JPS6072644A - Production of low melting alloy wire for sealing fluorescent lamp - Google Patents

Production of low melting alloy wire for sealing fluorescent lamp

Info

Publication number
JPS6072644A
JPS6072644A JP18053283A JP18053283A JPS6072644A JP S6072644 A JPS6072644 A JP S6072644A JP 18053283 A JP18053283 A JP 18053283A JP 18053283 A JP18053283 A JP 18053283A JP S6072644 A JPS6072644 A JP S6072644A
Authority
JP
Japan
Prior art keywords
alloy
fluorescent lamp
low melting
nozzle
alloy wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18053283A
Other languages
Japanese (ja)
Inventor
Hisashi Yoshino
芳野 久士
Masakatsu Haga
羽賀 正勝
Takashi Yorifuji
孝 依藤
Teruo Oshima
大島 照雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18053283A priority Critical patent/JPS6072644A/en
Priority to DE8484306379T priority patent/DE3485382D1/en
Priority to EP84306379A priority patent/EP0136866B1/en
Priority to US06/651,682 priority patent/US4615846A/en
Priority to AT84306379T priority patent/ATE70755T1/en
Priority to KR1019840006111A priority patent/KR890005196B1/en
Publication of JPS6072644A publication Critical patent/JPS6072644A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/28Means for producing, introducing, or replenishing gas or vapour during operation of the lamp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F2009/0804Dispersion in or on liquid, other than with sieves
    • B22F2009/0812Pulverisation with a moving liquid coolant stream, by centrifugally rotating stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • B22F2009/0864Cooling after atomisation by oil, other non-aqueous fluid or fluid-bed cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To form a low melting alloy for sealing a fluorescent lamp to a uniform compsn. and wire shape and to permit easy weighing or sealing in a hermetic vessel by melting said alloy and injecting and cooling continuously the molten alloy from a nozzle into a refrigerant. CONSTITUTION:An alloy raw material 1 is charged into a vessel 3 and is heated with an electric heater 4 to a molten state. A gas is fed forcibly into the vessel 3 from above upon attinment of a prescribed temp. to inject continuously the molten alloy from the nozzle 2 into the refrigerant 6 thereby cooling quickly the molten alloy. A continuous alloy wire 7 is thus obtd. The bore of the nozzle 2 is made 0.3-2.0mm.phi in this stage and the distance between the nozzle 2 and the refrigerant liquid surface 8 of the vessel 5 is made <=30mm.. The alloy wire 7 is obtd. by either method of sealing the molten alloy together with Hg into the hermetic vessel and converting the alloy onto amalgam in the vessel or a method of injecting and cooling the alloy contg. Hg and forming the alloy to an amalgam alloy wire. The compsn. of the former alloy consists of 1 or 2 kinds of Sn and Pb and Bi and In and the compsn. of the latter consists of 1 or 2 kinds of Sn and Pb and Bi and In as well as Hg.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は螢光対に封入して、水銀蒸気圧をilj制御す
る低融点合金線の製造方法に係り、髄に溶融状態でノズ
ルから冷媒中に射出して線状に形成する方法に関するも
のである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing a low melting point alloy wire which is encapsulated in a fluorescent couple to control the vapor pressure of mercury, and in which the mercury is molten in the core and introduced into a refrigerant from a nozzle. The present invention relates to a method of forming a linear shape by injecting the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

螢光対などの低圧水銀蒸気数’Li’l;灯(弓−1そ
の気密容器内における水銀蒸気圧が6×10〜7 X 
i n−3幌Hσで、田、較的イ氏い故in、 ’i匠
流のときに供給電気エネルギーが水銀の253.7 n
mの紫外域放射線へ転換される効率が最も高くなること
が知られている。上記253.7nmの紫外メの放射線
は螢光体励起効率が高いことから、上記6 X 10−
3〜7 X 10−3+胤Hgに水銀蒸気圧を維持する
ことが好ましく、このときの気密容器壁の温度は約40
℃である。しかしながら、螢光灯などの低圧水銀蒸気放
電灯は、近時管径の細い気密容器壁の負荷が高いものが
増加しており、気密容器壁の温度が高く、100℃を越
すものがある。
A low-pressure mercury vapor number 'Li'l; lamp such as a fluorescent pair (bow-1) where the mercury vapor pressure in its airtight container is 6 x 10 to 7
In the case of i n-3 hood Hσ, the electric energy supplied is 253.7 n of mercury when the electric energy is relatively high.
It is known that the efficiency of conversion into ultraviolet radiation of m is the highest. Since the 253.7 nm ultraviolet radiation has a high phosphor excitation efficiency, the 6 x 10-
It is preferable to maintain the mercury vapor pressure at 3 to 7 x 10-3 + Hg, and the temperature of the wall of the airtight container at this time is about 40
It is ℃. However, in recent years, low-pressure mercury vapor discharge lamps such as fluorescent lamps have been increasingly used with small tube diameters and high load on the wall of the airtight container, and the temperature of the wall of the airtight container is high, exceeding 100° C. in some cases.

このように気密容器壁温度が高温になると、気密容器内
の水銀蒸気圧が7 X 10−3mHgよシ著しく高く
なり、放射された2 53;7 nmを主とする紫外域
の放射線が水銀によって自己吸収され、供給エネルギー
の紫外域放射線への転換効率が悪くなり、光出力が低下
する問題があった。
When the wall temperature of the airtight container becomes high in this way, the mercury vapor pressure inside the airtight container becomes significantly higher than 7 x 10-3 mHg, and the emitted radiation in the ultraviolet region, mainly at 253;7 nm, is caused by mercury. There is a problem that self-absorption occurs, resulting in poor conversion efficiency of supplied energy into ultraviolet radiation, resulting in a decrease in optical output.

この対策としては、アマルガムを気密容器内に封入して
、高温時における水銀蒸気圧の上昇を抑制することが行
われるよ・うになってきた。
As a countermeasure to this problem, amalgam has been sealed in an airtight container to suppress the increase in mercury vapor pressure at high temperatures.

例えばHgおよびInと、Li 、、AA ZnX5n
SPbXBtから選ばれた1種の金属とから方るアマル
ガム、若しくはHgとBiとPb、またはHgとBiと
I)bとSnとのアマルガムを封入用合金としプこ螢光
灯が、特公昭54−33215号公報、特公昭54−3
8582号公報などによって従来公表されている。
For example, Hg and In, Li,, AA ZnX5n
A fluorescent lamp using an amalgam of one kind of metal selected from SPbXBt, or an amalgam of Hg, Bi, and Pb, or an amalgam of Hg, Bi, I)b, and Sn as an encapsulating alloy was developed in 1974. -33215 Publication, Special Publication No. 54-3
This has been previously published in Publication No. 8582 and the like.

気密容器にアマルガムを封入する方法は、ビジ径が2.
0〜2.5mmφ程度の真空脱気用の却l tから所定
量を秤量して封入するが、このためには、線状あるいは
板状のアマルガムの方が、秤量が容易で、細管からの挿
入も容易となるので工業的に好ましい。
The method of enclosing amalgam in an airtight container is based on a method with a visual diameter of 2.
A predetermined amount is weighed and sealed from a vacuum degassing tube with a diameter of about 0 to 2.5 mm.For this purpose, linear or plate-shaped amalgam is easier to weigh and is easier to remove from a thin tube. It is industrially preferable because it is easy to insert.

しかしながら、上記のアマルガムは機械的に脆弱である
ため、通當の方法では線状あるいは板状に加工すること
が困Ntであった。
However, since the above-mentioned amalgam is mechanically fragile, it is difficult to process it into a linear or plate shape using conventional methods.

このため従来は、溶融したアマルガムをガスと共に噴射
して果粒状にするアトマイズ法、あるいはインゴットを
機械的に粉砕する方法外どによって果粒状に形成し、こ
れを秤;1tシて気密容器に封入していた。
For this reason, conventionally, molten amalgam is injected with gas to form granules into granules by atomization method, or mechanically crushing ingots to form granules, which are then weighed (1 ton) and sealed in an airtight container. Was.

しかしながらアトマイズ法によシ得られたものは、粒径
や形状が不均一であり、篩分けして粒径を調整しなけれ
ば秤量や細管への封入ができないだめ、極めて歩留シが
悪く高価である。
However, the particles obtained by the atomization method are non-uniform in particle size and shape, and cannot be weighed or sealed into thin tubes unless they are sieved to adjust the particle size, resulting in extremely low yields and high costs. It is.

まだインゴットからの粉砕によるものは、同様に粒径や
形状が不均一である上、クラックがあってくだけ易く、
シかもインゴットの中心部がHgリッチとなって組成の
バラツキが大きく、封入した場合の水銀蒸気圧の抑制効
果が一定しないなどの欠点があった。
If the product is still crushed from an ingot, the particle size and shape are not uniform, and it is also prone to cracking.
However, the central part of the ingot is rich in Hg, resulting in large variations in composition, and the effect of suppressing mercury vapor pressure when encapsulated is inconsistent.

〔発明の目的〕[Purpose of the invention]

本発明はかかる点に鑑みたされたもので、組成が均一で
、しかも容易に線状に加工することができ、秤量や細管
からの気密容器内への封入も容易′に行うことができる
螢光灯封入用低融点合金線の製造方法を提供することを
目的とするものである。
The present invention has been developed in view of these points, and is made of a fluorescent material that has a uniform composition, can be easily processed into a linear shape, and can be easily weighed and sealed into an airtight container from a thin tube. The object of the present invention is to provide a method for manufacturing a low melting point alloy wire for encapsulating a light lamp.

〔発明の概要〕[Summary of the invention]

本発明は螢光灯封入用低融点合金を溶融状態IfI −
f’ I −te n、話、f−公4)d @11ff
 Mr dj、〆tli I/r AJ 141 )ム
動することによシ、連続した線状に形成することを特徴
とするものである。
The present invention provides a low melting point alloy for encapsulating a fluorescent lamp in a molten state IfI -
f' I-ten, story, f-public 4) d @11ff
Mr dj,〆tli I/r AJ 141) It is characterized in that it is formed into a continuous linear shape by moving.

本発明において製造される低融点合金線は、Hgと共に
気密容器に封入して、容器内でアマルガム化させるもの
と、Hgを含む合金を射出冷却して、アマルガム合金線
を製造する2通の方法がある。
The low-melting point alloy wire produced in the present invention can be produced by two methods: one is to seal it together with Hg in an airtight container and form amalgam in the container, and the other is to inject and cool the alloy containing Hg to produce an amalgam alloy wire. There is.

先ず、前者の射出冷却により低%i1点合金線を作り、
これをI(gと共に気密容器内に封入して使用状態でア
マルガム化させる場合について説明する。
First, a low%i 1-point alloy wire is made by injection cooling of the former,
A case where this is sealed together with I(g in an airtight container and amalgamated in use) will be explained.

この場合の合金組成としては、Snおよびpbのうち1
種または2種と、BiおよびInからなるもので、その
組成比は重9%でSn 15〜57%、Pb5〜40%
、Bi 30〜72 %、In4〜50係の範囲が好ま
しい。
In this case, the alloy composition is one of Sn and pb.
It consists of a species or two species, Bi and In, and its composition ratio is 9% by weight, 15 to 57% Sn, and 5 to 40% Pb.
, Bi 30-72%, and In 4-50%.

また後者のアマルガム合金内を製造する場合の合金組成
としてはSnおよびpbのうち1種または2 mと、B
iとInおよびHgとからなるもので、その組成比は重
量%で5n15〜57%、Pb5〜40%、 Bi 3
0〜72 %、 In 4〜50%、I(g 4〜25
%の範囲が好ましい。
In addition, when manufacturing the latter amalgam alloy, the alloy composition is one or two of Sn and PB, and B.
It consists of i, In and Hg, and its composition ratio in weight percent is 5n15-57%, Pb5-40%, Bi3
0-72%, In 4-50%, I(g 4-25
A range of % is preferred.

ここでSn、 Pb、 BiおよびInは夫々低融点の
金属で、しかもHgとアマルガムを形成し、その融点を
下げる作用をなすものである。これら合金成分の添加量
を、夫々上記範囲に規定することにより、50〜130
℃の温度範囲でアマルガムの固相一液相共存状態が得ら
れるためである。第1図のグラフは本発明によるアマル
ガム合金線を気密容器内に封入したときの、気密容器壁
面温度と水銀蒸気圧との関係を示すものである。グラフ
から明らかなように本発明によるアマルガム合金線は、
曲線Aに示すように50〜130℃の温度範囲において
、固相一液相共存状態となシ、この状態で水銀蒸気圧を
ほぼ6×10〜7×10 篩Hgの最も光出力効率の高
い状態に安定的に保持することができる。
Here, Sn, Pb, Bi, and In are metals each having a low melting point, and moreover, form an amalgam with Hg and have the effect of lowering the melting point. By specifying the amounts of these alloy components added within the above ranges, 50 to 130
This is because an amalgam solid phase and liquid phase coexist state can be obtained in the temperature range of .degree. The graph in FIG. 1 shows the relationship between the wall surface temperature of the airtight container and the mercury vapor pressure when the amalgam alloy wire according to the present invention is sealed in the airtight container. As is clear from the graph, the amalgam alloy wire according to the present invention is
As shown in curve A, in the temperature range of 50 to 130°C, the solid phase and liquid phase coexist, and in this state the mercury vapor pressure is approximately 6 × 10 to 7 × 10. can be stably maintained in this state.

これに対してHgを単独で封入したものは曲線Bに示す
ように、温度上昇に伴って急激に水銀蒸気圧が上昇して
行き、効率が悪くなる。
On the other hand, when Hg is enclosed alone, as shown by curve B, the mercury vapor pressure rapidly increases as the temperature rises, resulting in poor efficiency.

次に本発明の製造方法を第2図を参照して説明する。Next, the manufacturing method of the present invention will be explained with reference to FIG.

上記組成の低融点合金原料1を、先端にノズル2を設け
た容器3内に入れる。この容器3は合金原料1と反応し
ない高融点材料、例えば石英で形成され、この容器3の
外周には高周波コイルあるいは電熱ヒーター4が設けら
れ、合金原料1を加熱溶融するようになっている。
A low melting point alloy raw material 1 having the above composition is put into a container 3 having a nozzle 2 at its tip. This container 3 is made of a high melting point material such as quartz that does not react with the alloy raw material 1, and a high frequency coil or an electric heater 4 is provided around the outer periphery of the container 3 to heat and melt the alloy raw material 1.

5はノズル2の下方に設けた冷媒容器で、この中に水や
油などの冷媒6が入っており、この冷媒容器5は図示し
ない回転テーブル上に支持され、ノズル2と中心をずら
せて回転するようになっている。
Reference numeral 5 denotes a refrigerant container provided below the nozzle 2, which contains a refrigerant 6 such as water or oil. It is supposed to be done.

上記装置において先ず容器3内に合金原料1を投入し、
電熱ヒーター4で加熱して?6 fA!’四)〈態にす
る。所定の温度になったところで、容器3の上方からガ
スを圧入し、ガス圧によってノズル2から溶融した合金
原茨1ノを冷媒6中に連Uし的に射出して、急冷するこ
とによシ連;1・A:L/た合金線7が得られる。この
場合、冷媒容器5を回転させることにより、形成された
合金線7は順次渦巻斌に巻回して重ねられて行く。
In the above device, first, the alloy raw material 1 is put into the container 3,
Heat it with electric heater 4? 6 fA! '4) To make it into a state. When the temperature reaches a predetermined temperature, gas is injected from above the container 3, and 1 nozzle of the molten alloy raw material is continuously injected into the refrigerant 6 from the nozzle 2 by the gas pressure to rapidly cool it. An alloy wire 7 having a series of 1.A:L/ is obtained. In this case, by rotating the refrigerant container 5, the formed alloy wires 7 are sequentially wound into a spiral spiral and stacked one on top of the other.

なお、本発明においてノズル2の内径は0.3〜2.0
閾φが好ましく0.3mmφ未満では連続的に射出でき
ず、また2、Omφを越えると合金線7の線径が不安定
となる。
In addition, in the present invention, the inner diameter of the nozzle 2 is 0.3 to 2.0.
If the threshold φ is preferably less than 0.3 mmφ, continuous injection is not possible, and if it exceeds 2.0 mφ, the wire diameter of the alloy wire 7 becomes unstable.

またノズル2と冷媒容器5に入れた冷媒液面8との距離
は30+nm以下が好ましく、この距離が大きくなると
、連続した合金線7が得られず、また線径も不均一とな
る。
Further, the distance between the nozzle 2 and the refrigerant liquid level 8 placed in the refrigerant container 5 is preferably 30+nm or less, and if this distance becomes large, a continuous alloy wire 7 cannot be obtained and the wire diameter will also become non-uniform.

溶融した合金原料1の射出温度は、合金原料1の融点よ
シ10〜100℃程度高い温度が好ましく、10℃未満
では合金の流動性が悪く、また100℃を越えると連続
した合金線7が安定して得られないからである。
The injection temperature of the molten alloy raw material 1 is preferably about 10 to 100°C higher than the melting point of the alloy raw material 1. If it is less than 10°C, the fluidity of the alloy will be poor, and if it exceeds 100°C, the continuous alloy wire 7 will be This is because it cannot be obtained stably.

このようにして得られた合金線7は断面がほぼ円形で線
径も細く均一であり、しかも成分も溶融状態からの急冷
であるため均一なものが得られる。
The alloy wire 7 thus obtained has a substantially circular cross section, a narrow wire diameter, and a uniform wire diameter. Furthermore, since the alloy wire 7 is rapidly cooled from a molten state, it is uniform in composition.

この合金線7は、切断機により所定必要量に切断して、
螢光好気密容器にそのまま封入することができるので、
従来の如き篩芥は作業が不要で歩留りが良く、安価であ
る上、作業性も向上させることができる。
This alloy wire 7 is cut into a predetermined required amount using a cutting machine.
Since it can be sealed directly into a fluorescent aerobic container,
Conventional sieves and sieves do not require any work, have a high yield, are inexpensive, and can improve workability.

〔発明の実施例〕[Embodiments of the invention]

合金原料として、組成が60%B1−20%ln=20
%Snで融点が約80℃の合金(以下「合金I」と称す
る)、と48%B1−16%In−16%5n−20チ
Hgで融点が約60℃の合金(以下「合金■」と称する
)の2神類を用意し、第2図に示す装置を用い、ノズル
2の内径とノズル2と冷媒液面8との距離を夫々変えて
、射出急冷し、合金線7を製造し、゛得られた合金線7
の状態を調べた。なお合金■の躬出温j現jd、120
℃、合金■の射出温度は110℃で行い、また冷媒6と
して水を用いた。
As an alloy raw material, the composition is 60%B1-20%ln=20
%Sn with a melting point of about 80°C (hereinafter referred to as "Alloy I"), and an alloy with 48%B1-16%In-16%5N-20Hg and a melting point of about 60°C (hereinafter referred to as "Alloy ■"). ), and using the apparatus shown in FIG. 2, injection quenching was performed by changing the inner diameter of the nozzle 2 and the distance between the nozzle 2 and the refrigerant liquid level 8, respectively, to produce the alloy wire 7. ,゛Obtained alloy wire 7
I checked the condition. In addition, the temperature of the alloy ■ is 120
The injection temperature for Alloy 1 was 110°C, and water was used as the coolant 6.

また本発明と比敦するだめに、ノズル2の内径と、ノズ
ル2と冷媒液11口8との距離を、本発明に規定する範
囲外に設定して、」二記実施列と同様に合金線7を製造
した。
In addition, in order to be comparable to the present invention, the inner diameter of the nozzle 2 and the distance between the nozzle 2 and the refrigerant liquid 11 port 8 are set outside the range specified in the present invention, Line 7 was manufactured.

これらの結果は第1表に示すようになった。These results are shown in Table 1.

第1表 〔発明の効果〕 以上説明した如く本発明に係る螢光灯封入用低融点合金
線の製造方法によれば、溶融状態から冷媒中に連続的に
射出急冷するので組成が均一で、しかも容易に連続しだ
線径の4iii1つだ線状に加工でき、秤量や細管から
の封入も容易である。
Table 1 [Effects of the Invention] As explained above, according to the method for producing a low melting point alloy wire for encapsulating a fluorescent lamp according to the present invention, since the molten state is continuously injected into a refrigerant and quenched, the composition is uniform; In addition, it can be easily processed into a single continuous line with a diameter of 4III, and it is also easy to weigh and enclose from a thin tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は気密容器壁温度と水銀蒸気圧との関係を示すグ
ラフ、第2図は本発明方法に用いる装置の概略を示す説
明図である。 1・・・合金原料、2・・・ノズル、3・・・容器、4
・・・電熱ヒーター、5・・・冷媒容器、6・・・冷媒
、7・・・合金綜、8・・・冷媒液面。 出願人代理人 弁理士 鈴 江 武 彦第1図 □ 気宗容4!!壁湿皮(°C) 第2図 第1頁の続き 0発 明 者 大 島 照 雄 横須賀市船越町横須賀
工場内
FIG. 1 is a graph showing the relationship between wall temperature of an airtight container and mercury vapor pressure, and FIG. 2 is an explanatory diagram showing an outline of the apparatus used in the method of the present invention. 1... Alloy raw material, 2... Nozzle, 3... Container, 4
...Electric heater, 5... Refrigerant container, 6... Refrigerant, 7... Alloy heald, 8... Refrigerant liquid level. Applicant's agent Patent attorney Takehiko Suzue Figure 1 □ Kessong Yong 4! ! Wall moist skin (°C) Figure 2, page 1 continued 0 Inventor Teruo Oshima Yokosuka Factory, Funakoshi-cho, Yokosuka City

Claims (7)

【特許請求の範囲】[Claims] (1)螢光灯封入用低融点合金を溶融状態にして、ノズ
ルから冷媒中に連続的に射出冷却することを特徴とする
螢光灯封入用低融点合金線の製造方法。
(1) A method for producing a low melting point alloy wire for encapsulating a fluorescent lamp, which comprises bringing the low melting point alloy for encapsulating a fluorescent lamp into a molten state and continuously injecting and cooling it into a refrigerant from a nozzle.
(2) ノズルの内径が0.3〜2.0叫φである特許
請求の範囲第1項記載の螢光灯封入用低融点合金線の製
造方法。
(2) The method for producing a low melting point alloy wire for encapsulating a fluorescent lamp according to claim 1, wherein the nozzle has an inner diameter of 0.3 to 2.0 mm.
(3) ノズルと冷媒液面との距離が30mm以下であ
る特許請求の範囲第1項記載の螢光灯封入用低融点合金
線の製造方法。
(3) The method for producing a low melting point alloy wire for encapsulating a fluorescent lamp according to claim 1, wherein the distance between the nozzle and the refrigerant liquid level is 30 mm or less.
(4)螢光灯封入用低融点合金が、Snおよびpbのう
ち1種または2種と、BiおよびInからなる特許請求
の範囲第1項記載の螢光灯封入用低融点合金線の製造方
法。
(4) Production of a low melting point alloy wire for fluorescent lamp encapsulation according to claim 1, wherein the low melting point alloy for fluorescent lamp encapsulation comprises one or two of Sn and PB, and Bi and In. Method.
(5)螢光灯封入用低融点合金が、SnおよびHgとか
らなる特許請求の範囲第1項記載の螢光灯封入用低融点
合金線の製造方法。
(5) A method for producing a low melting point alloy wire for encapsulating a fluorescent lamp according to claim 1, wherein the low melting point alloy for encapsulating a fluorescent lamp comprises Sn and Hg.
(6)螢光灯封入用合金が重it %でSn 15〜5
7%、Pb、5〜40%、B130〜72cI)、In
4〜50%である特許請求の範囲第4項1だは第5項記
載の螢光灯封入用低融点合金線の製造方法。
(6) Fluorescent lamp encapsulation alloy contains Sn 15 to 5 in weight it%
7%, Pb, 5-40%, B130-72cI), In
4 to 50% of the manufacturing method of a low melting point alloy wire for encapsulating a fluorescent lamp according to claim 4 (1) or (5).
(7) Hgが、Sn、 Pb、 Bi、 Inから選
ばれた合金成分に対して4〜25%である特許請求の範
囲第5項または第6項記載の螢光灯封入用低融点合金線
の製造方法。
(7) The low melting point alloy wire for encapsulating a fluorescent lamp according to claim 5 or 6, wherein Hg is 4 to 25% based on the alloy component selected from Sn, Pb, Bi, and In. manufacturing method.
JP18053283A 1983-09-30 1983-09-30 Production of low melting alloy wire for sealing fluorescent lamp Pending JPS6072644A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP18053283A JPS6072644A (en) 1983-09-30 1983-09-30 Production of low melting alloy wire for sealing fluorescent lamp
DE8484306379T DE3485382D1 (en) 1983-09-30 1984-09-18 METHOD FOR PRODUCING A LOW-MELTING ALLOY FOR SEALING FLUORESCENT LAMPS.
EP84306379A EP0136866B1 (en) 1983-09-30 1984-09-18 Method of manufacturing a low-melting point alloy for sealing in a fluorescent lamp
US06/651,682 US4615846A (en) 1983-09-30 1984-09-18 Method of manufacturing a low-melting point alloy for sealing in a fluorescent lamp
AT84306379T ATE70755T1 (en) 1983-09-30 1984-09-18 PROCESS FOR MAKING A LOW MELTING ALLOY FOR SEALING FLUORESCENT LAMPS.
KR1019840006111A KR890005196B1 (en) 1983-09-30 1984-09-29 Manufacturing method of a low-melting point alloy for sealing in a fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18053283A JPS6072644A (en) 1983-09-30 1983-09-30 Production of low melting alloy wire for sealing fluorescent lamp

Publications (1)

Publication Number Publication Date
JPS6072644A true JPS6072644A (en) 1985-04-24

Family

ID=16084907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18053283A Pending JPS6072644A (en) 1983-09-30 1983-09-30 Production of low melting alloy wire for sealing fluorescent lamp

Country Status (1)

Country Link
JP (1) JPS6072644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282892A (en) * 2006-04-18 2007-11-01 Okamura Corp Chair

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789327A (en) * 1954-09-21 1957-04-23 Burley W Corley Apparatus for continuous metal casting
US3128513A (en) * 1961-03-29 1964-04-14 Joseph W Charlton Moldless metal casting process
US3874438A (en) * 1971-08-30 1975-04-01 Bbc Brown Boveri & Cie Apparatus for the continuous casting or drawing of an extrusion body through a coolant body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789327A (en) * 1954-09-21 1957-04-23 Burley W Corley Apparatus for continuous metal casting
US3128513A (en) * 1961-03-29 1964-04-14 Joseph W Charlton Moldless metal casting process
US3874438A (en) * 1971-08-30 1975-04-01 Bbc Brown Boveri & Cie Apparatus for the continuous casting or drawing of an extrusion body through a coolant body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282892A (en) * 2006-04-18 2007-11-01 Okamura Corp Chair

Similar Documents

Publication Publication Date Title
KR890005196B1 (en) Manufacturing method of a low-melting point alloy for sealing in a fluorescent lamp
US2402582A (en) Preparation of silicon materials
US5302556A (en) Synthetic silica glass articles and a method for manufacturing them
JPH0585488B2 (en)
US3615261A (en) Method of producing single semiconductor crystals
JPS6072644A (en) Production of low melting alloy wire for sealing fluorescent lamp
JPS60137892A (en) Quartz glass crucible
JPS6075504A (en) Production of low melting alloy for sealing fluorescent lamp
US2866685A (en) Preparation of lithium nitride
GB870408A (en) Treatment of silicon
JPS57146466A (en) Casting method for titanium casting consisting of pure titanium or alloy consisting essentially of titanium
CA1175661A (en) Process for aluminothermic production of chromium and chromium alloys low in nitrogen
JPS62212235A (en) Production of glass
JPS6210838A (en) Fluorescent lamp
JPS61186408A (en) Production of amalgam for fluorescent lamp
US3505025A (en) Jacketed,cooled crucible for crystallizing material
JPS6072650A (en) Production of low melting alloy wire for sealing fluorescent lamp
US3163523A (en) Method of purifying germanium
US20020180340A1 (en) Materials and methods for mercury vapor pressure control in discharge devices
SU631209A1 (en) Mineral disintegration method
JPS56140623A (en) Manufacture of semiconductor device
US2886430A (en) Uranium compositions
JPS54139280A (en) Nethod of fabricating annular fluorescent lamp
GB1406597A (en) Method of producing a high density body of a polycrystalline compound
JPS649898A (en) Production of silicon-containing gaas single crystal