped so that it is directed to the surrounding of substrate 2 by the light shaping means 21. The light passes through a light transmitting body 15a and enters the reaction chamber 16 covering the surrounding of the substrate 2.

Description

【発明の詳細な説明】 [発明の技術分野1 6、)う明い、光化学的に反応気体4カ墓1、ヤの結果
反応気体中に置かれた基板上に、半導体膜(Si単結晶
膜等)、絶縁膜(Si02膜、Si3N4膜、Al2O
3膜等)、金属膜(Ae膜等)などを堆積させる方法(
光化学気相堆積法、以下光化学CVD(photo c
hemical va、par deposition
)と称す0)を用いた光化学気相成膜装置に関するもの
である。
Detailed Description of the Invention [Technical Field of the Invention 1 6.] A semiconductor film (Si single crystal film, etc.), insulating film (Si02 film, Si3N4 film, Al2O
3 film, etc.), a method of depositing a metal film (Ae film, etc.), etc. (
Photochemical vapor deposition method (hereinafter referred to as photochemical CVD)
chemical va, par position
This invention relates to a photochemical vapor deposition apparatus using a method called 0).

[従来技術j この様な光化学CVDを用いた光化学気相成膜装置とし
ては第1図に示すようなものが知られている。
[Prior Art j] As a photochemical vapor deposition apparatus using such photochemical CVD, the one shown in FIG. 1 is known.

第1図((お・いて(1)は底部に平板状の基板(2)
が載置された反応γで、一端に反応気体導入D (3)
を、他端に反応気体u1゛出口(4)をそれぞれ有する
とともに上部、つまり基板(2ンの平面(2d)と対向
する位置に入射窓(5)を有しているものである。(6
)はこの反応室(1)の入射窓(5)を塞ぐ光を透過さ
せる材質からなる光透過板、(7)はこの光透過板に対
向して配設され励起光を照射するランプである。
Figure 1 ((1) has a flat board at the bottom (2)
is placed on the reaction γ, and the reaction gas is introduced at one end D (3)
and a reactant gas u1 outlet (4) at the other end, and an entrance window (5) at the upper part, that is, at a position facing the plane (2d) of the substrate (2).(6
) is a light transmitting plate made of a material that transmits the light that blocks the entrance window (5) of this reaction chamber (1), and (7) is a lamp that is disposed opposite to this light transmitting plate and irradiates excitation light. .

この様に構成された光化学気相成膜装置において、基板
(2)の平面(2a)上に所望の膜を堆積させるKは、
この所望の膜に応じた反応気体を反応気体導入口(3)
から反応室(1)内に導入する。一方光源(7)から励
起光が光透過窓(6)を透過して反応室(1)内に入射
される。この時、反応室(1)内に導入された反応気体
は、励起光により光化学分解し、堆積に寄与する分子種
又はラジカル種が基板(2)の平面(2a)」二に堆積
されるこ七になるものである。なお、反応室(1)内の
反応気体は堆積に寄与したものを除き反応気体排出口(
4)から排出されるものであり、反応気体は基板(2)
の平1lfII(2a)に対して平行に流れているもの
である。
In the photochemical vapor deposition apparatus configured in this way, K for depositing a desired film on the flat surface (2a) of the substrate (2) is as follows:
A reaction gas corresponding to this desired film is introduced into the reaction gas inlet (3).
into the reaction chamber (1). On the other hand, excitation light from the light source (7) passes through the light transmission window (6) and enters the reaction chamber (1). At this time, the reaction gas introduced into the reaction chamber (1) is photochemically decomposed by the excitation light, and molecular species or radical species that contribute to deposition are deposited on the flat surface (2a) of the substrate (2). It becomes seven. Note that the reaction gas in the reaction chamber (1), excluding the gas that contributed to the deposition, is discharged through the reaction gas outlet (
4), and the reactive gas is discharged from the substrate (2).
The flow is parallel to the plane 1lfII (2a) of .

しかるに、この様に反応気体を基板(2)イ平面(2a
)に平行して流し、励起光を基板(2)の平面(2a)
上方からf1G射するようにしたものにあっては、−回
で処理できる基板(2)の数は少Mく、基板の処理数を
増加させようとすれば、必然的知反応室(1)を大きく
する必要があり、反応室(1)全大きくすることに伴な
って 〔発す1の概要1 この発EJJは上バ己した点に鑑みてなされたものであ
り、直進性及び収束性に優れた光を出射する光源を基板
の平o7j K対向する位置に配設−pるとともに、基
板と光Z糸上の間に光源からの光音入射し、この入射光
を基板の同門に基板の平面に対して1F直な方向の先々
して出′射する光整形手段を配置々して、大型化するこ
となく一度で処理できる古(板の数を増やすことができ
、M産に適した光化学気イ1j成膜装首をI〕〜案する
ものである。
However, in this way, the reaction gas is transferred to the substrate (2) and the plane (2a).
), and the excitation light is directed to the plane (2a) of the substrate (2).
In the case where f1G is emitted from above, the number of substrates (2) that can be processed in one cycle is small, and if you try to increase the number of substrates processed, the number of substrates (1) that can be processed in one cycle is small. It is necessary to increase the size of the reaction chamber (1), and with the enlargement of the total size of the reaction chamber (1), [Summary of Emission 1] This EJJ was made in view of the above problems, and it is necessary to improve the straightness and convergence. A light source that emits excellent light is placed at a position opposite to the plane of the substrate, and a light sound from the light source is incident between the substrate and the optical Z thread, and this incident light is transmitted to the substrate at the same gate of the substrate. By arranging the light shaping means that emit light in the direction perpendicular to the plane of This paper proposes a photochemical vapor deposition system.

1発1ツJの実施例コ 第2図(dこの発IX!Llの一実施例金車すものであ
り、図において(1o)は一端f川口の円筒状の第11
1m杯で、側端部に反応気体導入口(11,)を有する
々J−もに側壁の開口側端部に反応気体排出口(12)
を自するものである。(13)は一端開口の円筒形状を
なし、開口側端部が上記第1筒体(10)の開口側端i
fBに収り外し可能に固定される第2筒体で、ll1l
l壁の開口側端部内壁に段部(13a)が形成されてい
る七ともに、この1投部と囲口椹1七の間に不活性気体
導入口(14)を41するものである。(15)は上記
第2筒体(13)の段部(13a)に固定される環状の
光透過体(]、5a)Lこの光透過体(15a)の中火
開口を塞ぐグロツク(15b)とからなる仕切体で、第
1筒イ4す10)側を反kb室(16)とし、第2筒体
(13)側を光源室(17)として仕切るものである。
Example of 1 shot 1 J Figure 2 (d This is an example of IX!Ll).
1 m cup, with a reactive gas inlet (11,) at the side end, and a reactive gas outlet (12) at the open end of the side wall.
It is something that you do yourself. (13) has a cylindrical shape with one end open, and the open end is the open end i of the first cylinder (10).
A second cylindrical body that is removably fixed in the fB, ll1l
A step part (13a) is formed on the inner wall of the opening side end of the first wall, and an inert gas inlet (14) is formed between this first part and the enclosure 17. (15) is an annular light transmitting body (], 5a) fixed to the step (13a) of the second cylindrical body (13).L is a glock (15b) that closes the medium heat opening of this light transmitting body (15a). This is a partition body that partitions the first cylinder A4S10) side as a counter-kb chamber (16) and the second cylinder (13) side as a light source chamber (17).

なお、」1記第1筒体(1o)々第2筒体(13)の一
部吉仕qJ板(15)とで反応室本体を構成しているも
のである。(18)は上記反応気体導入口(11)と反
応気体H1:出口(12)との間の反R5室(16)内
に配設された支持台で、投数の基板(2)を、等間隔で
並列に立役支持するものである。(19)は基板(2)
の平面に対向し、がっ上1尼第1筒体(1o)の中心軸
上に位置した光源室(17)内に配設され、1進性及び
収束性に優れた光を上記基板(2)の平面に対して垂面
方向に出射する光源で、例えばレーツ′ビームを出射す
るレーザ光源である。(2o)は」1記光源室(17)
におけるこの光源と仕17I板(15)との間に配設さ
れ、光源(19)からの光(AI)が入射され、光(A
I)より大径Q光(A2)を出射するビームエギスパシ
グで、凹レンズ(20a棲凸レシズ(2(月))トから
+14成されている。(2])は−トr已光6込室(1
7)(人目でおけるこのビームx キスハンタ(20)
 ト1. s+j (l: IjJ I/i (15)
 1の間に配設され、ビームfキスバシグ(2(+) 
カラノ光(A2)が久射さノ9、この光(A2)を、E
、 l’1j−7毘透ノ1.′→体(15a)を透過さ
せて」=、一基板(2)の1「゛1川9: 12fl 
VC白って基板(2)の平面に対して垂直な方向の゛I
閣/loと12−コ出躬する光整形手段で、円帥面が反
射面(22Ja ’xる円錐形状をなし、反射面(22
εl)して入射さノするl 1’、、j1光(A2)を
直角方向、っ寸り上記基板(2)の−1F而面重行な方
向に光(A3)とじでPy−fI]−する第11に射鏡
(22)と、この第1Jズ射境(22)のJ又射面(2
2+1)とにi:’:jず6ノえ射面(’23a)を伺
し、この反射面(23r+)に入射さノする上記光(A
3)を曲角方向、っ寸りJl t’+l)、 :’i’
L板(2)のbに対して垂iiIな方向に光(A4) 
aして反射する第2反射鏡(23)とから構成さノアて
いるものであり、第1及び第2反射鏡(22) (23
)の中心rli+I+ ri光源(1(りがらの光(A
I)の光軸及び凹レンズ(2(la)と凸l/ンズ(2
0b)の中心軸と一致しているものである。(24)け
上記第1筒体(10)の側壁外周に配設された低温加熱
炉で、基&(2)の半間上に堆積される膜の膜質向上及
び化学反応の補助のためのものである。なお上記したエ
キスノヤング(20)は特になくても良いものである。
Incidentally, the reaction chamber main body is constituted by the first cylindrical body (1o) and the second cylindrical body (13) and the qJ plate (15). (18) is a support stand disposed in the opposite R5 chamber (16) between the reaction gas inlet (11) and the reaction gas H1: outlet (12), on which a number of substrates (2) are supported. They are vertically supported in parallel at equal intervals. (19) is the board (2)
It is arranged in a light source chamber (17) located on the central axis of the first cylindrical body (1o), facing the plane of the substrate (1o), and emits light with excellent linearity and convergence to the substrate ( 2) is a light source that emits light in a direction perpendicular to the plane, and is, for example, a laser light source that emits a Retz' beam. (2o) is 1 light source room (17)
is arranged between this light source and the partition 17I plate (15), and the light (AI) from the light source (19) is incident, and the light (A
I) It is a beam egispasig that emits a larger diameter Q light (A2), and is composed of a concave lens (20a convex lens (2 (month)) and +14. Closed room (1
7) (This beam in public x Kiss Hunter (20)
G1. s+j (l: IjJ I/i (15)
1, and the beam f kiss basig (2(+)
Karano light (A2) is shining for a long time, this light (A2) is E
, l'1j-7 Bitsu no 1. ′ → Transmit body (15a)”=, 1 of 1 substrate (2) “゛1 River 9: 12fl
VC white is ゛I in the direction perpendicular to the plane of the board (2)
The conical surface is a reflective surface (22 Ja 'x), and the reflective surface (22
εl), the incident light (A2) is directed perpendicularly to the -1F plane of the substrate (2), and the light (A3) is bound to Py-fI]- The eleventh projection mirror (22) and the J-shaped projection surface (22) of this first J-s projection surface (22)
2 + 1) and i:':j 6. The above light (A
3) in the direction of the corner, Jl t'+l), :'i'
Light in a direction perpendicular to b of L plate (2) (A4)
It is composed of a second reflecting mirror (23) that reflects the light with a
) center rli + I + ri light source (1 (rigara no light (A
The optical axis of I), the concave lens (2 (la)) and the convex L/lens (2 (la)
0b). (24) A low-temperature heating furnace disposed around the outer periphery of the side wall of the first cylindrical body (10), for improving the quality of the film deposited on the half surface of the base and (2) and assisting in the chemical reaction. It is. Note that the above-mentioned Exno Young (20) is not particularly necessary.

この様に構成された光化学気相成膜装置において、基板
(2)の平面上に所望の膜を堆積させるKは、まず複数
の基板(2)を支持台(18)に等間隔に並列に立設し
、この状態で第1筒体(10)内に配設して第2筒体(
13)を第1筒体(10)に固定する。そして」1記し
た所望の膜に応じた反応気体を反応気体導入口(]1)
から反応室(16)内に導入する。この時、反応室(1
6)内に7σ人された反応気体は反応気体排1」」口(
12)から反応室(16)外へ排出されるため、反応室
(16)内の基板(2)周囲において反応気体は基板(
2)の平面に対して略垂直方向、第2図において右から
左方向、に流れているものである。一方光源(19)か
らの励起光は、ビームエキスバング(20)にて大径に
され、光整形手段(訂グーによって基板(2)の同量方
向に向かうように整形され、光透過体(15a)を透過
して基板(2)の周囲全問に亘って反f’lz室(16
)内に入射されるものである。この反応室(16)内に
入射された光源(19)からの励起光は基板(2)の1
1す囲にて反応室(]li)内に導入さハ、た反応気体
の光化学分#を生起させ、堆積に寄与する分子種又はラ
ジカル種を発生させる。この分子種又はラジカル種は基
板(2)の外周から中心に回かつて拡散し一〇ゆき、基
板(2)の平曲上に堆積され、基板(2)平面上に1嘆
が形成されることになるものである。この局、反応室(
16)内への反bf6%体の供給ITI及び反応室(1
6)内の圧力を適当に調整すれば、堆積t」基板(2)
表面例律速の状態で拡散され、基板(2)に形成さノ1
.る膜の厚さは均一に形成さり、ることになるものであ
る。
In the photochemical vapor deposition apparatus configured in this way, the process of depositing a desired film on the plane of the substrate (2) is to first place a plurality of substrates (2) in parallel at equal intervals on the support stand (18). In this state, it is placed inside the first cylindrical body (10) and the second cylindrical body (
13) is fixed to the first cylinder (10). Then, inject the reaction gas corresponding to the desired membrane described in 1 into the reaction gas inlet (] 1).
into the reaction chamber (16). At this time, the reaction chamber (1
6) The reactant gas that was 7σ inside the reactant gas exhaust 1"" mouth (
12) to the outside of the reaction chamber (16), the reaction gas is discharged around the substrate (2) in the reaction chamber (16).
2), which flows approximately perpendicularly to the plane of FIG. 2, from right to left in FIG. On the other hand, the excitation light from the light source (19) is enlarged in diameter by a beam expanding unit (20), and is shaped by a beam shaping means (extending unit) so that the excitation light goes in the same direction of the substrate (2). The anti-f'lz chamber (16
). The excitation light from the light source (19) entered into this reaction chamber (16) is applied to one of the substrates (2).
A photochemical fraction of the reaction gas introduced into the reaction chamber (1li) is generated to generate molecular species or radical species that contribute to the deposition. This molecular species or radical species circulates and diffuses from the outer periphery of the substrate (2) to the center, and is deposited on the flat curved surface of the substrate (2), forming a single layer on the flat surface of the substrate (2). It is something that becomes. This station, reaction chamber (
16) Supply of anti-bf6% body into ITI and reaction chamber (1
6) By appropriately adjusting the pressure inside the substrate (2)
The surface example is diffused in a rate-limiting state and formed on the substrate (2).
.. The thickness of the film formed is uniform and varies.

従って、この実施例のものにおいてに、基47< (2
)周囲に、この基板(2)に対して垂部方向に11イ進
性及び収束性の優れた励起光を入射させるJ’Ni j
3jとしたので、装置自体をそh程大梨化せずとも、多
数の& 板(2)が一度に処理できることになるもので
ある。
Therefore, in this example, the group 47< (2
) Around this substrate (2), excitation light with excellent 11-progressivity and convergence is incident in the vertical direction.
3j, it is possible to process a large number of & plates (2) at once without having to make the device itself too large.

さらに、この実施例のものにおいては以Fに述べる理由
から、複数の基板(2)の各々の膜厚を同じによi′1
.げ、反応気体に光化学反応全生起さ−ヒるに一反応爪
に1吸収された光だけであり、寸たJLambert−
33eerの法則によれ(#f1吸収係数が一定であれ
ば、光が媒質の中を直進するにつれてその強度は指数関
数的に減少し、さらに、これ寸で報告された事例によれ
ば光化学C70法において、通常の堆積条件においては
、堆積速度が光の強度に対して単調に増加することが知
られているものである。
Furthermore, in this embodiment, for the reason described below, the film thickness of each of the plurality of substrates (2) is set to be the same i′1
.. However, the entire photochemical reaction takes place in the reactant gas - only one light is absorbed by the reaction nail, and it is very small.
According to the 33eer's law (#f1, if the absorption coefficient is constant, the intensity decreases exponentially as light travels straight through the medium; It is known that under normal deposition conditions, the deposition rate increases monotonically with respect to the light intensity.

そして、上記した実施例において、反応気体は基板(2
)の周囲にて反応気体導入(コ(l])から反応気体#
j:出口(12)へ向かって流れ、かつ反応気体導入口
(11)側では未反応の分子が多く、反応気体排出1」
(12) f7ic向かうに従い順次減少しているもの
であり、また光源(1つ)からの1助起光は基板(2)
の周囲にて反応気体排出口(12)から反応気体導入口
(11)へ向かって直進し、かつ反応気体初出口(12
)側では励起光強度が強く、反応気体導入口(11)に
向つうに従い順次弱くなっているものである。つ寸り、
反応気体導入口(11)側で−、反応俄体の未反応分子
が多いものの励起光強度が弱く、反J・S気体排出口(
12)側では反応気体の未反応分子か少、りいものの則 j励起光強度が・強くなっているため、上記した摩;等
からも判るように、反応気体ノ建人D (1]、)から
反応気体初出口(12)に位置する複数の基板(2)の
各々に対する堆積速度のルーはとんどなくすことができ
、基板(2)各々の膜の厚さくlゴはLんど回じ、に形
成できるものである。
In the embodiments described above, the reactive gas is the substrate (2
) around the reactant gas introduced (ko(l)) to the reactant gas #
j: Flows toward the outlet (12), and there are many unreacted molecules on the reaction gas inlet (11) side, and the reaction gas is discharged 1.
(12) It decreases gradually towards f7ic, and one auxiliary light from the light source (one) is from the substrate (2).
around the reactant gas outlet (12) to the reactant gas inlet (11), and the reactant gas first outlet (12).
) side, the excitation light intensity is strong and gradually becomes weaker toward the reaction gas inlet (11). One size,
On the reaction gas inlet (11) side, although there are many unreacted molecules in the reactant, the excitation light intensity is weak, and the anti-J・S gas outlet (
On the 12) side, the number of unreacted molecules in the reaction gas is small, and the excitation light intensity is stronger, so as can be seen from the above-mentioned friction, etc., the number of unreacted molecules in the reaction gas is small. ) to each of the plurality of substrates (2) located at the initial outlet (12) of the reaction gas can be almost eliminated, and the thickness of each film on the substrates (2) can be almost completely eliminated. It can be formed by turning.

さらに、この実施例のものにおい−C−1、不l古刺気
体ノ8人D (14)から励起光を吸収せず、かつ堆積
反応に影響を与えない不活性気体を反応ボ(Hi)内に
導入しているため、導入される不活性気体が反応室(1
6)内の反応気体上光透過体(15,1)との接触を防
いでいるものである。その結果、光透1Mi体(12)
に膜堆積さね、るのを防げるので、光源(1(υからの
光の励起エネルギーの供給が阻害されるものではない。
In addition, an inert gas that does not absorb excitation light and does not affect the deposition reaction from the smell-C-1 of this example, the inert gas that does not absorb the excitation light and does not affect the deposition reaction, was added to the reaction chamber (Hi). Since the inert gas is introduced into the reaction chamber (1
This prevents the reaction gas in 6) from coming into contact with the light transmitting body (15, 1). As a result, a transparent 1Mi body (12)
This does not prevent the supply of excitation energy of light from the light source (1(υ).

なお、」1記実施例では、光源(19)からの先金レー
ザビームとしたが、波長が2000λ以下のいわゆ−る
真空紫外領域の光を使用したものでも良く、この場合に
は、窒素、アルゴン等の非吸収性の気体にて光源室(1
7)内を置換しておく必甥があるものである。
In addition, in Example 1, the pre-deposited laser beam was used from the light source (19), but it is also possible to use light in the so-called vacuum ultraviolet region with a wavelength of 2000λ or less, and in this case, nitrogen , the light source chamber (1
7) It is necessary to replace the inside.

(発り]の効果] この発明は以上に述べたようK、並列に複数の平板状の
基板が収納され、内部が基板の千面−ヒに形成される膜
にkひじた反応気体の雰囲気にされる反応室本体と、基
板の平面に対向した位置罠配設され、直進性及び収束性
に優れた光を出射する光源と、この光源と基板上のff
1i K配設され、光源からの光が入射され、この入射
された光を基板の間囲に基板の平truに対して垂直な
方向の光として出射する光整形手段とを備えたものとし
たので、犬か得られるきいう効果を有するものである。
(Effect of origin)] As described above, the present invention is characterized in that a plurality of flat substrates are housed in parallel, and the inside is an atmosphere of reaction gas that is formed on the film formed on one side of the substrate. a reaction chamber main body which is to be used as
1i K was arranged, light from a light source was incident thereon, and light shaping means was provided between the substrates to emit the incident light as light in a direction perpendicular to the plane of the substrate. Therefore, it has the effect that dogs can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光化学匍1rl成膜装置を示す概略断面
図、第2図はこの発[ガの一実施例を示す概略断面図で
ある。 図において(2) id基板、(11) i−を反応気
体導入口、(12)は反応気体Uト出口、(16)は反
応う\、(17)は光源室、(19)は光源、(21)
は光整形手段である。 代 坤 人 大 岩 増 All
FIG. 1 is a schematic sectional view showing a conventional photochemical film forming apparatus, and FIG. 2 is a schematic sectional view showing an embodiment of this apparatus. In the figure, (2) is the ID board, (11) is the reaction gas inlet, (12) is the reaction gas outlet, (16) is the reaction chamber, (17) is the light source chamber, (19) is the light source, (21)
is a light shaping means. All

Claims (3)

【特許請求の範囲】[Claims] (1)並列に複数の平板状の基板が収納され、内部が上
記基板の平面上に形成される膜に応じた反応気体の雰囲
気にされる反応室本体、上記基板の平面に対向した位置
に配設され、直進性及び収束性に優れた光を出射する光
源、この光源と上記基板との間に配設され、上記光源か
らの光が入射され、この入射された光を上記基板の周囲
に基板の平面に対して垂直な方向の光として出射する光
整形手段を備えた光化学気相酸j摸装揃′。
(1) A reaction chamber main body in which a plurality of flat substrates are housed in parallel, and the interior thereof is made into an atmosphere of reaction gas corresponding to the film to be formed on the plane of the substrate, and a reaction chamber body is located opposite to the plane of the substrate. A light source that emits light with excellent straightness and convergence; a light source that is disposed between this light source and the substrate, receives light from the light source, and directs the incident light to the surroundings of the substrate. A photochemical vapor phase acid model equipped with a light shaping means that emits light in a direction perpendicular to the plane of the substrate.
(2)反応室本体は、基板に対して光源と反対側に反応
気体導入口を有し、基板に対して光源側に反応気体排出
口を有したものとしたことを特徴とする特許請求の範囲
第1項記載の光化学気相成膜装置。
(2) The reaction chamber body has a reactive gas inlet on the side opposite to the light source with respect to the substrate, and a reactive gas outlet on the side of the light source with respect to the substrate. A photochemical vapor deposition apparatus according to Scope 1.
(3)直進性及び収束性例優れた光はレーザ光であるこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
光化学気相成膜装置。
(3) Example of straightness and convergence The photochemical vapor deposition apparatus according to claim 1 or 2, wherein the light having excellent straightness and convergence is a laser beam.
JP18339283A 1983-09-29 1983-09-29 Photo-chemical vapor growth film apparatus Pending JPS6074430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18339283A JPS6074430A (en) 1983-09-29 1983-09-29 Photo-chemical vapor growth film apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18339283A JPS6074430A (en) 1983-09-29 1983-09-29 Photo-chemical vapor growth film apparatus

Publications (1)

Publication Number Publication Date
JPS6074430A true JPS6074430A (en) 1985-04-26

Family

ID=16134968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18339283A Pending JPS6074430A (en) 1983-09-29 1983-09-29 Photo-chemical vapor growth film apparatus

Country Status (1)

Country Link
JP (1) JPS6074430A (en)

Similar Documents

Publication Publication Date Title
JP2002517082A (en) Gas manifold and photochemistry for uniform gas distribution
JP2002305153A (en) Device and method for processing
EP0208966A1 (en) Apparatus for, and methods of, depositing a substance on a substrate
JPS6074430A (en) Photo-chemical vapor growth film apparatus
JPH0149004B2 (en)
JPS60130126A (en) Optical vapor growth method
JPS63137174A (en) Device for forming functional deposited film by photochemical vapor growth method
US5368647A (en) Photo-excited processing apparatus for manufacturing a semiconductor device that uses a cylindrical reflecting surface
JPS60260125A (en) Selective formation of semiconductor substrate
JP2637121B2 (en) Photoexcitation reactor
JP3064407B2 (en) Light source for photo-excitation process equipment
JPS59129774A (en) Selective formation of nitrided film
JPH04141589A (en) Photo treatment and photo treating device
JPS63126229A (en) Processor
JPS6050168A (en) Production of thin solid film by photo cvd method
JPS6028225A (en) Optical vapor growth method
JPS62206823A (en) Optical-pumping processing equipment
JP3010065B2 (en) Optical excitation process equipment
JPS60165723A (en) Forming method for fine pattern
JPS61198733A (en) Method of forming thin-film
JPS61174380A (en) Photo cvd thin film forming device
JPH0239521A (en) Photo assisted cvd system
JPS63289927A (en) Photochemical vapor phase deposition device
JPS6328865A (en) Hard carbon film manufacturing device
JPH01247573A (en) Photochemical vapor deposition device