JPS607375A - Method and apparatus for measuring coercive force of ferromagnetic substance test piece - Google Patents

Method and apparatus for measuring coercive force of ferromagnetic substance test piece

Info

Publication number
JPS607375A
JPS607375A JP11657783A JP11657783A JPS607375A JP S607375 A JPS607375 A JP S607375A JP 11657783 A JP11657783 A JP 11657783A JP 11657783 A JP11657783 A JP 11657783A JP S607375 A JPS607375 A JP S607375A
Authority
JP
Japan
Prior art keywords
test piece
coil
coercive force
solenoid
detection coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11657783A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sumida
隅田 義博
Toru Nagashima
徹 長島
Hisafumi Uozumi
久文 魚住
Katsuhiro Kojima
小島 勝洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11657783A priority Critical patent/JPS607375A/en
Publication of JPS607375A publication Critical patent/JPS607375A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To enable the measurement of a coercive force of a test piece simply at a high accuracy by a method wherein a test piece is magnetized in a solenoid, rotated in front of a head of a detection coil and then, a specified demagnetization is done with a demagnetizing coil. CONSTITUTION:A test piece is magnetized with a magnetizing coil 12 in a solenoid 10 and rotated in front of a head of a detection coil 28 so that the magnetic flux thereof is caused to cross the detection coil 28 at the right angle thereto to generate an induced voltage (e) by an electromagnetic induction. Then, a magnetic field necessary for cancelling the induced voltage (e) is applied anew by a demagnetizing coil 14 from outside to calculate the strength of an external magnetic field necessary for making the induced voltage (e) zero to be used as a coercive force. Thus, the coercive force of the test piece can be measured very simply at a high accuracy.

Description

【発明の詳細な説明】 この発明は1強磁性体試験片の保磁力測定方法およびこ
れを実施するための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring coercive force of a ferromagnetic test piece and an apparatus for carrying out the method.

強磁性体特性を示す鉄その他の金属素材は、工場出荷に
先立ち磁性材料としての磁気的性質を検査するために、
該金属素材の試験片をサンプル抽出して磁化特性を測定
することが一般に行われている。この磁化特性は、第1
図に示すように磁性材料中の横軸に磁界の強さ■1をと
り縦軸に磁束密度Bをとった場合に、磁界の強さが0−
) a→1〕→(二の如く変化した後、0点で磁気飽和
する磁化曲線として示される。なお磁気飽和点Cから磁
界を弱めていくと、磁化の強さはC→d→e→fの径路
をたどってf点で飽和し1次いで再び磁界を強めていく
と磁化はf→g−+に一+Cの径路をたど−〕て環状に
変化し、いわゆるヒステリシスループ曲線を描く、この
ときOdの大きさを残留磁束密度Brといい、Oeの大
きさを保磁力1−1 cという。そして工場から出荷さ
れる金属素材の磁束密率、保磁力等の磁化特性の測定は
、従来環状試料を用いる環状鉄心法によったり、自記磁
束計、NS透磁率計を用いて行ったりしている。これら
各種磁化特性の測定方法のうち、特にNS透磁率a1に
よる棒状試験片の保磁力測定は、作業手順が複雑で時間
が掛り、しかも熟練を要する等の難点があった。
Iron and other metal materials exhibiting ferromagnetic properties are tested for their magnetic properties as magnetic materials before being shipped from the factory.
It is common practice to sample a test piece of the metal material and measure its magnetization characteristics. This magnetization characteristic is the first
As shown in the figure, when the horizontal axis in a magnetic material is the magnetic field strength 1 and the vertical axis is the magnetic flux density B, the magnetic field strength is 0-
) a → 1] → (It is shown as a magnetization curve that reaches magnetic saturation at the 0 point after changing as shown in 2. When the magnetic field is weakened from the magnetic saturation point C, the strength of magnetization becomes C → d → e → Following the path f, saturating at point f, and then increasing the magnetic field again, the magnetization changes in an annular manner from f to g-+, following the path 1+C, forming a so-called hysteresis loop curve. At this time, the magnitude of Od is called the residual magnetic flux density Br, and the magnitude of Oe is called the coercive force 1-1 c.Measurement of the magnetization characteristics such as magnetic flux density and coercive force of the metal material shipped from the factory is as follows. Conventionally, the ring core method using a ring sample is used, or a self-recording flux meter or NS permeability meter is used. Among these various methods for measuring magnetization characteristics, the retention of bar-shaped test pieces using NS magnetic permeability a1 is particularly important. Magnetic force measurement has the disadvantages of complicated and time-consuming work procedures, and requires skill.

本発明は、従来技術に係る試験片の保磁力測定手段に内
在している前記欠点に鑑み、これを解決するべく案出さ
れたものであって、その試験片保磁力測定方法は、ソレ
ノイド中に配設した強磁性体の試験片に磁化コイルによ
る磁界を加えて該試験片を磁化し、この磁化された試験
片を同じくソレノイド中に配設した検出コイルに対し相
対的に回転させて該検出コイル中に誘起電圧を発生させ
、更に減磁コイルにより前記誘8電圧を打ち消すに必要
な外部磁界を加えて当該誘起電圧を雲にする前記外部磁
界の強さをもって保磁力として算出することを特徴とす
る。
The present invention has been devised in view of the above-mentioned drawbacks inherent in the conventional means for measuring coercive force of a test piece. A magnetic field from a magnetizing coil is applied to a ferromagnetic test piece placed in the solenoid to magnetize the test piece, and the magnetized test piece is rotated relative to a detection coil also placed in the solenoid. An induced voltage is generated in the detection coil, and an external magnetic field necessary to cancel the induced voltage is further applied by a demagnetizing coil to cloud the induced voltage.The strength of the external magnetic field is calculated as the coercive force. Features.

またこの測定方法を実施するのに好適に使用される本願
の別の発明に係る保磁力測定装置は、磁化コイルと減磁
コイルとを同心配置してソレノイドを構成し、前記ソレ
ノイド中に強磁性体の試験片を装着するための試験片ホ
ルダと誘起電圧検出用の検出コイルとを所定距離離間さ
せて対向配置し、前記試験片ホルダを検出コイルに列し
相対的に回転させ得るよう構成したことを1、〒徴とす
る。
In addition, a coercive force measuring device according to another invention of the present application, which is suitably used to carry out this measuring method, has a solenoid configured by arranging a magnetizing coil and a demagnetizing coil concentrically, and a ferromagnetic force in the solenoid. A test piece holder for attaching a body test piece and a detection coil for detecting induced voltage are arranged facing each other at a predetermined distance apart, and the test piece holder is arranged in line with the detection coil and configured to be rotated relative to the detection coil. This is the first sign.

次に本発明に係る保磁力測定方法につき、当該方法を実
施するための保磁力測定装置との関係において、以下詳
細に説明する。
Next, the coercive force measuring method according to the present invention will be described in detail below in relation to a coercive force measuring apparatus for implementing the method.

第2図は本発明に係る保磁力測定装置の概111811
6成を示すものであって、参照符号10は所定直径のソ
レノイド、すなわち円筒状の空芯を示す。前記ソレノイ
ド10は、図示しないボビンにfi・U線を所定回数巻
回してなる磁化コイル12と、同しく図示しないボビン
に巻回され該磁化コイル12の内方に密着的に同心配置
された減磁コイル14どから基本的に構成されている。
Figure 2 shows an outline of the coercive force measuring device according to the present invention.
6 components, and reference numeral 10 indicates a solenoid of a predetermined diameter, that is, a cylindrical air core. The solenoid 10 includes a magnetizing coil 12 formed by winding a fi/U wire a predetermined number of times around a bobbin (not shown), and a magnetizing coil 12 which is also wound around a bobbin (not shown) and closely concentrically arranged inside the magnetizing coil 12. It basically consists of a magnetic coil 14 and the like.

また前記ソレノイド10の外側円周部には、円筒形の金
属製磁気シールド板16が密着配置されている。
Further, a cylindrical metal magnetic shield plate 16 is disposed in close contact with the outer circumferential portion of the solenoid 10 .

前記ソレノイド10は当該測定装置の筐体(図示せず)
内に収納配置されており、前記ソレノイドに構成する磁
化コイル12および減磁コイル14がらは夫々電源供給
ライン18.20が導出され、専用直流電源22および
24に接続されている。
The solenoid 10 is a housing (not shown) of the measuring device.
The magnetizing coil 12 and demagnetizing coil 14 included in the solenoid are housed within the solenoid, and power supply lines 18 and 20 are led out from the magnetizing coil 12 and demagnetizing coil 14, respectively, and are connected to dedicated DC power supplies 22 and 24, respectively.

また前記ソレノイド10の空洞内には、当該ソレノイド
の中心軸線に各軸線を整列させて、試験片ホルダ26お
よび検出コイル28が所定距離離間して対向配置されて
いる(この詳細については、第3図に関連して後述する
)。前記試験片ホルダ2Gは、第2図に示すようにソレ
ノイド10の軸線方向外方に延在する回転軸30の一端
部に固着され、該回転軸30は前記筐体(図示せず)内
に配設した支持台32に設けた一対の軸受34に、回転
自在に水平1t+I+支されている。また前記回転軸3
0の他端部は、その回転数を無段階に調節し得る直流モ
ータ36の回転軸にカンプリング接続されている。
Further, in the cavity of the solenoid 10, a test piece holder 26 and a detection coil 28 are arranged facing each other at a predetermined distance apart, with their respective axes aligned with the central axis of the solenoid. (described below in connection with the figure). The test piece holder 2G is fixed to one end of a rotating shaft 30 extending outward in the axial direction of the solenoid 10, as shown in FIG. It is rotatably supported horizontally by a pair of bearings 34 provided on a supporting stand 32. In addition, the rotating shaft 3
The other end of the DC motor 36 is connected to the rotation shaft of a DC motor 36 whose rotation speed can be adjusted steplessly.

また前記検出コイル28は、金属製の中空パイプ38の
一端部に取付けられており、この中空バイブ38も前記
回転軸30と同じくソレノイ1く10の中心軸線に整列
して水平に延在し、該中空バイブ38の他端部は前記ソ
レノ′イl< I Oの外方において、前記筐体に適宜
の手段により固定さAしている。なお前記検出コイル2
8がらは、ツー1−線40が中空パイプ38に治って導
出され、適宜の測定回路に接続されている。この測定回
路は、例えば第2図に示すように、検波増幅器112.
コンデンサ44.交流電圧H146およびX−Yレコー
ダ48から爪木的に構成され、前記X−Yレコーダ48
のX端子は、前記減磁コイル14とその直流電源24を
結ふ電源供給ライン2oに介挿した標準抵抗器50に中
間タップ接続されている。
The detection coil 28 is attached to one end of a metal hollow pipe 38, and the hollow vibe 38 is also aligned with the central axis of the solenoid 10 and extends horizontally, like the rotating shaft 30. The other end of the hollow vibrator 38 is fixed to the housing by appropriate means outside the solenoid I<IO. Note that the detection coil 2
A wire 40 is connected to the hollow pipe 38 and connected to an appropriate measuring circuit. This measurement circuit includes, for example, a detection amplifier 112 .
Capacitor 44. The X-Y recorder 48 is constructed in a block-like manner from an AC voltage H146 and an X-Y recorder 48.
The X terminal of the demagnetizing coil 14 is connected to a standard resistor 50 inserted in the power supply line 2o connecting the demagnetizing coil 14 and its DC power source 24 with an intermediate tap.

次に第2図において符号へで示す円形部分の拡大図を、
第3図に示す。すなわち第3図は、前記試験片ホルダ2
6および検出コイル28の訂A・1■な構成を示すもの
であって、前記ボルダ26は円循j部材で構成され、回
転軸3oの端部にねし込み固定されるようになっている
。そして鉄等の金属素材からなる強磁性体試験片52は
、前記ボルタ26の端面に偏心的に所定深度て穿設さi
cた収納孔に挿入さ九、適宜の固定手段により着脱自在
に取付けられるようになっている。前記試験片52は後
述する如く外部磁界により磁化されるが、その磁束発生
方向は、前記ホルダ26の中心軸線と平行になるような
姿勢で取付けられるものとする。
Next, an enlarged view of the circular part indicated by the symbol in Fig. 2,
It is shown in Figure 3. That is, FIG. 3 shows the test piece holder 2.
6 and the detection coil 28, the boulder 26 is composed of a circular member and is screwed into the end of the rotating shaft 3o to be fixed thereto. . A ferromagnetic test piece 52 made of a metal material such as iron is eccentrically bored into the end face of the bolt 26 at a predetermined depth.
It can be inserted into a storage hole with an opening, and can be detachably attached using an appropriate fixing means. The test piece 52 is magnetized by an external magnetic field as will be described later, and the test piece 52 is attached in such a position that the direction of magnetic flux generation is parallel to the central axis of the holder 26.

前記試験片2Gの軸方向前方に所定の空隙を保持して対
向的に配設される検出コイル28は、第4図に示すよう
に1例えば2つのアクリル製ボビン54a、54bに銅
線を巻回されて構成され、かつ前記2つのボビンの中心
は中空パイプ38の軸線に対し、夫々若干偏位している
。なお前記2つのボビンの銅線は、前記磁化コイル12
を励磁した際に生ずる印加磁界を打ち消すために、ボビ
ン54aおよび54bでは夫々反対方向に巻かれている
。また検出コイル28の検出ヘッドとホルダ26に取付
けられた試験片52との間隔は、最も適切な寸法が実験
的に決定されるが、一般には1.0mar−2,0no
nとするのが好ましい。
The detection coil 28, which is disposed facing the test piece 2G with a predetermined gap in front of it in the axial direction, is made by winding a copper wire around two acrylic bobbins 54a and 54b, for example, as shown in FIG. The two bobbins are rotated, and the centers of the two bobbins are slightly offset from the axis of the hollow pipe 38, respectively. Note that the copper wires of the two bobbins are connected to the magnetization coil 12.
In order to cancel the applied magnetic field generated when the bobbins 54a and 54b are excited, the bobbins 54a and 54b are wound in opposite directions. Further, the most appropriate distance between the detection head of the detection coil 28 and the test piece 52 attached to the holder 26 is determined experimentally, but generally it is 1.0mar-2.0no.
It is preferable to set it to n.

第2図および第3図において参照符号56で示すコイル
は、試験片52を加熱して該試験片の温度上昇に伴う磁
化特性の述遷を経時的に測定するためにオプションとし
て設けられるものである。
A coil indicated by reference numeral 56 in FIGS. 2 and 3 is provided as an option for heating the test piece 52 and measuring the development of magnetization characteristics over time as the temperature of the test piece increases. be.

すなわち前記中空パイプ38の端部に、図示しない支持
部材髪介して磁気透過性の耐熱磁器からなるボビン58
が取付けられ、該ボビン58の外周にニクロム線等の電
気抵抗の大きい線材かlらなるコイル56が巻かわでい
て、前記ホルタ26内に位置する試験片52を所定温度
にまで加熱するようになっている。なおこの加熱用コイ
ル56を配設する場合は、前記検出コイル28のボビン
548゜54bの材質を前記アクリル樹脂に替えて耐熱
性$4料、例えば非磁性の銅に変換する必要がある。ま
た検出コイル28が受ける熱影響を最小限に止めるため
、第3図に示すように、パイプ38の中空部に冷却水を
強制的に循環させて検出コイル28を冷却するよう構成
してお(のがafましい。
That is, a bobbin 58 made of magnetically permeable heat-resistant porcelain is attached to the end of the hollow pipe 38 through a support member (not shown).
is attached to the bobbin 58, and a coil 56 made of a wire with high electrical resistance such as nichrome wire is wound around the outer circumference of the bobbin 58 so as to heat the test piece 52 located inside the holter 26 to a predetermined temperature. It has become. In the case where this heating coil 56 is provided, the material of the bobbin 548.degree. 54b of the detection coil 28 must be replaced with the acrylic resin and replaced with a heat-resistant material such as non-magnetic copper. In addition, in order to minimize the thermal influence on the detection coil 28, as shown in FIG. That's af.

なお第2図および第3図に示す実施例では、試験片ホル
ダ26がモータ36により駆動されて回転し、検出コイ
ル28は定位置に静止している構造となっているが、逆
に検出コイル28を回転させて、試験片ホルダ26は静
止固定しておく構造としてもよい。従って、試験片ホル
ダ26と検出コイル28との回転関係は、互いに相対的
なものとなっている。
In the embodiment shown in FIGS. 2 and 3, the test piece holder 26 is driven by the motor 36 to rotate, and the detection coil 28 is stationary at a fixed position. 28 may be rotated, and the test piece holder 26 may be kept stationary. Therefore, the rotational relationship between the test piece holder 26 and the detection coil 28 is relative to each other.

次にこのように構I戊した本発明に係る保磁力測定装置
を使用して、強磁性体試験片の保磁力を測定する方法に
つき説明する。測定開始に先立ち、鉄その他の強磁性体
からなる金属素材より、所定寸法の棒状試験片52(例
えば直径5mm、最大長さ30 nun)を得、この試
験片52を前述の構成に係るホルダ26に取イ4ける。
Next, a method for measuring the coercive force of a ferromagnetic test piece using the coercive force measuring apparatus according to the present invention configured as described above will be explained. Prior to the start of measurement, a bar-shaped test piece 52 of predetermined dimensions (for example, diameter 5 mm, maximum length 30 nm) is obtained from a metal material made of iron or other ferromagnetic material, and this test piece 52 is placed in the holder 26 having the above-described configuration. Take it to 4.

この取付作業に際して試験片ホルダ2Gは、図示しない
スライド機構により前記支持台32と共に軸方向に後退
して該ホルダ26を前記ソレノイド10の外方に位置さ
せ、この状態で試験片52の取付けがなされるようにな
っている。次いて試験片ホルダ26をスライドさせてソ
レノイド10中に挿入し、前記検出コイル28ど試験片
52との間に所定の空隙が得ら;1シるよう位置設定を
行う。
During this installation work, the test piece holder 2G is moved back in the axial direction together with the support base 32 by a slide mechanism (not shown) to position the holder 26 outside the solenoid 10, and in this state, the test piece 52 is installed. It has become so. Next, the test piece holder 26 is slid and inserted into the solenoid 10, and the position is set so that a predetermined gap is obtained between the detection coil 28 and the test piece 52.

このように試験片52の七ッ1−が完了した後。After completing the test piece 52 in this manner.

前記磁化コイル12を直流電源22により励磁し、ソレ
ノイド10の内部空間に磁界を印加する。(・jy用す
る直流電源の電流は例えば15Δで、最大印加磁界は8
600eである。この開力11磁界中に強(i、+、)
性体からなる試験ハ52がおかれることによ−)℃該試
験片は磁化され、第1図′のグラフ図に示tJ、うに0
点において磁気飽和に達する。そしにの磁気飽和点Cに
至ってから、前記磁化コ・rル12により形成される磁
界を弱めていくと、磁化の強さは減少し磁界零で残留磁
化4点に到り、1点て飽和する。この時点で磁化コイル
12の励磁を(・:1止する。
The magnetization coil 12 is excited by the DC power supply 22 to apply a magnetic field to the internal space of the solenoid 10. (For example, the current of the DC power supply for jy is 15Δ, and the maximum applied magnetic field is 8
It is 600e. Strong (i, +,) in this opening force 11 magnetic field
By placing a test piece 52 made of a magnetic substance, the test piece is magnetized at tJ and 0°C as shown in the graph of FIG.
Magnetic saturation is reached at the point. After reaching the magnetic saturation point C, when the magnetic field formed by the magnetizing coil 12 is weakened, the strength of magnetization decreases and reaches 4 points of residual magnetization when the magnetic field is zero. saturate. At this point, the excitation of the magnetizing coil 12 is stopped by (.1).

次いで第2図に示すモータ3Gをfjl勢し、回!、+
:軸30およびその先端に取伺(Jた試験片ホルタ、2
Gを回転させる(回転数は、例えば100〜7 (,1
(+rpmの範囲で選択される)。こわにより既に磁化
された前記試験片52は、同しくツレノー(F I O
l+に配設した検出コイル28の検出ヘン1−前方にお
いて回転し、第5図に示すように試験片52から発生す
る磁束60は検出コイル28を周期的に通過する。すな
わち試験片52は、検出コイル28の前方を偏心的に回
転する結果として、゛前記検出コイルを通過する磁束を
変化させ、電磁誘導の原理より該検出コイル中に誘起電
圧eを発生させる。
Next, the motor 3G shown in FIG. ,+
: Examine the shaft 30 and its tip (J test piece holder, 2
G is rotated (the number of rotations is, for example, 100 to 7 (,1
(selected in the +rpm range). The test piece 52, which has already been magnetized due to stiffness, is also
The magnetic flux 60 generated from the test piece 52 rotates in front of the detection coil 28 disposed at l+, and as shown in FIG. 5, the magnetic flux 60 generated from the test piece 52 passes through the detection coil 28 periodically. That is, as a result of eccentrically rotating the test piece 52 in front of the detection coil 28, the magnetic flux passing through the detection coil is changed, and an induced voltage e is generated in the detection coil based on the principle of electromagnetic induction.

また試験片ホルダ26の回転開始と略同期させて、前記
減磁コイル14を直流電源24(例えば電流IA)によ
り励磁し、ソレノイド10中に新たに外部磁界を印加す
る。この減磁コイル14により印加される磁界は、磁化
コイル12によって印加された磁界方向ど逆方向とし、
またその強さは例えば最大印加磁界200eであって、
前記検出コイル28中に誘導された試験片の磁化を打ち
消すに充分な程度とする。こ、tシにより試験片の残留
磁化が減少し、それに伴い誘起電圧も減少する。この減
磁コイル14に流す電流と誘起電圧の関係を、前記X−
■レコーダ48により指示し、当該誘起電圧eが零にな
る値から適宜の演算回答により磁界をめ、この外部磁界
の強さをもって保磁力とする。
Further, substantially in synchronization with the start of rotation of the test piece holder 26, the demagnetizing coil 14 is excited by the DC power supply 24 (for example, current IA), and a new external magnetic field is applied to the solenoid 10. The magnetic field applied by this demagnetizing coil 14 is opposite to the direction of the magnetic field applied by the magnetizing coil 12,
The strength is, for example, the maximum applied magnetic field of 200e,
The amount is sufficient to cancel the magnetization of the test piece induced in the detection coil 28. Due to this, the residual magnetization of the test piece is reduced, and the induced voltage is also reduced accordingly. The relationship between the current flowing through this demagnetizing coil 14 and the induced voltage is expressed as X-
(2) Instruct with the recorder 48, calculate the magnetic field from the value at which the induced voltage e becomes zero by an appropriate calculation answer, and use the strength of this external magnetic field as the coercive force.

なおオプションとして配設した加熱用コイル56を使用
して保磁力の測定を行う場合は、当該コイル5Gにより
試験片52を所定温度にまでL昇させつつ、その温度変
fヒに伴う経時的な磁化’l’l’性の変遷を容易に測
定することができろ。
When measuring the coercive force using the heating coil 56 provided as an option, the coil 5G raises the test piece 52 to a predetermined temperature, and the temperature changes over time as the temperature changes. Changes in magnetization 'l'l' properties can be easily measured.

このように本発明に係る試験片の保磁カiil’l定方
法および装置によれば、試験片を磁化コイルによりソレ
ノイ1−中で磁化し、この磁(ヒされた17A’、 ’
ffh J ’lを検出コイルのヘッド前方で回転させ
ろことに上り、その磁束を該検出コイルに21 L、て
直角方向に ゛横切らせ、電磁誘導の原理で44起電圧
Qq発牛させる。そして、この誘起電圧Cを打ち消すの
に必要な磁界を減磁コイルにより新たに外部から加え、
前記誘起電圧eを零にするに必要なi’+ii記外γ!
li fiR”11′の強さをもって保磁力どして算出
するものひ、1ろる。
As described above, according to the method and apparatus for determining the magnetic coercivity of a test piece according to the present invention, the test piece is magnetized in the solenoid 1 by a magnetizing coil,
ffh J 'l is rotated in front of the head of the detection coil, and its magnetic flux crosses the detection coil in the perpendicular direction at 21 L, causing an electromotive force Qq of 44 on the principle of electromagnetic induction. Then, the magnetic field necessary to cancel this induced voltage C is newly applied externally using a demagnetizing coil.
i'+ii not mentioned γ required to make the induced voltage e zero!
The coercive force is calculated using the strength of li fiR"11'.

従って本発明により、極めて筒41な作渚手順C簡単に
、精度のよい試験片の保磁ツノ測″、jユがj完成さ、
lする。このように、従来保磁力の測定にはス(〜棟と
1−2時間とを要していたが、本発明によればこのよう
な難点を完全に克服することができ、また丸(4状その
他環状試験片に限ることなく異形4,4才1.11から
なる試験片の保磁力測定も可能になる等、゛多くの有益
な効果を奏するものである。
Therefore, according to the present invention, it is possible to easily and accurately measure the coercive horn of a test piece in an extremely simple sanding procedure.
I do it. In this way, conventionally it took 1-2 hours to measure the coercive force, but according to the present invention, such difficulties can be completely overcome and This method has many beneficial effects, such as making it possible to measure the coercive force of test pieces not only in the shape of 4 or 4 years old, but also in annular shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁性材料中の磁界の強さI4と磁束密度Bとの
関係を示す磁1ヒ曲線図、第2図は本発明に係る試験片
の保磁力測定装置の概略構成図、第3図は、第2図にお
いて符号Aで示す円形部分の拡大図、第4図は検出コイ
ルの一実施例の斜視図、第5図は試験片を検出コイルに
対して4・■対的に回転させた場合の磁束の変化を示す
説明図である。 10・・・・ソレノイド 12・・・・磁化コイル14
・・・・減磁コイル 2G・・・・試験片ホルダ28・
・・・検出コイル 特許出願人 大同特殊鋼株式会社
FIG. 1 is a magnetic 1-hi curve diagram showing the relationship between magnetic field strength I4 and magnetic flux density B in a magnetic material, FIG. The figure is an enlarged view of the circular part indicated by the symbol A in Fig. 2, Fig. 4 is a perspective view of one embodiment of the detection coil, and Fig. 5 is a test piece rotated in 4 and 2 directions with respect to the detection coil. FIG. 3 is an explanatory diagram showing changes in magnetic flux when 10... Solenoid 12... Magnetizing coil 14
... Demagnetizing coil 2G ... Test piece holder 28.
...Detection coil patent applicant Daido Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)ソレノイド中に配設した強磁性体の試験片に磁化
コイルによる磁界を加えて該試験片を磁化し、この磁化
された試験片を同じくソレノイド中に配設した検出コイ
ルに対し相対的に回転させて該検出コイル中に誘起電圧
を発生させ、更に減磁コイルにより前記誘起電圧を打ち
消すに必要な外部磁界を加えて当該誘起電圧を零にする
前記外部磁界の強さをもって保磁力として算出すること
を特徴とする強磁性体試験片の保磁力測定方法。
(1) Apply a magnetic field from a magnetizing coil to a ferromagnetic test piece placed in the solenoid to magnetize the test piece, and make the magnetized test piece relative to the detection coil also placed in the solenoid. to generate an induced voltage in the detection coil, and further apply an external magnetic field necessary to cancel the induced voltage by a demagnetizing coil, and the strength of the external magnetic field to make the induced voltage zero is used as the coercive force. A method for measuring coercive force of a ferromagnetic test piece, characterized by calculating the coercive force of a ferromagnetic test piece.
(2)磁化コイルと減磁コイルとを同心配置してソレノ
イドを構成し、前記ソレノイド中に強磁性体の試験片を
装着するための試験片ホルダと誘起電圧検出用の検出コ
イルとを所定層RIG 11間させて対向配置し、前記
試験片ホルダを検出コイルに対し相対的に回転させ得る
よう構成したことを特徴とする強磁性体試験片の保磁力
測定装置。
(2) A solenoid is constructed by arranging a magnetizing coil and a demagnetizing coil concentrically, and a test piece holder for mounting a ferromagnetic test piece in the solenoid and a detection coil for detecting induced voltage are arranged in a predetermined layer. An apparatus for measuring coercive force of a ferromagnetic test piece, characterized in that RIGs 11 are arranged opposite to each other and the test piece holder can be rotated relative to a detection coil.
JP11657783A 1983-06-27 1983-06-27 Method and apparatus for measuring coercive force of ferromagnetic substance test piece Pending JPS607375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11657783A JPS607375A (en) 1983-06-27 1983-06-27 Method and apparatus for measuring coercive force of ferromagnetic substance test piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11657783A JPS607375A (en) 1983-06-27 1983-06-27 Method and apparatus for measuring coercive force of ferromagnetic substance test piece

Publications (1)

Publication Number Publication Date
JPS607375A true JPS607375A (en) 1985-01-16

Family

ID=14690558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11657783A Pending JPS607375A (en) 1983-06-27 1983-06-27 Method and apparatus for measuring coercive force of ferromagnetic substance test piece

Country Status (1)

Country Link
JP (1) JPS607375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247587U (en) * 1988-09-26 1990-03-30
CN104081218A (en) * 2012-01-26 2014-10-01 Tdk株式会社 Magnetic measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146432A (en) * 1974-10-18 1976-04-20 Matsushita Electric Ind Co Ltd NENSHO SOCHI
JPS538274B1 (en) * 1964-09-26 1978-03-27
JPS5653472A (en) * 1979-10-08 1981-05-13 Tdk Corp Continuously-measuring device for magnetic prpperty of belt-conveyor type
JPS5813339U (en) * 1981-07-20 1983-01-27 東日本鉄工株式会社 Structure of temporary passage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538274B1 (en) * 1964-09-26 1978-03-27
JPS5146432A (en) * 1974-10-18 1976-04-20 Matsushita Electric Ind Co Ltd NENSHO SOCHI
JPS5653472A (en) * 1979-10-08 1981-05-13 Tdk Corp Continuously-measuring device for magnetic prpperty of belt-conveyor type
JPS5813339U (en) * 1981-07-20 1983-01-27 東日本鉄工株式会社 Structure of temporary passage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247587U (en) * 1988-09-26 1990-03-30
CN104081218A (en) * 2012-01-26 2014-10-01 Tdk株式会社 Magnetic measurement device

Similar Documents

Publication Publication Date Title
US2033654A (en) Magnetic measurement
US3424976A (en) Magnetic device for determining defects in rod-like elements,cables,steel pipes and the like
US5554932A (en) Measurement of a saturation magnetic flux density through use of a rotating permanent magnet
JPS607375A (en) Method and apparatus for measuring coercive force of ferromagnetic substance test piece
JPH06294850A (en) Method and apparatus for measuring weak magnetism and non-destructive inspecting method using the same
US5574363A (en) Stability method and apparatus for nondestructive measure of magnetic saturation flux density in magnetic materials
KR100738321B1 (en) Apparatus for measuring the magnetic moment
US5122743A (en) Apparatus and method of non-destructively testing ferromagnetic materials including flux density measurement and ambient field cancellation
JPS61137083A (en) Apparatus for measuring coercive force of ferromagnetic test piece
JPS5910499B2 (en) Magnetic flaw detection equipment for steel cables using magnetically sensitive elements
GB1070859A (en) Apparatus for the measurement of changes in diameter of wire or tubular metal and a method for the determination of the corrosion of such metal
JPS61137084A (en) Apparatus for measuring coercive force of ferromagnetic test piece
Garcia et al. Biaxial magnetometer sensor
JPH08305278A (en) Magnetic circuit experiment device
US1511595A (en) Permeameter
GB378983A (en) Apparatus for measuring magnetically the thickness of iron plates and the like
JPH0121903B2 (en)
JPH04331392A (en) Detection method for magnetic anisotropy of steel plate
SU773547A1 (en) Apparatus for monitoring ferromagnetic-material magnetic-property anisotropy
JPS6236149Y2 (en)
JP3350852B2 (en) Magnetostriction measuring device
US1855849A (en) Apparatus for determining magnetic properties of materials
JPS6151580A (en) Method and instrument for measuring curie point
JPS63128255A (en) Excitation type thin film pickup coil
JPH07104046A (en) Magnetostriction measuring device