JPS61137083A - Apparatus for measuring coercive force of ferromagnetic test piece - Google Patents

Apparatus for measuring coercive force of ferromagnetic test piece

Info

Publication number
JPS61137083A
JPS61137083A JP25968184A JP25968184A JPS61137083A JP S61137083 A JPS61137083 A JP S61137083A JP 25968184 A JP25968184 A JP 25968184A JP 25968184 A JP25968184 A JP 25968184A JP S61137083 A JPS61137083 A JP S61137083A
Authority
JP
Japan
Prior art keywords
test piece
coil
test pieces
ferromagnetic
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25968184A
Other languages
Japanese (ja)
Inventor
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25968184A priority Critical patent/JPS61137083A/en
Publication of JPS61137083A publication Critical patent/JPS61137083A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/14Measuring or plotting hysteresis curves

Abstract

PURPOSE:To enable accurate measurements at a single stroke of a plurality of test pieces, by fixing in line in the radial direction on a test piece holder a plurality of ferromagnetic test pieces and arranging the same quantity of detecting coils as the text piece allowing the coils to face the passing locus of the test piece. CONSTITUTION:This apparatus is constructed with magnetizing coil 12 and demagnetizing coil 14 arranged tightly and coaxially inside the coil 12. Inside a hollow space of a cylindrical hollow solenoid 10, test piece holder 26 and detecting coil 28 are installed one against the other. The holder 26 is fixed to one of the ends of a rotating shaft 30 and the coil 28 is mounted to one of the ends of a hollow pipe 38 inside the solenoid 10. And, a plurality of ferro magnetic test pieces are admitted through a plurality of holding holes perforated at the specified distance in the radial direction on the open end surface of the holder 26, the coils 28 are arranged in the same number of the test pieces focing the passing locus of the test pieces. Further, the test pieces are magnet ized by the coils 12 and the holder 26 is rotated for measurement of the coercive force.

Description

【発明の詳細な説明】 産業上の利用分野 □ この発明は強磁性体試験片の保磁力測定装置に関し、更
に詳細には、複数の強磁性体試験片の保磁力を、−回の
操作で同時的に測定し得る装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field □ This invention relates to a device for measuring coercive force of ferromagnetic test pieces, and more specifically, it relates to a device for measuring coercive force of a plurality of ferromagnetic test pieces. This invention relates to a device that can perform simultaneous measurements.

従来技術 強磁性体としての特性を示す鉄その他の金属素材は、工
場出荷に先立ち磁性材料としての磁気的性質を検査する
ために、該金属素材の試験片をサンプル抽出してその磁
化特性を測定することが一般に行われている。この磁化
特性は、第1図に示すように横−朝に磁界の強さHをと
り、縦軸に磁束密度Bをとった場合に、磁界の強さが0
→a−+b→Cの如く変化し、0点において磁気飽和す
る磁化曲線として示される。なお磁気飽和点Cから磁界
を弱めていくと〕磁化の強さはC−4d→e→fの経路
をたどってf点で飽和する0次いで再び磁界を強めてい
くと、磁化はf−+g→に一+cの経路をたどって環状
に変化し、いわゆるヒステリシスループ曲線を描く。こ
のときOdの大きさを残留磁束密度Brといい、Osの
大きさを保磁力Haという。そして工場から出荷される
強磁性金属素材の磁束密度や保磁力等の磁化特性(B−
H)の測定は、従来環状試料を用いる環状鉄心法によっ
たり、自記磁束計、NS透磁率計を用いなりして行って
いる。これら各種磁化特性の測定方法のうち、特にNS
透磁率計による棒状試験片の保磁力測定は、作業手順が
複雑で手間と時間が掛かり、しかも熟練を要する等の難
点があった。
Prior Art Iron and other metal materials that exhibit properties as ferromagnetic materials are tested for their magnetic properties as magnetic materials prior to factory shipment by extracting a sample of the metal material and measuring its magnetic properties. It is common practice to do so. As shown in Figure 1, when the magnetic field strength H is plotted on the horizontal axis and the magnetic flux density B is plotted on the vertical axis, the magnetic field strength is 0.
It is shown as a magnetization curve that changes as →a-+b→C and reaches magnetic saturation at the 0 point. Note that when the magnetic field is weakened from the magnetic saturation point C, the magnetization strength follows the path C-4d→e→f and becomes saturated at point f.0 Then, when the magnetic field is strengthened again, the magnetization becomes f-+g. → follows a path of 1+c and changes in a circular manner, drawing a so-called hysteresis loop curve. At this time, the magnitude of Od is referred to as residual magnetic flux density Br, and the magnitude of Os is referred to as coercive force Ha. Then, the magnetization characteristics such as magnetic flux density and coercive force (B-
Measurement of H) has conventionally been carried out by the ring-shaped core method using a ring-shaped sample, or by using a self-recording magnetometer or an NS permeability meter. Among these various methods for measuring magnetization characteristics, especially NS
Measuring the coercive force of a rod-shaped test piece using a magnetic permeability meter has the disadvantages of complicated work procedures, requiring time and effort, and requiring skill.

そこで前述した欠点を解決する新規な手段が本件出願人
により提案され、発明「強磁性体試験片の保磁力測定方
法および装置」として昭和58年6月27日付けで特許
出願がなされた。この測定方法は、ソレノイド中に配設
した強磁性体の試験片に磁化コイルによる磁界を加えて
該試験片を磁化し、この磁化された試験片を同じくソレ
ノイド中に配設した検出コイルに対し相対的に回転させ
て該検出コイル中に誘起電圧を発生させ、更に減磁コイ
ルにより前記誘起電圧を打ち消すに必要な外部磁界を前
記の磁化された試験片に加えて、当該誘起電圧を零にす
る前記外部磁界の強さをもって保磁力として算出するこ
とを内容としている。またこの測定方法を実施する装置
としてlよ、磁化コイルと減磁コイルと同心配置してソ
レノイドを構成し、前記ソレノイド中に強磁性体の試験
片を装着するための試験片ホルダと誘起電圧検出用の検
出コイルとを所定距離離間させて対向配置し、前記試験
片ホルダを検出コイルに対し相対的に回転させ得るよう
にしたものが提案されている。
Therefore, a new means for solving the above-mentioned drawbacks was proposed by the applicant of the present invention, and a patent application was filed on June 27, 1981 as the invention ``Method and Apparatus for Measuring Coercive Force of Ferromagnetic Test Pieces.'' In this measurement method, a magnetic field from a magnetizing coil is applied to a ferromagnetic test piece placed in a solenoid to magnetize the test piece, and the magnetized test piece is placed in a detection coil also placed in the solenoid. An induced voltage is generated in the detection coil by relative rotation, and an external magnetic field necessary for canceling the induced voltage is applied to the magnetized test piece by a demagnetizing coil to reduce the induced voltage to zero. The content is that the strength of the external magnetic field is calculated as the coercive force. In addition, as a device for carrying out this measurement method, a solenoid is constructed by arranging a magnetizing coil and a demagnetizing coil concentrically, and a test piece holder for mounting a ferromagnetic test piece in the solenoid and an induced voltage detection device are provided. It has been proposed that a test piece holder and a detection coil for use in the test piece are arranged facing each other at a predetermined distance apart, and the test piece holder can be rotated relative to the detection coil.

発明が解決しようとする問題点 この出願に係る測定方法および装置は、前記欠点を良好
に解決して高精度の保磁力測定を実現し得る点において
極めて有用なものであるが、その反面1回の測定操作に
つき1個の強磁性体試験片の測定しかなし得ず、多くの
試験片を測定する際には非能率で時間が掛る問題点があ
った。
Problems to be Solved by the Invention The measuring method and device according to this application are extremely useful in that they can satisfactorily solve the above-mentioned drawbacks and realize highly accurate coercive force measurement. Only one ferromagnetic test piece can be measured per measurement operation, and there is a problem in that it is inefficient and takes time to measure many test pieces.

発明の目的 本発明は前記問題点を解決するべく案出されたものであ
って、1回の測定操作で複数個の強磁性体試験片の測定
を実現し、保磁力測定時の手間と時間とを省略して作業
能率の向上を図ることを目的とする。
Purpose of the Invention The present invention has been devised to solve the above-mentioned problems, and is capable of measuring a plurality of ferromagnetic test pieces in one measurement operation, thereby reducing the effort and time required to measure coercive force. The purpose is to improve work efficiency by omitting this.

問題点を解決するための手段 そこで発明者は前述した問題点を解決するべく種々検討
を重ねた結果、1回の作業で複数個の強磁性体試験片の
保磁力測定を実現するためには、該試験片をホルダに対
して半径方向に複数個整列させた状態で装着するか、ま
たは回転方向に所要の位相角で複数個装着するよう構成
すればよいことを突き止めた。すなわち前記目的を達成
するため本発明は、前述した強磁性体試験片の保磁力測
定装置において、試験片ホルダに複数個の強磁性体試験
片を半径方向に整列させて装着すると共に、各強磁性体
試験片の通過軌跡に対向して該試験片の数に対応した数
の前記検出コイルを配設するよう構成しである。また本
願の別の発明では、同じく前述した強磁性体試験片の保
磁力測定装置において、試験片ホルダに複数個の強磁性
体試験片を回転方向に所要の位相角で装着すると共に、
各強磁性体試験片の通過軌跡に対向して単一の前記検出
コイルを配設するよう構成しである。
Means for Solving the ProblemsThe inventors have made various studies to solve the above-mentioned problems, and have found that in order to measure the coercive force of multiple ferromagnetic test pieces in one operation, It has been found that a plurality of test pieces may be mounted on the holder in a state in which they are aligned in the radial direction, or a plurality of test pieces may be mounted on the holder at a required phase angle in the rotational direction. That is, in order to achieve the above object, the present invention provides the above-described coercive force measurement apparatus for ferromagnetic test pieces, in which a plurality of ferromagnetic test pieces are mounted in a radial alignment in a test piece holder, and each The detection coils are arranged in a number corresponding to the number of test pieces so as to face the locus of passage of the magnetic test pieces. Further, in another invention of the present application, in the coercive force measuring device for a ferromagnetic test piece as described above, a plurality of ferromagnetic test pieces are mounted on a test piece holder at a required phase angle in the rotation direction, and
The single detection coil is arranged opposite to the locus of passage of each ferromagnetic test piece.

作用 このように構成したことにより、磁化された複数個の試
験片を検出コイルに対して相対的に回転させれば、該試
験片は検出コイルの検出面前方を順次通過し、この検出
コイルに各試験片に対応した誘起電圧を順次起生させる
に至る。−実施例 次に本発明に係る保磁力測定装置につき、好適な実施例
を挙げて、添付図面を参照しながら以下詳細に説明する
。第2図は本発明に係る保磁力測定装置の概略構成を示
すものであって、参照符号10は所定直径の円筒状空芯
からなるソレノイドを指示する。前記ソレノイド10は
、図示しないボビンに銅線を所要回数巻回してなる磁化
コイル12と、同じく図示しないボビンに巻回され該磁
化コイル12の内方に密着的に同心配置された減磁コイ
ル14とから基本的に構成されている。また前記ソレノ
イド10の外側円周部には、円筒形の金属製磁気シール
ド板16が密着配置されている。
Operation With this configuration, when a plurality of magnetized test pieces are rotated relative to the detection coil, the test pieces sequentially pass in front of the detection surface of the detection coil, An induced voltage corresponding to each test piece is generated in sequence. -Example Next, the coercive force measuring device according to the present invention will be described in detail by giving preferred examples and referring to the accompanying drawings. FIG. 2 shows a schematic configuration of a coercive force measuring device according to the present invention, and reference numeral 10 designates a solenoid consisting of a cylindrical air core with a predetermined diameter. The solenoid 10 includes a magnetizing coil 12 formed by winding a copper wire a predetermined number of times around a bobbin (not shown), and a demagnetizing coil 14 which is also wound around a bobbin (not shown) and closely concentrically arranged inside the magnetizing coil 12. It basically consists of. Further, a cylindrical metal magnetic shield plate 16 is disposed in close contact with the outer circumferential portion of the solenoid 10 .

前記ソレノイド10は当該測定装置の筐体(図示せず)
内に収納配置されており、前記ソレノイドを構成する磁
化コイル12および減磁コイル14から導出した電源供
給ライン18.20は、専用の直流電源22.24に夫
々接続されている。また前記ソレノイド10の空洞内に
は、図示の如く試験片ホルダ26および検出コイル28
が所定距離離間して対向配置されている(この構成の詳
細については、第3図に関連して後述する)、前記試験
片ホルダ26は、ソレノイド10の軸線方向外方に水平
に延在する回転軸30の一端部に固着され、該回転軸3
0は支持台32に設けた一対の軸受34に回転自在に軸
支されている。回転軸30の他端部は、その回転数を無
段階に調節し得る直流モータ36の回転軸に、カップリ
ングを介して接続されている。
The solenoid 10 is a housing (not shown) of the measuring device.
Power supply lines 18.20 led out from the magnetizing coil 12 and demagnetizing coil 14 constituting the solenoid are respectively connected to a dedicated DC power source 22.24. Also, in the cavity of the solenoid 10, a test piece holder 26 and a detection coil 28 are provided as shown in the figure.
are arranged to face each other at a predetermined distance apart (details of this configuration will be described later with reference to FIG. 3), and the test piece holder 26 extends horizontally outward in the axial direction of the solenoid 10. Fixed to one end of the rotating shaft 30, the rotating shaft 3
0 is rotatably supported by a pair of bearings 34 provided on a support base 32. The other end of the rotating shaft 30 is connected via a coupling to the rotating shaft of a DC motor 36 whose rotation speed can be adjusted steplessly.

また前記検出コイル28は、ソレノイド10内において
水平に延在する金属製の中空パイプ38の一端部に取付
けられ、この中空パイプ38の′傭゛端部は前記ソレノ
イド10の外方において、前記筐体(図示せず)に適宜
の手段を介して固定されている。なお前記検出コイル2
8からは、リード線40が中空パイプ38に沿って導出
され、適宜の測定回路に接続されている。この測定回路
は、例えば第2図に示すように、検波増幅器42.コン
デンサ44.交流電圧計46およびX−Yレコーダ48
から基本的に構成され、前記X−Yレコーダ48のX端
子は、前記減磁コイル14とその直流電源24とを結ぶ
電源供給ライン20に介挿した標準抵抗器50に中間タ
ップ接続されている。
The detection coil 28 is attached to one end of a metal hollow pipe 38 extending horizontally within the solenoid 10, and the hollow end of the hollow pipe 38 is connected to the housing outside the solenoid 10. It is fixed to the body (not shown) via appropriate means. Note that the detection coil 2
8, a lead wire 40 is led out along the hollow pipe 38 and connected to a suitable measuring circuit. For example, as shown in FIG. 2, this measurement circuit includes a detection amplifier 42. Capacitor 44. AC voltmeter 46 and X-Y recorder 48
The X-terminal of the X-Y recorder 48 is connected to a standard resistor 50 with a center tap connected to a power supply line 20 connecting the demagnetizing coil 14 and its DC power supply 24. .

次に第2図において符号Aで示す円形部分の拡大図を、
第3図および第5図に示す。すなわち第3図は本願の発
明に係る要部構成を、試験片ホルダ26に配設される試
験片52と検出コイル28との位置関係において示すも
のである。第4図から判明するように、前記試験片ホル
ダ26は、例えば非磁性材料を材質とする円板状部材で
構成され、その中心部において前記回転軸30の端部に
ねじ込み固定されている。そして鉄等の金属素材から切
出した強磁性体試験片52は、前記試験片ホルダ26の
開放端面部に半径方向に所定間隔で穿設された複数の収
納孔に夫々挿入され、適宜の固定手段により着脱自在に
取付けられるようになっている。このように取付けたこ
とにより、前記試験片ホルダ26の平坦端面には、半径
方向に所定距離離間して複数個の強磁性体試験片52が
整列的に位置していることになる。なおこの試験片52
は、後述する如く外部磁界により磁化されるが、磁化さ
れた際の磁束発生方向は、前記試験片ホルダ26を軸支
する回転軸30の中心軸線と平行になるような姿勢で取
付けられる。
Next, an enlarged view of the circular part indicated by the symbol A in Fig. 2 is shown.
Shown in FIGS. 3 and 5. That is, FIG. 3 shows the main configuration according to the invention of the present application in terms of the positional relationship between the test strip 52 and the detection coil 28 arranged in the test strip holder 26. As is clear from FIG. 4, the test piece holder 26 is constituted by a disc-shaped member made of, for example, a non-magnetic material, and is screwed and fixed to the end of the rotating shaft 30 at its center. The ferromagnetic test pieces 52 cut out from a metal material such as iron are respectively inserted into a plurality of storage holes drilled at predetermined intervals in the radial direction in the open end surface of the test piece holder 26, and are then inserted into a plurality of storage holes formed at predetermined intervals in the radial direction. It can be installed removably. By attaching it in this manner, a plurality of ferromagnetic test pieces 52 are arranged on the flat end surface of the test piece holder 26 at a predetermined distance apart in the radial direction. Furthermore, this test piece 52
is magnetized by an external magnetic field as described later, and is mounted in such a position that the direction of magnetic flux generation when magnetized is parallel to the central axis of the rotating shaft 30 that pivotally supports the test piece holder 26.

この場合に前記検出コイル28は、パイプ38に支持さ
れて試験片ホルダ26の前方に位置すると共に回転軸3
0の軸線に対して若干偏倚し、かつ第2図に示すように
、各強磁性体試験片52の通過軌跡に対向的に近接して
該試験片の数だけ配設されている(図示の実施例では2
個)。この検出コイル28の夫々は、第7図に示すよう
に、例えば2つのアクリル製ボビン54a、54bに銅
線を所要回数巻回することにより構成されている。なお
前記2つのボビンの銅線は、後述する如く磁化コイル1
2を励磁した際に生ずる印加磁界を打ち消すために、ボ
ビン54aおよび54bでは夫々反対方向に巻かれてい
る。また検出コイル28の検出ヘッドと強磁性体試験片
シ2との間隔は、最も適切な寸法が実験的に決定される
が、一般的には1゜Omm〜2 、0 mmとするのが
好ましい。
In this case, the detection coil 28 is supported by a pipe 38 and located in front of the test piece holder 26, and the rotation shaft 3
0 axis, and as shown in FIG. In the example, 2
Individual). As shown in FIG. 7, each of the detection coils 28 is constructed by winding a copper wire a required number of times around two acrylic bobbins 54a and 54b, for example. Note that the copper wires of the two bobbins are connected to the magnetizing coil 1 as described later.
In order to cancel the applied magnetic field generated when the bobbins 2 are excited, the bobbins 54a and 54b are wound in opposite directions, respectively. Furthermore, the most appropriate distance between the detection head of the detection coil 28 and the ferromagnetic test piece 2 is determined experimentally, but it is generally preferable to set it to 1.0 mm to 2.0 mm. .

更に第5図および第6図は°、本願の別の発明に係る保
磁力測定装置の要部構成を示すものである。
Furthermore, FIGS. 5 and 6 show the main part configuration of a coercive force measuring device according to another invention of the present application.

殊に第6@に示す如く1円板状部材で構成した試駒片ホ
ルダ26の開放端面部に、回転方向に所要の位相角で順
次穿設された複数の収納孔に強磁性体試験片52が夫々
挿入され、適宜の固定手段により着脱自在に取付けられ
る。このように取付けたことにより、前記試験片゛ホル
ダ26の平坦端面には、回転方向に所要の位相角をもっ
て複数個の強磁性体試験片52が位置していることにな
る。
In particular, as shown in No. 6 @, ferromagnetic test pieces are inserted into a plurality of storage holes sequentially drilled at a required phase angle in the rotational direction on the open end surface of the test piece holder 26, which is made up of one disc-shaped member. 52 are respectively inserted and removably attached by appropriate fixing means. By mounting in this manner, a plurality of ferromagnetic test pieces 52 are positioned on the flat end surface of the test piece holder 26 at a required phase angle in the rotation direction.

この場合に前記検出コイル28は、各強磁性体試験片5
2の通過軌跡に対向して一個のみ配設するよう構成しで
ある。
In this case, the detection coil 28 is connected to each ferromagnetic test piece 5.
The structure is such that only one is disposed opposite the two passing loci.

なお第2図〜第6図に示す実施例では、試験片ホルダ2
6がモータ36により駆動されて回転し、検出コイル2
8は定位置に静止している構造となっ・・ているが、逆
に検出コイル28を回転させて、試験片ホルダ26は静
止固定しておく構造としてもよい。従って試験片ホルダ
26と検出コイル28との回転関係は互いに相対的なも
のとなっている。
In the embodiment shown in FIGS. 2 to 6, the test piece holder 2
6 is driven and rotated by the motor 36, and the detection coil 2
8 has a structure in which it remains stationary at a fixed position, but it may be constructed so that the detection coil 28 is rotated and the test piece holder 26 is kept stationary. Therefore, the rotational relationship between the test piece holder 26 and the detection coil 28 is relative to each other.

次にこのように構成した本発明に係る保磁力測定装置の
使用の実際につき説明する。測定開始に先立ち、鉄その
他の強磁性体からなる金属素材より所定寸法の棒状試験
片52(例えば直径5mm、最大長さ30mm)を得、
この試験片52を前述の構成に係るホルダ26に取付け
る。すなわち第3図に示す発明に係る装置では、試験片
ホルダ26に半径方向に所定距離離間して複数個の強磁
性体試験片52が整列的に取付けられ、また第5図に示
す別の発明に係る装置では、試験片ホルダ26に回転方
向に所要の位相角をもって複数個の強磁性体試験片52
が位置するよう取付けられる。この取付作業に際して試
験片ホルダ26は、図示しないスライド機構により前記
支持台32と共に軸方向に後退し、該ホルダ26を前記
ソレノイドlOの外方に位置させた状態で、前記試験片
52の取付けをなし竺るようになっている。次いで試験
片ホルダ26をソレノイドlOに向は前進挿入し、前記
検出コイル28と試験片52との間に所定の空隙が得ら
れるよう位置設定を行う。
Next, the actual use of the coercive force measuring device according to the present invention constructed as described above will be explained. Prior to the start of the measurement, a rod-shaped test piece 52 of predetermined dimensions (for example, diameter 5 mm, maximum length 30 mm) is obtained from a metal material made of iron or other ferromagnetic material,
This test piece 52 is attached to the holder 26 having the above-described configuration. That is, in the apparatus according to the invention shown in FIG. 3, a plurality of ferromagnetic test pieces 52 are attached to the test piece holder 26 in an array at a predetermined distance apart in the radial direction, and in the apparatus according to the invention shown in FIG. In this apparatus, a plurality of ferromagnetic test pieces 52 are mounted on a test piece holder 26 at a required phase angle in the rotational direction.
is installed so that it is located. During this installation work, the test piece holder 26 is moved back in the axial direction together with the support base 32 by a slide mechanism (not shown), and with the holder 26 positioned outside the solenoid IO, the test piece 52 is installed. It's starting to look like nothing. Next, the test piece holder 26 is inserted forward into the solenoid IO, and the position is set so that a predetermined gap is obtained between the detection coil 28 and the test piece 52.

このように試験片52のセットが完了した後、前記磁化
コイル12を直流電源22により励磁し、ソレノイド1
0の内部空間に磁界を印加する。使用する直流電源の電
源は、例えば15Aであって、最大印加磁界は8600
eである。この印加磁界中に強磁性体からなる複数の試
験片52が置かれることによって該試験片52は磁化さ
れ、第1図のグラフ図に示すように0点において磁気飽
和に達する。そしてこの磁気飽和点Cに至ってから、前
記磁化コイル12により形成される磁界を弱めていくと
、磁化の強さは次第に減少し、磁界零で残留磁化d点に
至った後にf点で飽和する。この時点で前記磁化コイル
12による励磁は停止する。
After the setting of the test piece 52 is completed in this way, the magnetization coil 12 is excited by the DC power supply 22, and the solenoid 1
A magnetic field is applied to the internal space of 0. The DC power supply used is, for example, 15A, and the maximum applied magnetic field is 8600.
It is e. By placing a plurality of test pieces 52 made of ferromagnetic material in this applied magnetic field, the test pieces 52 are magnetized and reach magnetic saturation at the zero point as shown in the graph of FIG. After reaching this magnetic saturation point C, when the magnetic field formed by the magnetizing coil 12 is weakened, the strength of magnetization gradually decreases, and after reaching the residual magnetization point d with zero magnetic field, it is saturated at the f point. . At this point, the excitation by the magnetizing coil 12 is stopped.

次いで第2図に示すモータ36を付勢し1回転軸30お
よびその先端に取付けた試験片ホルダ26を回転させる
(回転数は1例えば100〜700rpmの範囲で選択
される)。このとき第3図に示す発明に係る装置では、
磁化コイル12により磁化された前記複数の試験片52
は、該試験片52の夫々に対応する複数の検出コイル2
8前方に位置する周回軌跡上を所要の周期をもって通過
する。また第5図に示す別の発明に係る装置では、磁化
コイル12により磁化された複数の試験片52は、前記
単一の検出コイル28前方に位置する周回軌跡上を順次
通過する。このため何れの場合も、前記試験片52から
発生する磁束60は、第8図に示すように検出コイル2
8の検出面を周期的に横切ることになる。この結果とし
て前記検出コイル28を通過する磁束は、電磁誘導の原
理により該検出コイル28中に誘起電圧eを発生させる
Next, the motor 36 shown in FIG. 2 is energized to rotate the rotating shaft 30 and the test piece holder 26 attached to its tip (the number of rotations is selected, for example, in the range of 100 to 700 rpm). At this time, in the device according to the invention shown in FIG.
The plurality of test pieces 52 magnetized by the magnetization coil 12
is a plurality of detection coils 2 corresponding to each of the test pieces 52.
8. It passes on the circular trajectory located in front with the required period. In the apparatus according to another invention shown in FIG. 5, a plurality of test pieces 52 magnetized by the magnetization coil 12 sequentially pass on a circular trajectory located in front of the single detection coil 28. Therefore, in either case, the magnetic flux 60 generated from the test piece 52 is transferred to the detection coil 2 as shown in FIG.
8 detection surfaces periodically. As a result, the magnetic flux passing through the detection coil 28 generates an induced voltage e in the detection coil 28 according to the principle of electromagnetic induction.

また試験片ホルダ26の回転開始と略同期させて、前記
減磁コイル14を直流電源24(例えば電流LA)によ
り励磁し、ソレノイド10中に新たに外部磁界を印加す
る。この減磁コイル14により印加される磁界は、前記
磁化コイル12によって印加された磁界方向と逆方向に
なるよう設定されている。またその強さは、例えば最大
印加磁界200eであって、前記検出コイル28中に誘
導された試験片52の磁化を打ち消すに充分な程度に設
定されている。これにより当該試験片52における残留
磁化が減少し、それに伴い誘起電圧eも減少する。この
磁磁コイル14に流す電流と誘起電圧との関係を前記X
−Y、L/コーダ48により指示し、当該誘起電圧eが
零になる値から磁界を適宜の演算回路により求め、この
外部磁界の強さをもって保磁力とする。
Further, substantially in synchronization with the start of rotation of the test piece holder 26, the demagnetizing coil 14 is excited by the DC power supply 24 (for example, current LA), and a new external magnetic field is applied to the solenoid 10. The magnetic field applied by the demagnetizing coil 14 is set to be in the opposite direction to the magnetic field applied by the magnetizing coil 12. Further, the strength thereof is, for example, the maximum applied magnetic field 200e, which is set to be sufficient to cancel the magnetization of the test piece 52 induced in the detection coil 28. As a result, the residual magnetization in the test piece 52 decreases, and the induced voltage e also decreases accordingly. The relationship between the current flowing through the magneto-magnetic coil 14 and the induced voltage is expressed as X
-Y, L/ is instructed by the coder 48, the magnetic field is determined by an appropriate arithmetic circuit from the value at which the induced voltage e becomes zero, and the strength of this external magnetic field is taken as the coercive force.

発明の効果 このように本発明に係る保磁力測定装置によれば、複数
の強磁性体試験片を試験片ホルダに対して半径方向に整
列的に取付けるか、または回転方向に所要の位相角をも
って順次取付けるよう構成したことによって、1回の作
業で複数個の強磁性体試験片の保磁力を精度よく測定し
得るものであって、測定効率を飛躍的に向上させ得る利
点を有する。
Effects of the Invention As described above, according to the coercive force measuring device according to the present invention, a plurality of ferromagnetic test pieces are attached to the test piece holder in a radial alignment or at a required phase angle in the rotational direction. By being configured to attach them one after another, the coercive force of a plurality of ferromagnetic test pieces can be accurately measured in one operation, which has the advantage of dramatically improving measurement efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁性材料中の磁界の強さHと磁束密度Bとの関
係を示す磁化曲線図、第2図は本願に係る試験片の保磁
力測定装置の概略構成図、第3図は第2図において符号
Aで示す円形部分の拡大縦断面図、第4図は第3図に示
す構成の概略を示す説明斜視図、第5図は第2図におい
て符号Aで示す円形部分の別の発明に係る構成の拡大縦
断面図、第6図は第5図に示す構成の概略を示す説明斜
視図、第7図は検出コイルの一実施例の斜視図、第8図
は試験片を検出コイルに対して相対的に回転させた場合
の磁束の変化を示す説明図である。 F!0.1 FIG、7 FIG、8
Fig. 1 is a magnetization curve diagram showing the relationship between magnetic field strength H and magnetic flux density B in a magnetic material, Fig. 2 is a schematic configuration diagram of the coercive force measuring device for a test piece according to the present application, and Fig. 3 is a diagram showing the relationship between magnetic field strength H and magnetic flux density B in a magnetic material. 2 is an enlarged vertical sectional view of the circular portion indicated by the symbol A in FIG. 2, FIG. 4 is an explanatory perspective view showing the outline of the configuration shown in FIG. 3, and FIG. 6 is an explanatory perspective view showing the outline of the structure shown in FIG. 5, FIG. 7 is a perspective view of an embodiment of the detection coil, and FIG. 8 is a diagram showing the detection of a test piece. It is an explanatory view showing a change in magnetic flux when rotated relative to a coil. F! 0.1 FIG, 7 FIG, 8

Claims (2)

【特許請求の範囲】[Claims] (1)磁化コイルと減磁コイルとを同心的に巻装してソ
レノイドを構成し、このソレノイド中に強磁性体の試験
片を保持する試験片ホルダと誘起電圧検出用の検出コイ
ルとを離間的に対向配置し、前記試験片ホルダを検出コ
イルに対し相対的に回転させ得るよう構成した強磁性体
試験片の保磁力測定装置において、前記試験片ホルダに
複数個の強磁性体試験片を半径方向に整列させて装着す
ると共に、各強磁性体試験片の通過軌跡に対向して該試
験片の数に対応した数の前記検出コイルを配設するよう
構成したことを特徴とする強磁性体試験片の保磁力測定
装置。
(1) A magnetizing coil and a demagnetizing coil are wound concentrically to form a solenoid, and a test piece holder that holds a ferromagnetic test piece in this solenoid is separated from a detection coil for detecting induced voltage. In the coercive force measurement apparatus for ferromagnetic test pieces, the test piece holder is configured to be arranged facing each other and rotated relative to the detection coil. A ferromagnetic device characterized in that the detection coils are arranged in a radial direction and installed, and the number of detection coils corresponding to the number of ferromagnetic test pieces is arranged opposite to the locus of passage of each ferromagnetic test piece. Coercive force measuring device for body test pieces.
(2)磁化コイルと減磁コイルとを同心的に巻装してソ
レノイドを構成し、このソレノイド中に強磁性体の試験
片を保持する試験片ホルダと誘起電圧検出用の検出コイ
ルとを離間的に対向配置し、前記試験片ホルダを検出コ
イルに対し相対的に回転させ得るよう構成した強磁性体
試験片の保磁力測定装置において、前記試験片ホルダに
複数個の強磁性体試験片を回転方向に所要の位相角で装
着すると共に、各強磁性体試験片の通過軌跡に対向して
単一の前記検出コイルを配設するよう構成したことを特
徴とする強磁性体試験片の保磁力測定装置。
(2) A magnetizing coil and a demagnetizing coil are wound concentrically to form a solenoid, and the test piece holder that holds the ferromagnetic test piece in the solenoid is separated from the detection coil for detecting the induced voltage. In the coercive force measurement apparatus for ferromagnetic test pieces, the test piece holder is configured to be arranged facing each other and rotated relative to the detection coil. A storage device for a ferromagnetic test piece, characterized in that the detection coil is mounted at a required phase angle in the rotational direction, and the single detection coil is arranged opposite to the locus of passage of each ferromagnetic test piece. Magnetic force measurement device.
JP25968184A 1984-12-08 1984-12-08 Apparatus for measuring coercive force of ferromagnetic test piece Pending JPS61137083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25968184A JPS61137083A (en) 1984-12-08 1984-12-08 Apparatus for measuring coercive force of ferromagnetic test piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25968184A JPS61137083A (en) 1984-12-08 1984-12-08 Apparatus for measuring coercive force of ferromagnetic test piece

Publications (1)

Publication Number Publication Date
JPS61137083A true JPS61137083A (en) 1986-06-24

Family

ID=17337429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25968184A Pending JPS61137083A (en) 1984-12-08 1984-12-08 Apparatus for measuring coercive force of ferromagnetic test piece

Country Status (1)

Country Link
JP (1) JPS61137083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085192A (en) * 2017-05-05 2017-08-22 郑州轻工业学院 A kind of method and its device that ferromagnetic material hysteresis curve is measured in open-flux path

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085192A (en) * 2017-05-05 2017-08-22 郑州轻工业学院 A kind of method and its device that ferromagnetic material hysteresis curve is measured in open-flux path
CN107085192B (en) * 2017-05-05 2019-04-26 郑州轻工业学院 A kind of method and device thereof measuring ferromagnetic material hysteresis loop in open-flux path

Similar Documents

Publication Publication Date Title
US2033654A (en) Magnetic measurement
JPH10197468A (en) Critical current measuring method of superconductor wire and measuring apparatus therefor
JPS61137083A (en) Apparatus for measuring coercive force of ferromagnetic test piece
US5287056A (en) Surface magnetometer with modulated flux gate section
US5136239A (en) Apparatus for measuring flux and other hysteretic properties in thin film recording discs
KR100738321B1 (en) Apparatus for measuring the magnetic moment
JPH07218472A (en) Method and equipment for measuring saturated magnetic flux density
JPS61137084A (en) Apparatus for measuring coercive force of ferromagnetic test piece
US5574363A (en) Stability method and apparatus for nondestructive measure of magnetic saturation flux density in magnetic materials
EP0381406A2 (en) Apparatus for and method of measuring magnetic flux density
JPS607375A (en) Method and apparatus for measuring coercive force of ferromagnetic substance test piece
GB1070859A (en) Apparatus for the measurement of changes in diameter of wire or tubular metal and a method for the determination of the corrosion of such metal
SU1516957A1 (en) Electromagnetic acoustic converter
JPH03106410U (en)
JPH01155282A (en) Magnetic sensor
JPS59226858A (en) Flaw detector
Garcia et al. Biaxial magnetometer sensor
CN210953916U (en) Multifunctional nondestructive detection sensor
JPH08305278A (en) Magnetic circuit experiment device
SU1295323A1 (en) Transducer for checking physical-mechanical parameters of metal articles
SU1624377A1 (en) Magnetic field induction meter
JPS6154604A (en) Magnetizing system and device thereof
US3324386A (en) Fluid operated spinner magnetometer for determining the orientation of the principal magnetic axis of a sample material
JPH05250506A (en) Reading and discriminating device for magnetic marker
SU1658072A1 (en) Superimposed body-current converter for nondestructive testing