JPS6074213A - Vacuum valve - Google Patents
Vacuum valveInfo
- Publication number
- JPS6074213A JPS6074213A JP18012083A JP18012083A JPS6074213A JP S6074213 A JPS6074213 A JP S6074213A JP 18012083 A JP18012083 A JP 18012083A JP 18012083 A JP18012083 A JP 18012083A JP S6074213 A JPS6074213 A JP S6074213A
- Authority
- JP
- Japan
- Prior art keywords
- arc
- shield
- vacuum
- flange
- end plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/662—Housings or protective screens
- H01H33/66261—Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
- H01H2033/66269—Details relating to the materials used for screens in vacuum switches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/662—Housings or protective screens
- H01H33/66261—Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
- H01H2033/66292—Details relating to the use of multiple screens in vacuum switches
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は真空パルブシて関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to vacuum valves.
従来の真空バルブは、第1図に示すようVC絶縁尚1a
を軸方向V′C2個並設してなる絶縁容器10両端に夫
々端板2,3を設けて内部を真空にした真空容器を形成
している。そして同定′it極4は端板2を気密に貫通
する通電軸4aに1!η触子4)〕を有する電極zlc
を設けている。また、可動祇極5−:端板3にベローズ
6を介して可動に密#さルた通電軸5aに接触子5bを
有する゛疏極5Cを設けている。そして、固定′な極側
に7う/ジ/−ルド7を、真空容器の中間(てアーク7
−ルド8を、可動側にはフシ/ジ/−ルド7を設けてい
る。Conventional vacuum valves have VC insulation (1a) as shown in Figure 1.
An insulating container 10 consisting of two V'Cs arranged in parallel in the axial direction is provided with end plates 2 and 3 at both ends, respectively, to form a vacuum container whose interior is evacuated. The identification pole 4 is connected to the current-carrying shaft 4a that passes through the end plate 2 in an airtight manner. Electrode zlc with η feeler 4)]
has been established. Further, a movable pole 5-: a movable pole 5C is provided on the end plate 3 via a bellows 6, and has a contactor 5b on a current-carrying shaft 5a which is movably sealed. Then, place the arc 7 in the middle of the vacuum vessel (the arc 7) on the fixed pole side.
A shield 8 is provided on the movable side, and a holder 7 is provided on the movable side.
このような7− /l/ドア、8は電流しゃ断時に電極
4,5間で発庄する金属蒸気が絶蒜容滞1の内壁pc何
着するのを防止するだめVC大きな役割を果し′Cいる
。しかしながら、このフランジ/−ルド7とアークシー
ルド8との近<YC杷縁筒1aがあるため破壊足圧が低
下する。これtよ、第2図に示すように可動側について
考えると、アークシールド8に電界が加わると可動側の
フランジンールド7が陰極となって放出された電子eは
、flI縁筒]、aに衝突して2次電子を放出する。こ
の時の衝突工坏ルギーと2次電子放出効率δ(E)との
門1む!’? 31Nに示ず特性曲線δ(E)となる。Such a 7/l/door 8 plays a major role in preventing the metal vapor emitted between the electrodes 4 and 5 from landing on the inner wall PC when the current is cut off. There is C. However, since the flange/rud 7 and the arc shield 8 are located close to each other, the fracture foot pressure is reduced. Considering the movable side as shown in Fig. 2, when an electric field is applied to the arc shield 8, the flange mold 7 on the movable side becomes a cathode and the emitted electrons e are collides with and releases secondary electrons. The relationship between the collision energy and the secondary electron emission efficiency δ(E) at this time is 1! '? The characteristic curve δ(E) is not shown in 31N.
第3図において縦軸は2次電子放出効率δ(E)、横軸
は電予め衝突エネルギーE (eV)を示している。こ
の曲線δ(E) K従って絶縁筒1aには正の電荷が蓄
積される。この絶縁筒]aから放出された電子は2次電
子なだれによって電子増殖し、ついには絶縁破壊にいた
る。し/ζがって、比較的低電圧で電子なだれによる前
駆破壊電流が流れこの結果、破壊電圧は低くなって[2
まう。一方、近年真空バルブを用いる回路の高+lL王
化が著しく進み、高電圧で安定に用い得る真空バルブの
出現が望まれている。In FIG. 3, the vertical axis shows the secondary electron emission efficiency δ(E), and the horizontal axis shows the electron pre-collision energy E (eV). This curve δ(E)K Therefore, positive charges are accumulated in the insulating cylinder 1a. The electrons emitted from the insulating tube]a multiply by a secondary electron avalanche, and eventually lead to dielectric breakdown. Therefore, a precursor breakdown current due to electron avalanche flows at a relatively low voltage, and as a result, the breakdown voltage becomes low [2
Mau. On the other hand, in recent years, circuits using vacuum valves have become increasingly high +1L, and there is a desire for a vacuum valve that can be used stably at high voltage.
しかして、上述の欠点を除去するだめの方法として、ア
ルミナ又はエポキシ樹脂などの絶縁部材でアーク7−ル
ド8、フランジシールドアの表面を被覆することが考え
られている。これは、陰極となるどちらかのシールドか
らの電界放射電子の放出を押えることができるため、絶
縁筒に入射する1次゛竜子を抑制することができる。し
たがって、絶縁筒表面の2次電子なだれの進展を制限す
る事ができ、耐電圧性能を向上する事が期待できる。Therefore, as a method to eliminate the above-mentioned drawbacks, it has been considered to coat the surfaces of the arc 7-rule 8 and the flange shield door with an insulating material such as alumina or epoxy resin. This can suppress the emission of field emission electrons from either of the shields serving as the cathode, so it is possible to suppress the primary radiation incident on the insulating tube. Therefore, it is possible to restrict the development of secondary electron avalanche on the surface of the insulating cylinder, and it is expected that the withstand voltage performance will be improved.
しかしながら、このようなものでは次のような欠点があ
る。However, such a device has the following drawbacks.
すなわち、真空バルブでは電流しゃ断時に発生するアー
クによる電極表面の急激なIIA度上昇及びヒートラン
試験等による温度上列のために兵窒容器内の部品は、な
るべく熱伝導率の高い部品を使用しなければならない。In other words, in a vacuum valve, the electrode surface rapidly rises in IIA temperature due to the arc that occurs when the current is cut off, and the temperature rises due to heat run tests, etc., so parts inside the nitrous oxide container must have as high a thermal conductivity as possible. Must be.
しかしながら、アルミナあるいはエポキシ樹脂等の絶縁
材料は熱伝睨茅が低いため、放熱特性が著しく低下する
。However, insulating materials such as alumina or epoxy resin have low thermal conductivity, so their heat dissipation properties are significantly reduced.
また、アルミナあるいはエポキシ樹脂は絶縁材料自体の
絶縁耐力が低いため、期待する程耐′車圧性能が向上し
ない。Furthermore, since the dielectric strength of the insulating material itself of alumina or epoxy resin is low, the vehicle pressure resistance performance does not improve as much as expected.
さらに、この種の真空バルブは脱ガス処理を行なうため
に数100°CVc真空加熱を行う必要がある。Furthermore, this type of vacuum valve requires vacuum heating of several 100 degrees CVc for degassing treatment.
そのため、真壁パルプ内の部品の融点を加熱温度よシ高
くしなければならない。一方、エポキシ樹脂は融点が低
いため、エポキシ樹脂を真空容器内で使用するためには
加熱温度を低くする必要がらり脱ガス処理を充分に行な
うことができない。Therefore, the melting point of the components in Makabe pulp must be higher than the heating temperature. On the other hand, since the epoxy resin has a low melting point, in order to use the epoxy resin in a vacuum container, the heating temperature must be lowered, and sufficient degassing treatment cannot be performed.
又、アルミナ等で被覆した場合には融点が高いので脱ガ
ス処理は充分に行なうことが出来るカー、金属製シール
ドとの熱膨張の相異によ)加熱処理時や、しゃ断時のア
ークによシ、熱膨張応力を生じ破損やひび割れを生じる
。In addition, when coated with alumina, etc., the melting point is high, so degassing treatment can be performed sufficiently.Due to the difference in thermal expansion with metal shielding), it is difficult to prevent arcing during heat treatment or when shutting off. This causes thermal expansion stress, resulting in damage and cracks.
破損は勿論、僅かのひび割れが生じると、電子がそこを
通って放出されるから、電子放射を抑制する効果が失わ
れ耐電圧低下を招来する。If a slight crack occurs, let alone damage, electrons will be emitted through the crack, and the effect of suppressing electron emission will be lost, resulting in a drop in withstand voltage.
したがって、真空バルブのシールドをアルミナ又はエポ
キシ樹脂等の絶縁材料でコーティングすることは困難で
あり、耐′車圧性能の良好な高′成圧化に適した真空バ
ルブを実用化することは困難でぐちった。Therefore, it is difficult to coat the shield of a vacuum valve with an insulating material such as alumina or epoxy resin, and it is difficult to put into practical use a vacuum valve that has good vehicle pressure resistance and is suitable for high pressure. I was upset.
本発明は、放熱特性が良好でかつ耐電圧性能の優れた真
空バルブを提供することを目的とするものである。An object of the present invention is to provide a vacuum valve that has good heat dissipation characteristics and excellent withstand voltage performance.
本発明はフランジ7−ルドおよびアークシールドを絶縁
物で形成し、この絶縁物の片面を金属皮膜でおおったこ
とを特徴としたものである。The present invention is characterized in that the flange shield and the arc shield are made of an insulator, and one side of the insulator is covered with a metal film.
以下、本発明の一実施例を第4図および第5図を参照し
て詳卸[説明する。Hereinafter, one embodiment of the present invention will be explained in detail with reference to FIGS. 4 and 5.
なお、第1図と同一部分は同一符号を付してその説明を
省略する。第4図に示すように絶縁筒1aを軸方向に2
個並設した絶縁部2J1の両端にそれぞれ端板2,3を
封着して真空容器を形成し、同定電極4は端板2を貫通
して封層された通電軸4aの先端に接触子4bを備えた
電極4cを設けている。Note that the same parts as in FIG. 1 are designated by the same reference numerals, and the explanation thereof will be omitted. As shown in Fig. 4, the insulating cylinder 1a is
A vacuum container is formed by sealing the end plates 2 and 3 to both ends of the insulating parts 2J1 arranged in parallel, respectively, and the identification electrode 4 is a contact at the tip of the current-carrying shaft 4a that passes through the end plate 2 and is sealed. 4b and an electrode 4c is provided.
また可動電極5は端板3にカバー6i+を翁するベロー
ズ6を介して可動に封着された通電’fall 5 a
の先端yc接触子5bを備えた電極5cが設けられてい
る。固定電極側端板2及び可動″4I@側端板3にはそ
第1.それ片面に金属皮j漠10が形成された誦、緑物
袋のフランジシールドア、7を設け、この両フランジン
ールド7.7の中間のP3縁筒1の接続部の内・壁Vこ
支持金物11を設けて片面ンこ金属皮膜10が形成され
た絶縁物製のアーク/−ルド9を保持するようにしてい
る。Further, the movable electrode 5 is movably sealed to the end plate 3 via a bellows 6 that covers a cover 6i+.
An electrode 5c having a tip yc contact 5b is provided. The fixed electrode side end plate 2 and the movable side end plate 3 are provided with a green bag flange shield door 7 having a metal skin cover 10 formed on one side thereof, and both flanges A support metal fitting 11 is provided on the inner wall of the connecting part of the P3 edge tube 1 in the middle of the lead 7.7 to hold the arc/- lead 9 made of an insulator on which a metal coating 10 is formed on one side. I have to.
このフランジ/−ルド7及びアーク/−ルド9の各軸方
向の端部には円弧部7a 、9aが設けられてお多、フ
ランジシールド7の端部の円弧部7aはそのけ1面の曲
率半径r1を有し、アーク7−ルド9の先端の円弧部9
aは、その断面の曲率半径r2を有している。これらの
曲率は電界強度の最も強い、これら端部に於ける電界強
度を絶縁物の許容値以下に緩和すると共に、電子が放出
された場合、この曲率部でトラソゲして絶縁筒lに電子
が衝突づ−ることを防止するのが目的である。Each axial end of the flange/rud 7 and arc/rud 9 is provided with circular arc portions 7a and 9a, and the circular arc portion 7a at the end of the flange shield 7 has a curvature of one surface. A circular arc portion 9 at the tip of the arc 7-led 9 has a radius r1.
a has a radius of curvature r2 of its cross section. These curvatures reduce the electric field strength at these ends, where the electric field strength is strongest, to below the allowable value of the insulator, and when electrons are emitted, they truss at these curvatures and the electrons enter the insulating cylinder l. The purpose is to prevent collisions.
ところで7−ルドの拐料である絶縁物でちるが、これら
はアルミナ、窒化ホウ素そしてガラス頷であるが、エポ
キシ樹脂も含めて物理的な性質を示すと第1表のとおり
である。By the way, the physical properties of the insulating materials used in the 7th grade are as shown in Table 1, including alumina, boron nitride, and glass, but also including epoxy resin.
以下余白
第1表よシ金属と絶縁物との膨張率は数倍も違うのでカ
ロ熱による歪の増加と絶縁物の破壊の生ずる理由がわか
る。しかるに本発明のように絶縁物の片1iTK金属皮
膜を形成したものでは金属の伸展性の為に?3縁物の熱
膨張lK、僅かの歪応力で金属皮膜が厄谷するので絶縁
物内の応力は極小に保持され良好な特性が維持される。As shown in Table 1 in the margin below, the expansion coefficients of metals and insulators differ by several times, which explains why strain increases due to heat and insulators break down. However, in the case of the insulating piece in which an iTK metal film is formed as in the present invention, it is difficult to understand whether it is due to the extensibility of the metal. Since the metal film is distorted by the thermal expansion lK of the three edges and a slight strain stress, the stress within the insulator is kept to a minimum and good characteristics are maintained.
又、絶縁耐力の面からは窒化ホウ素、ホウケイ酸ガラス
そして石英ガラスなどが優れてお9、これらを応用した
シールドは格段に優れたものとなる。In addition, boron nitride, borosilicate glass, quartz glass, and the like are excellent in terms of dielectric strength9, and shields made of these materials are extremely superior.
さらVC窒化ホウ素は熱伝導率が金属なみであるからア
ークシールドに最適である。又、ガラスは加熱によって
加工が容易となるので効果的なシールドを製作するに便
利である。Furthermore, VC boron nitride has a thermal conductivity comparable to that of metals, making it ideal for arc shielding. Additionally, glass can be easily processed by heating, making it convenient for manufacturing effective shields.
このように窒化ホウ素、ホウケイ収ガラス、石英ガラス
そし、てアルミナ等で真空バルブのアーク7− ルト9
及びフランジシールド7を製作することにより、この
部分の電界強度を高くでき、かつ絶縁筒]、alC対向
している部分であるため、フランジシールド7及びアー
クシールド9から放射された前駆破壊電流を抑制し、絶
縁筒1aの表面の2次電子なだれを抑制できる。In this way, boron nitride, borosilicate glass, quartz glass, alumina, etc. are used to form the arc of a vacuum bulb.
By manufacturing the flange shield 7 and the flange shield 7, the electric field strength in this part can be increased, and since the insulating tube is the part facing the alC, the precursor breakdown current radiated from the flange shield 7 and the arc shield 9 can be suppressed. However, secondary electron avalanche on the surface of the insulating cylinder 1a can be suppressed.
この前駆破壊電流と印加電圧との関係を第5図に示す。The relationship between this precursor breakdown current and the applied voltage is shown in FIG.
同図において、縦軸は前駆破壊′を色漆を示し、横軸は
印加電圧を示している。曲線Ia&よ、金属シールドを
用いた場合であシ、曲線Ibは絶縁物製のシールドに金
属被膜をした場合である。この前駆破壊電流が所定の限
界Icに達したとき絶縁破壊となる。この前駆破壊電流
が抑ff7!lさJり、るため絶縁破壊電圧が向−ヒす
る。In the same figure, the vertical axis shows the precursor breakdown of colored lacquer, and the horizontal axis shows the applied voltage. Curves Ia and 2 are for the case where a metal shield is used, and curve Ib is for the case where a metal coating is applied to the shield made of an insulator. When this precursor breakdown current reaches a predetermined limit Ic, dielectric breakdown occurs. This precursor breakdown current suppresses ff7! The dielectric breakdown voltage increases because of the electric current.
したがって、第4図でアーク7−ルド9とフランジシー
ルド7間の破壊↑L圧が高くなるため、アークシールド
9の円弧部9aの先端とフランジシールド7の円弧部7
aの先端との間のギャップ長を短かくする事ができ、ま
た絶縁筒1aの内面とアークシールド9及びフランジ/
−ルド7間の距離も短くすることができ、パルプの容積
゛を犬幅四二小さくできる。Therefore, in FIG. 4, the fracture ↑L pressure between the arc 7 - lead 9 and the flange shield 7 increases, so the tip of the arc portion 9a of the arc shield 9 and the arc portion 7 of the flange shield 7
It is possible to shorten the gap length between the tip of the insulating cylinder 1a and the arc shield 9 and the flange/
- The distance between the leads 7 can also be shortened, and the volume of the pulp can be reduced by 42 widths.
また窒化ホウ素、ホウケイ酸ガラス、石英カラスそして
アルミ伏は融点が非常に高くその値は真空パルプの脱ガ
ス処理時の加熱処理温度よシも充分に高いため、解離ガ
スの放出も少なくパルプ内の圧力もあ゛まシ高くはなら
ない。In addition, boron nitride, borosilicate glass, quartz glass, and aluminum foil have very high melting points, and their melting points are high enough to reach the heat treatment temperature during the degassing treatment of vacuum pulp. The pressure doesn't get too high either.
さらに第1表から明らかなように窒化ホウ素は、他のア
ルミナ、エポキシ樹脂等の絶縁材料に比して熱伝導率が
高く放熱特性が良好であるため、これをアークシールド
の絶縁材料として用いることによシミ流しゃ断による急
激な温度上昇が生じても、速かに熱を外部に放熱するこ
とが出来、バルブ内を低温度に維持できる。Furthermore, as is clear from Table 1, boron nitride has higher thermal conductivity and better heat dissipation properties than other insulating materials such as alumina and epoxy resin, so it can be used as an insulating material for arc shields. Even if a sudden temperature rise occurs due to stain flow cutoff, the heat can be quickly radiated to the outside, and the temperature inside the bulb can be maintained at a low temperature.
したがって、真空容器の容積を小さくできるん、IQ1
大幅なコストダウンを図ることができる。Therefore, the volume of the vacuum container can be reduced, IQ1
Significant cost reductions can be achieved.
寸た、アークシールド9及びフランジシールド7の円弧
部9a、7aのギャップ長を短かくできるため、電流し
ゃ断時に電極4.5間から発生する全組蒸気が絶縁筒の
内面に付着することを防止できそれによって、大電流し
ゃ断時に金属蒸気が7!8縁容器1aの内面に付着ラー
ることによる耐圧低下を防止することができる。In addition, since the gap length between the arc parts 9a and 7a of the arc shield 9 and flange shield 7 can be shortened, it is possible to prevent all steam generated from between the electrodes 4.5 from adhering to the inner surface of the insulating cylinder when the current is cut off. As a result, it is possible to prevent a drop in withstand pressure due to metal vapor adhering to the inner surface of the container 1a with 7 or 8 edges when a large current is cut off.
次に他の実施例である第6図を参照してその作用効果を
述べる。Next, the operation and effect of another embodiment will be described with reference to FIG. 6, which is another embodiment.
なお第4図と同一部分は同一符号を付してその説明を省
略する。第6図に示すように金属製真空容器1bは上下
の絶縁筒1a、laが気密Yこ封着され、これに上下の
端板2,3が気密に@着されて真空容器を形成し、固定
電極4は端板2を貫通して封着さ)1だ通電軸4aの先
端に査触子4b′f:俯えた゛琺極4cを設けている。Note that the same parts as in FIG. 4 are given the same reference numerals, and the explanation thereof will be omitted. As shown in FIG. 6, the metal vacuum container 1b has upper and lower insulating tubes 1a and 1a hermetically sealed, and upper and lower end plates 2 and 3 are hermetically attached to this to form a vacuum container, The fixed electrode 4 is sealed by penetrating the end plate 2).A probe 4b'f: a downwardly tilted cylindrical electrode 4c is provided at the tip of the current-carrying shaft 4a.
また可動゛C乙極5は立;畠板3にカバー6aを有する
ベローズ6を介して可動(て刺着された通電軸5aの先
D+a l’こ接触子5bを備えた電極5Cが設けられ
ている。Further, the movable electrode 5 is provided with a contact 5b at the tip D+a l' of the current-carrying shaft 5a, which is movable through the bellows 6 having a cover 6a on the ground plate 3. ing.
固定電極側端板2及び可動電極側端板3にはそれぞれ片
面に金属皮膜1.0が形成された絶縁物製のフランジン
ールド7を設け、さらに金属製真空容器16の両端VC
(ri同じく片面に金属皮膜10が形成された1色織物
製のシールド7を設けている。The fixed electrode side end plate 2 and the movable electrode side end plate 3 are each provided with a flange mold 7 made of an insulator with a metal film 1.0 formed on one side, and furthermore, both ends VC of the metal vacuum vessel 16 are provided.
(Similarly to ri, a shield 7 made of a one-color fabric with a metal coating 10 formed on one side is provided.
この実施例ではしゃ断時発生するアークから絶縁物を保
護するアークシールドの機能は金属製真空容器1bが兼
ねているので、全部で4つのシールド7は端板2,3や
金属製真空容器1bの端部の電界を緩和す゛るための7
一ルド機能だけとなる。In this embodiment, the metal vacuum vessel 1b also has the function of an arc shield that protects the insulator from the arc generated when it is cut off, so a total of four shields 7 are provided on the end plates 2, 3 and the metal vacuum vessel 1b. 7 for relaxing the electric field at the end
Only one field function is available.
従ってアークが直接にこれらに触れることが無いので、
加工性の容易なガラスで製作することが出来るので蹴適
′m界分布を与える形状が得られ耐電圧特性やしゃ断性
能が飛躍的に向上する。Therefore, since the arc does not touch these directly,
Since it can be manufactured from glass that is easy to process, a shape that provides a suitable field distribution can be obtained, and the withstand voltage characteristics and breaking performance are dramatically improved.
本発明によればフシンジシールド及びアークシールドの
それぞれに窒化ホウ素系の磁器や、ガラス類そしてアル
ミナ磁器等を材料として用いることによシ、シールド間
の沿面耐圧を向」ニし、全体の形状を小型化して大幅な
コストダウンを図ることができる。特に窒化ホウ素を用
いる場合には放熱特性が良好なため高電圧、大容量に適
する真空バルブを提供する事ができる。According to the present invention, by using boron nitride-based porcelain, glass, alumina porcelain, etc. as materials for each of the fushinji shield and the arc shield, the creepage resistance between the shields is improved, and the overall shape is improved. It is possible to downsize and significantly reduce costs. In particular, when boron nitride is used, it has good heat dissipation characteristics, so it is possible to provide a vacuum valve suitable for high voltage and large capacity.
第1図は従来の真空バルブを示す縦断面図、第2図は従
来の真空バルブのアークシールドとフランジ/−ルドの
要部を示す断面図、第3図は2次・成子放出特性を示す
特性線図、第4図は本発明の真空パルプを示す縦断面図
、第5図は印加′威圧と前駆破壊電流との関係を示す特
性線図、第6図は他の実施例の真空パルプを示す縦断面
図である。
7・・・フランジシールド
9・・・アークシールド
10・・・金属皮膜
(7317)代理人弁理士 則 近 標 佑 (はが1
名〕第1図
第2図
上
第3図
第4図
第5図Figure 1 is a vertical cross-sectional view showing a conventional vacuum valve, Figure 2 is a cross-sectional view showing the main parts of the arc shield and flange/rud of a conventional vacuum valve, and Figure 3 is a diagram showing the secondary/seiko emission characteristics. Characteristic diagram; Figure 4 is a vertical cross-sectional view showing the vacuum pulp of the present invention; Figure 5 is a characteristic diagram showing the relationship between applied pressure and precursor breakdown current; Figure 6 is a diagram showing the vacuum pulp of another example. FIG. 7...Flange shield 9...Arc shield 10...Metal coating (7317) Representative Patent Attorney Noriyuki Chika (Haga 1)
Name] Figure 1 Figure 2 Upper Figure 3 Figure 4 Figure 5
Claims (1)
容器内に接iq能な一対の電極を配置しこの一対の電極
の少なくとも一方がベローズを介して前記端板に可動に
封着されるとともに上記端板に支持されるンランジシー
ルドを配置しキラに上記電極を包囲するアーク7−ルド
を備えた真空パルプにおいて、上記フランジンールドお
よび上bピアークンールドは絶縁物よりなシ、この絶縁
物の片面を金属皮膜で形成させたことを特徴とする真空
パルプ。A pair of contactable electrodes is arranged in a vacuum container consisting of an insulating container and an end plate that closes the insulating container, and at least one of the pair of electrodes is movably sealed to the end plate via a bellows. In the vacuum pulp, a flange shield supported by the end plate is disposed and an arc 7-fold surrounds the electrode at the back. A vacuum pulp characterized by having one side formed with a metal film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18012083A JPS6074213A (en) | 1983-09-30 | 1983-09-30 | Vacuum valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18012083A JPS6074213A (en) | 1983-09-30 | 1983-09-30 | Vacuum valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6074213A true JPS6074213A (en) | 1985-04-26 |
Family
ID=16077764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18012083A Pending JPS6074213A (en) | 1983-09-30 | 1983-09-30 | Vacuum valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6074213A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011258523A (en) * | 2010-06-11 | 2011-12-22 | Toshiba Corp | Vacuum switchgear device |
WO2015193065A1 (en) * | 2014-06-20 | 2015-12-23 | Siemens Aktiengesellschaft | Vacuum fault interrupter and method for producing a vacuum fault interrupter |
JP2021089828A (en) * | 2019-12-03 | 2021-06-10 | 株式会社東芝 | Vacuum valve |
-
1983
- 1983-09-30 JP JP18012083A patent/JPS6074213A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011258523A (en) * | 2010-06-11 | 2011-12-22 | Toshiba Corp | Vacuum switchgear device |
WO2015193065A1 (en) * | 2014-06-20 | 2015-12-23 | Siemens Aktiengesellschaft | Vacuum fault interrupter and method for producing a vacuum fault interrupter |
JP2021089828A (en) * | 2019-12-03 | 2021-06-10 | 株式会社東芝 | Vacuum valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2014809A (en) | Electron discharge tube | |
US2698913A (en) | Cathode structure | |
US1933329A (en) | Electric discharge device | |
JPS6074213A (en) | Vacuum valve | |
US4035685A (en) | Solid cathode cap for an X-ray tube | |
US2558357A (en) | Lead for electron discharge devices | |
US2577239A (en) | Cathode and heater structure for electron tubes | |
US4396861A (en) | High voltage lead-through | |
JP3504985B2 (en) | High voltage bushing of X-ray tube | |
JPS6226131B2 (en) | ||
JPS60180028A (en) | Vacuum bulb | |
CN209526062U (en) | Vacuum electrode | |
US2202687A (en) | High-voltage discharge tube | |
JPS60100323A (en) | Vacuum bulb | |
JPS60100324A (en) | Vacuum bulb | |
US2082848A (en) | Stem for electron discharge devices | |
US2164997A (en) | X-ray apparatus | |
CN108831816A (en) | A kind of ripple ceramic structure medical X-ray tube | |
JP3130722B2 (en) | Vacuum valve | |
US3073983A (en) | Mercury pool discharge device | |
US2933635A (en) | Vacuum-tight electrode lead-in assembly for mercury vapor rectifiers | |
US2115927A (en) | High voltage electron discharge device | |
US3263114A (en) | Shock and vibration resistant heater for indirectly heated cathodes of radio receiving tubes | |
JPS6247337B2 (en) | ||
US2313029A (en) | Vapor electric device |