JPS607195A - Method of producing high thermal conductive metal base printed board - Google Patents

Method of producing high thermal conductive metal base printed board

Info

Publication number
JPS607195A
JPS607195A JP11453583A JP11453583A JPS607195A JP S607195 A JPS607195 A JP S607195A JP 11453583 A JP11453583 A JP 11453583A JP 11453583 A JP11453583 A JP 11453583A JP S607195 A JPS607195 A JP S607195A
Authority
JP
Japan
Prior art keywords
thermally conductive
highly thermally
adhesive
insulating layer
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11453583A
Other languages
Japanese (ja)
Inventor
新田 功
泰彦 堀尾
田辺 謙造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11453583A priority Critical patent/JPS607195A/en
Publication of JPS607195A publication Critical patent/JPS607195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器に利用される放熱性のよい高熱伝導
性金属ベースを有するプリント基板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a printed circuit board having a highly thermally conductive metal base with good heat dissipation properties and used in electronic equipment.

従来例の構成とその問題点 近年、電子機器分野においては、小型化、軽量化の方向
にあり、IC,MSI 、LSI 、などの高発熱部品
をいかに放熱し、高密度実装するかが大きな課題となっ
てきている。
Conventional configurations and their problems In recent years, the field of electronic equipment has been trending toward smaller size and lighter weight, and the major issue has been how to dissipate heat from high heat generating components such as ICs, MSIs, LSIs, etc. and mount them in high density. It is becoming.

従来、プリント配線板、放熱板等の基板材料には、紙フ
エノール樹脂積層板あるいはガラス水相エポキシ樹脂積
層板などの有機高分子材料や、アルミナ基板などのセラ
ミック材料が用いられているが、いずれも熱伝導率が小
さく熱放散が不十分なためIC,MSI、jSIなとの
高発熱部品を高密度に実装することができない欠点があ
った。
Conventionally, organic polymer materials such as paper phenolic resin laminates or glass aqueous epoxy resin laminates, and ceramic materials such as alumina substrates have been used as substrate materials for printed wiring boards, heat sinks, etc. However, due to their low thermal conductivity and insufficient heat dissipation, they had the disadvantage that high heat generating components such as ICs, MSIs, and jSIs could not be mounted in a high density.

そこで耐熱性と熱伝導性に優れた金属をベースとした高
熱伝導性金属ベースプリント基板が開発されてきた。
Therefore, highly thermally conductive metal-based printed circuit boards based on metals with excellent heat resistance and thermal conductivity have been developed.

以下、図面を参照しながら、従来の高熱伝導性金属ベー
スプリント基板の製造方法について説明する。第1図(
a) 、 (b)は、従来の高熱伝導性金属ベースプリ
ント基板の製造工程における断面図である。従来の高熱
伝導性金属ベースプリント基板の製造方法(は、最初に
第1図(a)に示すように、銅箔を使用し7た導体1に
エポキシ樹脂系またはフェノール樹脂系の有機高分子接
着剤を絶縁層2として塗布したものを第1図中)に示す
金属ベース3と、加熱しながらプレスされ貼り合せられ
る。前記、有機高分子接着剤を絶縁層2として導体1に
塗布する方法は、一般に長尺の導体1をロールコータ−
で塗布し、乾燥工程を経て巻き取るコンベアシステムに
よって能率良く行われている。
Hereinafter, a conventional method for manufacturing a highly thermally conductive metal-based printed circuit board will be described with reference to the drawings. Figure 1 (
a) and (b) are cross-sectional views in the manufacturing process of a conventional highly thermally conductive metal-based printed circuit board. The conventional method for producing a highly thermally conductive metal-based printed circuit board (as shown in Figure 1(a)) first involves bonding an epoxy resin-based or phenolic resin-based organic polymer to a conductor 1 using copper foil. The material coated with the insulating layer 2 is pressed and bonded to the metal base 3 shown in FIG. 1) while heating. The method of applying the organic polymer adhesive to the conductor 1 as the insulating layer 2 is generally carried out by coating the long conductor 1 with a roll coater.
The process is carried out efficiently using a conveyor system that applies the coating, goes through a drying process, and then winds it up.

これら従来の高熱伝導性金属ベースプリント基板は、絶
縁層2として有機高分子接着剤だけでなりたっているた
め、絶縁層2として粘度の小さい有機高分子接着剤を薄
く(3011m〜4Qμm)塗布でき、併せて可撓性も
あることから、量産性に最も適したロールコータ−によ
って導体1」二に5べ呵゛ 有機高分子接着剤を塗布しているのが実情である。
These conventional highly thermally conductive metal-based printed circuit boards are made of only an organic polymer adhesive as the insulating layer 2, so it is possible to apply a thin (3011 m to 4 Q m) organic polymer adhesive with a low viscosity as the insulating layer 2. In addition, due to its flexibility, the conductor is actually coated with five layers of organic polymer adhesive using a roll coater, which is most suitable for mass production.

しかし近年、高熱伝導性金属ベースを有するプリント基
板において、さらに放熱特性を良くするために、前記、
絶縁層2として接着性のある有機高分子中に高熱伝導性
充填剤を分散したものが開発されつつある。この場合、
放熱特性を良くするだめに多くの高熱伝導性充填剤を分
散させる。このため、有機高分子接着剤だけでなる絶縁
層に比べ、極めて塗布時の粘度が大きく、硬化した絶縁
層が脆い。また高熱伝導性充填剤として誘電率の大きい
ものを入れざるをえないため、電気的容量を小さくする
必要から、高熱伝導性充填剤は厚く塗布する必要がある
。しかし前記した従来のロールコータ−で導体側に塗布
する方法は、厚く塗布できず、塗布・乾燥後に導体が反
ったり、絶縁層が割れたりするなどの問題があって不適
当で□あった。
However, in recent years, in order to further improve the heat dissipation characteristics of printed circuit boards having a highly thermally conductive metal base,
An insulating layer 2 in which a highly thermally conductive filler is dispersed in an adhesive organic polymer is being developed. in this case,
A large amount of highly thermally conductive filler is dispersed in order to improve heat dissipation characteristics. Therefore, compared to an insulating layer made only of an organic polymer adhesive, the viscosity at the time of application is extremely high, and the cured insulating layer is brittle. Furthermore, since it is necessary to use a material with a high dielectric constant as a highly thermally conductive filler, it is necessary to apply the highly thermally conductive filler thickly to reduce the electrical capacity. However, the above-mentioned conventional method of coating the conductor side with a roll coater is unsuitable because it does not allow for thick coating, and there are problems such as the conductor warping after coating and drying, and the insulating layer cracking.

また、高熱伝導性充填剤を分散したこの種の高熱伝導性
金属ベースを有するプリント基板は、前記したように粘
度の高い高熱伝導性接着剤を厚く塗布する必要がある」
二に、有機高分子と高熱伝導性6ベー・ 充填剤の粒子との間のなじみが完全でなく、塗布中に気
泡が混入しやすい。そのためその気泡を混入したまま金
属ベースと導体を貼り合せることになって絶縁耐圧特性
の欠陥を生じる。これらの問題があるため、接着性のあ
る有機高分子中に高熱伝導性充填剤を分散したこの種の
高熱伝導性金属ベースプリント基板を量産するためには
、いかに歩留り良く量産性に適した塗布工法を開発する
かが大きな課題である。
Furthermore, printed circuit boards that have this type of highly thermally conductive metal base in which a highly thermally conductive filler is dispersed require a thick coating of a highly viscous, highly thermally conductive adhesive as described above.
Second, the compatibility between the organic polymer and the highly thermally conductive 6B filler particles is not perfect, and air bubbles are likely to be mixed in during application. Therefore, the metal base and the conductor are bonded together with the air bubbles mixed in, resulting in defects in dielectric strength characteristics. Due to these problems, in order to mass produce this type of highly thermally conductive metal-based printed circuit board in which a highly thermally conductive filler is dispersed in an adhesive organic polymer, it is necessary to find a coating method that is suitable for mass production with a high yield. The big issue is how to develop a construction method.

発明の目的 本発明は、上記欠点に鑑み接着性のある有機高分子中に
高熱伝導性充填剤を分散した放熱性の良い絶縁層でなる
高熱伝導性金属ベースを有するプリント基板を量産に際
して歩留シ良くできるプリン!・基板の製造方法を提供
するものである。
Purpose of the Invention In view of the above-mentioned drawbacks, the present invention aims to improve the yield rate during mass production of a printed circuit board having a highly thermally conductive metal base, which is an insulating layer with good heat dissipation in which a highly thermally conductive filler is dispersed in an adhesive organic polymer. A delicious pudding!・Provides a method for manufacturing a substrate.

発明の構成 本発明の高熱伝導性金属ベースプリント基板の製造方法
は、金属ベース、絶縁層及び導体からなる高熱伝導性金
属ベースプリント基板の絶縁層が接着性のある有機高分
子中に高熱伝導性充填剤を7 ・ 分散した高熱伝導性接着剤からなシ、その製法が前記高
熱伝導性接着剤を金属ベース側に少なくとも2回、積層
塗布した後に、前記導体を前記塗布した高熱伝導性接着
剤層に積層し、熱プレスして作る工程でなる製造方法に
したものであり、これにより、従来、この種の高熱伝導
性接着剤を使う場合にさけることができカい製造上の課
題点、即ち、誘電率の関係で厚く塗布したい課題。導体
側に塗布すれば、塗布から金属ベースとの貼り合せ工程
の過程において、導体が反ったり、絶縁層が割れたり、
気泡が発生したりする課題等を解決し、量産が容易とな
るものである。
Structure of the Invention The method for manufacturing a highly thermally conductive metal-based printed circuit board of the present invention is characterized in that the insulating layer of the highly thermally conductive metal-based printed circuit board, which is composed of a metal base, an insulating layer, and a conductor, has a high thermal conductivity in an adhesive organic polymer. A highly thermally conductive adhesive having a filler dispersed therein, the manufacturing method of which is a highly thermally conductive adhesive in which the conductor is coated after the high thermally conductive adhesive is coated on the metal base side at least twice. The manufacturing method consists of a process of laminating layers and heat-pressing them, and as a result, there are manufacturing problems that could not be avoided when using this type of highly thermally conductive adhesive. In other words, due to the dielectric constant, it is necessary to apply a thick coating. If applied to the conductor side, the conductor may warp or the insulating layer may crack during the coating and bonding process with the metal base.
This solves problems such as the generation of bubbles and facilitates mass production.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第2図(a)〜(C)は、本発明の一実施例におけるプ
リント基板の製造方法に関し、前記プリント基板の完成
に至るまでの各工程における断面図である。
FIGS. 2(a) to 2(C) are cross-sectional views of each step up to completion of the printed circuit board in a method of manufacturing a printed circuit board according to an embodiment of the present invention.

第2図(a)〜(c)において4は金属ベース、5け硬
化絶縁層、6は接着絶縁層、7は導体を示す。
In FIGS. 2(a) to 2(c), reference numeral 4 indicates a metal base, 5 indicates a hardened insulating layer, 6 indicates an adhesive insulating layer, and 7 indicates a conductor.

以上のように構成された本実施例のプリント基板の製造
方法について以下にその製造方法を説明する。まず第2
図(a)では金属ベース4に、接着性のある有機高分子
中に高熱伝導性充填剤を分散した高熱伝導性接着剤をス
クリーン印刷、メタルマスク印刷、ブレードコーターな
どによって塗布し、乾燥・硬化工程を経て硬化絶縁層5
を形成する。次に第2図(b)において前記と同様の高
熱伝導性接着剤および塗布方法を使って接着絶縁層6を
硬化絶縁層5土に、積層塗布し、接着11:のある未硬
化の状態に乾燥する。それから、第2図(c)によって
銅箔等の導体7を前記塗布した接着絶縁層6に積層し、
温度のあげられる熱プレスで加熱しながらプレスし、接
着絶縁層6に導体7を貼り合せ、高熱伝導性金属ベース
を有するプリント基板が製造される。
The method for manufacturing the printed circuit board of this embodiment configured as described above will be described below. First, the second
In Figure (a), a highly thermally conductive adhesive in which a highly thermally conductive filler is dispersed in an adhesive organic polymer is applied to the metal base 4 by screen printing, metal mask printing, a blade coater, etc., and then dried and cured. Hardened insulating layer 5 through process
form. Next, in FIG. 2(b), using the same high thermal conductive adhesive and coating method as described above, the adhesive insulating layer 6 is laminated and coated on the cured insulating layer 5 soil, and the adhesive 11 is in an uncured state. dry. Then, as shown in FIG. 2(c), a conductor 7 such as copper foil is laminated on the applied adhesive insulating layer 6,
The conductor 7 is bonded to the adhesive insulating layer 6 by pressing while heating with a heat press that can raise the temperature, thereby producing a printed circuit board having a highly thermally conductive metal base.

上記のように本実施例によれば、高熱伝導性接着剤を、
塗布、乾燥、硬化工程の過程で曲がったり、反ったりし
ない金属ベース4側に高粘度ベーストを、塗布に適した
すなわち塗布面の厚みの分布、塗布毎の厚みのばらつき
の小さいスクリーン印刷、メタルマスク印刷、ブレード
コーターなどの方法を用いて塗布することにより、硬化
絶縁層6および接着絶縁層6が割れたり、金属ベース4
が反ったりすることば表い。寸だ本実施例の製造工程で
は、硬化絶縁層5と接着絶縁層6とを合せて2回塗布し
ているが、このように数回にわたって絶縁層を積層塗布
することにより、前記硬化絶縁層5と接着絶縁層6とで
なる絶縁層に、気泡が残って起る絶縁耐圧上の問題も解
決される。そしてこの場合、最初に硬化絶縁層6として
少なくとも1回塗布し、各々乾燥、硬化する工程と接着
絶縁層6として、前記硬化絶縁層5に積層塗布する工程
に分けているのは、絶縁層としての硬化絶縁層5と接着
絶縁層6を合せた厚みの管理を良くするためでもある。
As described above, according to this example, the highly thermally conductive adhesive is
A high-viscosity base is applied to the metal base 4 side that does not bend or warp during the coating, drying, and curing processes, and screen printing and metal masks that are suitable for coating, that is, the thickness distribution of the coated surface, and small variations in thickness from coating to coating, are used. Coating using methods such as printing or a blade coater may cause the cured insulating layer 6 and the adhesive insulating layer 6 to crack or damage the metal base 4.
A word expression that is distorted. In the manufacturing process of this embodiment, the cured insulating layer 5 and the adhesive insulating layer 6 are coated twice, but by laminating and coating the insulating layers several times in this way, the cured insulating layer 5 and the adhesive insulating layer 6 are coated twice. The dielectric strength problem caused by air bubbles remaining in the insulating layer consisting of the adhesive insulating layer 6 and the adhesive insulating layer 6 is also solved. In this case, the insulating layer 6 is first coated at least once, dried and cured, and the adhesive insulating layer 6 is laminated and coated on the cured insulating layer 5. This is also for better management of the combined thickness of the cured insulating layer 5 and adhesive insulating layer 6.

すなわち硬化絶縁層6は、絶縁層の厚みを確保すること
を主目的としておシ、高熱伝導性接着剤を塗布後、完全
に硬化するまで乾燥および硬化工程で硬化している。だ
から、絶縁層の厚みによっては塗布回数を増やすことも
ある。
That is, the cured insulating layer 6 is cured by a drying and curing process until it is completely cured after applying a highly thermally conductive adhesive with the main purpose of ensuring the thickness of the insulating layer. Therefore, depending on the thickness of the insulating layer, the number of coatings may be increased.

他方接着絶縁層6は、絶縁層の厚みとしても当然1oベ
ニ・ 含まれるが、導体7との接着機能がその主目的であり、
高熱伝導性接着剤は塗布後の乾燥工程において接着性の
ある未硬化の状態に乾燥される。このように硬化絶縁層
5と接着絶縁層6とを区別して多層に積層塗布すること
により、絶縁層に、気泡が残って起る絶縁耐圧上の問題
がなく々ることは勿論、絶縁層の厚みもばらつき々く安
定したものが得られる。
On the other hand, the adhesive insulating layer 6 is naturally included in the thickness of the insulating layer, but its main purpose is to bond with the conductor 7.
The highly thermally conductive adhesive is dried to an adhesive, uncured state in a drying process after application. By distinguishing the cured insulating layer 5 and the adhesive insulating layer 6 and coating them in multiple layers, it is possible to eliminate problems with dielectric strength caused by air bubbles remaining in the insulating layer, and also to improve the strength of the insulating layer. A stable product with varying thickness can be obtained.

次に、本発明の実施例の中から塗布方法としてスクリー
ン印刷を使った場合について図面を参照しながら説明す
る。
Next, a case where screen printing is used as a coating method among the embodiments of the present invention will be described with reference to the drawings.

第3図(−)〜(d)は、高熱伝導性接着剤を2回スク
リニン印刷で塗布した場合の高熱伝導性金属ベースプリ
ント基板の製造方法を示しだ図で第3図(a)から第3
図(d)tでの過程を経て製造され、8が金属ベース、
9が硬化絶縁層、10が接着絶縁層、11が導体を示す
構成に々っている。壕ず、第3図(a)では、アルミニ
ウム、もしくはアルマイト処理したアルミニウム、ある
いは、鉄など、厚さが0.6間〜6論位の金属ベース8
に100〜30011−くジ メツシュのマスクで前記した高熱伝導性接着剤をスクリ
ーン印刷し、乾燥および硬化工程を経て硬化絶縁層8を
形成する。次に第3図(b)で前記同様のスクリーン印
刷で高熱伝導性接着剤を前記硬化絶縁層9上に積層塗布
し接着性のある未硬化の状態に乾燥を行い接着絶縁層1
0を形成する。次の第3図(C)では、銅箔に代表され
る導体11を前記接着絶縁層10上に積層し、熱プレス
にて150℃以上の温度と10〜50Kg/2の圧力で
30分m 〜2時間加熱プレスし、接着絶縁層10の硬化と共に導
体11が接着される。第3図(C)に示す工程を終えた
高熱伝導性金属ベースを有するプリント基板は、第3図
(d)に示すように必要な大きさに切断され完成される
Figures 3(-) to (d) show a method for manufacturing a highly thermally conductive metal-based printed circuit board in which a highly thermally conductive adhesive is applied twice by screen printing. 3
Manufactured through the process in Figure (d) t, 8 is a metal base,
9 is a cured insulating layer, 10 is an adhesive insulating layer, and 11 is a conductor. In FIG. 3(a), a metal base 8 made of aluminum, anodized aluminum, or iron, with a thickness of 0.6 to 6 degrees, is shown.
The above-described highly thermally conductive adhesive is screen-printed using a 100-30011-ku Jimetsch mask, and a cured insulating layer 8 is formed through a drying and curing process. Next, in FIG. 3(b), a highly thermally conductive adhesive is laminated and coated on the cured insulating layer 9 by screen printing similar to the above, and dried to an adhesive and uncured state.
form 0. In FIG. 3(C), a conductor 11, typically made of copper foil, is laminated on the adhesive insulating layer 10, and then heated for 30 minutes at a temperature of 150° C. or higher and a pressure of 10 to 50 kg/2 using a heat press. Heat pressing is performed for ~2 hours, and the conductor 11 is bonded together with the adhesive insulating layer 10 being cured. After completing the process shown in FIG. 3(C), the printed circuit board having a highly thermally conductive metal base is cut into a required size and completed as shown in FIG. 3(d).

上記のように塗布方法としてスクリーン印刷を使用した
場合、優れた点として、他の塗布方法より、高粘度の印
刷材料を使用することができる。
When screen printing is used as a coating method as described above, an advantage is that printing materials with higher viscosity can be used than with other coating methods.

すなわち、接着性のある有機高分子中に高熱伝導性充填
剤をより多く配合でき、熱伝導率のより大きい高熱伝導
性接着剤が塗布できる。しかし反面、スクリーンのメツ
シュ跡が原因で気泡ができやすい、特に高粘度になるほ
どその傾向が強く1回の塗布で導体を貼り合せることは
、絶縁層に気泡が残るため少なくとも本実施例にみるよ
うに2回、積層塗布することが必要である。また、スク
リーン印刷で塗布する場合、前記スクリーンのメソシュ
跡が原因で気泡ができやすい点については、その対策と
してメソシュの線径が小さいほうが良い、すなわち10
0メツシユ以」二の細かいスクリーンが望ましい。しか
し前記メツシュが細かくなるほど逆に高熱伝導性接着剤
の塗布厚さは薄くなるため、絶縁層を厚くするために積
層塗布の回数を増やさねばならない問題もあり、実用上
、スクリーンのメツシュとしては100〜300メソシ
ユの範囲のものを使用して塗布した方が好ましい。そし
てスクリーンのメツシュを上限側で300メツシユとし
た場合、高熱伝導性接着剤に分散しである高熱伝導性充
填剤は、その粒子径に限界がある。
That is, a larger amount of highly thermally conductive filler can be incorporated into the adhesive organic polymer, and a highly thermally conductive adhesive with higher thermal conductivity can be applied. However, on the other hand, air bubbles are likely to form due to the mesh marks on the screen, especially as the viscosity becomes higher, and bonding the conductor with one coating will leave air bubbles in the insulating layer, so at least as shown in this example, It is necessary to apply the layer twice. In addition, when applying by screen printing, air bubbles are likely to be formed due to the mesh marks on the screen, so as a countermeasure, it is better to have a smaller mesh wire diameter, that is, 10
A screen as fine as 0 mesh or less is preferable. However, the finer the mesh, the thinner the coating thickness of the highly thermally conductive adhesive becomes.Therefore, in order to thicken the insulating layer, it is necessary to increase the number of laminated coatings. It is preferable to use a coating agent having a concentration of 1 to 300 mesosyus. When the mesh of the screen is set to 300 meshes on the upper limit side, there is a limit to the particle size of the highly thermally conductive filler dispersed in the highly thermally conductive adhesive.

すなわちスクリーンが目詰りせず最適な状態で塗布でき
る前記高熱伝導性充填剤は最大粒子径が503 71mを越えない条件が必要である。それらは、特に高
熱伝導性充填剤の種類には関係するものではなく、高熱
伝導性接着剤を作製する混練の過程におり前記高熱伝導
性充填剤の粒子が粉砕され、スクリーン印刷の塗布前に
前記最大粒子径が60μm以下で構成される高熱伝導性
接着剤であっても良い。
That is, the highly thermally conductive filler must have a maximum particle size not exceeding 503 to 71 m so that the screen can be coated in an optimal state without clogging. They are not particularly related to the type of highly thermally conductive filler, but rather during the kneading process to make the highly thermally conductive adhesive, the particles of said highly thermally conductive filler are crushed, and before the screen printing application. The adhesive may be a highly thermally conductive adhesive having a maximum particle diameter of 60 μm or less.

次に本発明に使用するところの高熱伝導性接着剤につい
て説明する。本発明の高熱伝導性接着剤は、接着性のあ
る有機高分子中に高熱伝導性充填剤を各種添加剤、硬化
剤と共にバンバリーミキサ。
Next, the highly thermally conductive adhesive used in the present invention will be explained. The highly thermally conductive adhesive of the present invention is a Banbury mixer in which a highly thermally conductive filler is mixed with various additives and a curing agent in an adhesive organic polymer.

ロールミルなどの混合機を用いて混練したペースト状の
組成物である。ここで接着性のある有機高分子としては
、100℃〜200℃で硬化反応をおこして硬化する高
温硬化型のもので耐熱性があることが必要であり、例え
ば、7アン酸エステル樹脂、シアン酸エステル−マレイ
ミド樹脂、シアン酸エステル−マレイミド−エポキシ樹
脂などのシアン酸エステル系樹脂組成物、フェノール樹
脂。
It is a paste-like composition that is kneaded using a mixer such as a roll mill. Here, the organic polymer with adhesive properties must be of a high temperature curing type that causes a curing reaction at 100°C to 200°C and is heat resistant. Cyanate ester resin compositions such as acid ester-maleimide resins, cyanate ester-maleimide-epoxy resins, and phenol resins.

エポキシ樹脂、メラミン樹脂、不飽和ポリエステ14゜ ル樹脂、ポリイミド樹脂などの熱硬化性樹脂や、ポリビ
ニルブチラール、ブタジェン樹脂、アクリロニトリル−
ブタジェン樹脂などの熱可塑性樹脂で変性したシアン酸
エステル樹脂、シアン酸エステル−マレイミド’ffm
脂、シアン酸エステル−マレイミド−エポキシ樹脂など
があげられる。一方、高熱伝導性充填剤としては、アル
ミナ、窒化硼素。
Thermosetting resins such as epoxy resins, melamine resins, unsaturated polyester 14° resins, polyimide resins, polyvinyl butyral, butadiene resins, acrylonitrile resins, etc.
Cyanate ester resin modified with thermoplastic resin such as butadiene resin, cyanate ester-maleimide 'ffm
Examples include cyanate ester-maleimide-epoxy resin. On the other hand, highly thermally conductive fillers include alumina and boron nitride.

窒化ケイ素、窒化アルミニウム、酸化マグネシウム、炭
化ケイ素などがあげられる。中でも熱伝導率と電気的物
性(絶縁抵抗、絶縁耐圧など)からして、アルミナと窒
化硼素が適している。しかし窒化硼素はアルミナに比べ
熱伝導率は大きいが前話有機高分子に分散した時、高熱
伝導性接着剤としての接着力が極めて低下するため高配
合できない問題がある。この点、アルミナの粒子は、他
の前記充填剤と比べ極めて多く配合できる。中でもa−
アルミナ粉末として知られるもので粒形が球状に近いも
のが最も高配合に分散できる特徴がある。このため本発
明にみる高熱伝導性接着剤は、高熱伝導性充填剤として
少なくともアルミナの粒16 − 子を単独もしくは複合した組成で配合した方が高配合で
き熱伝導率の大きい高熱伝導性接着剤が得られる。
Examples include silicon nitride, aluminum nitride, magnesium oxide, and silicon carbide. Among them, alumina and boron nitride are suitable in terms of thermal conductivity and electrical properties (insulation resistance, dielectric strength, etc.). However, although boron nitride has higher thermal conductivity than alumina, when it is dispersed in the organic polymer mentioned above, its adhesive strength as a highly thermally conductive adhesive is extremely reduced, so there is a problem that it cannot be blended in high proportions. In this respect, alumina particles can be blended in an extremely large amount compared to the other fillers. Among them a-
Known as alumina powder, those with particle shapes close to spherical have the characteristic that they can be dispersed in the highest proportions. Therefore, the high thermal conductive adhesive according to the present invention can be formulated with at least 16 particles of alumina alone or in combination as a high thermal conductive filler, resulting in a high thermal conductive adhesive with high thermal conductivity. is obtained.

なお、本発明の高熱伝導性金属ベースを有するプリント
基板の製造方法は、高熱伝導性接着剤を金属ベース側に
少なくとも2回、積層塗布したものに導体を積層し貼り
合せるものであるが、塗布は、最も高熱伝導性に優れた
高粘度の高熱伝導性接着剤を絶縁層として使用するため
にスクリーン印刷塗布の実施例を主体的に述べだが、メ
タルマスク印刷、ブレードコーターによる塗布方法、そ
のほかにロッドコーター、ナイフコーターなどによって
も可能である。−1だ金属ベースは、放熱性を良くする
ためにアルミニウムまたはアルマイト処理したアルミニ
ウムを使った方が最も安価で放熱性の優れたプリント基
板が得られる。さらに放熱性を良くする方法に、硬化絶
縁層として高熱伝導性接着剤を塗布し、乾燥および硬化
する工程の中で前記乾燥または硬化する次の工程に前記
硬化絶縁層をプレスする工程を付加する方法がある。
The method of manufacturing a printed circuit board having a highly thermally conductive metal base according to the present invention involves laminating and bonding a conductor to a highly thermally conductive adhesive coated on the metal base side at least twice. mainly described the example of screen printing coating in order to use a high viscosity and high thermal conductive adhesive with the highest thermal conductivity as an insulating layer, but there are other methods such as metal mask printing, coating methods using a blade coater, and It is also possible to use a rod coater, knife coater, etc. -1 If the metal base is made of aluminum or alumite-treated aluminum to improve heat dissipation, a printed circuit board with excellent heat dissipation can be obtained at the lowest cost. Furthermore, a method for improving heat dissipation includes applying a highly thermally conductive adhesive as a cured insulating layer, and adding a step of pressing the cured insulating layer to the next step of drying or curing in the drying and curing process. There is a way.

これによって前記硬化絶縁層に分散しである高熱伝導性
充填剤の粒子が高密度に圧縮され熱放散性がさらに向上
した硬化絶縁層が得られるものである。ただし、この場
合、硬化絶縁層を完全に硬化してし寸ってはプレスして
もその効果が薄く乾燥もしくは半硬化状態が望ましい。
As a result, the particles of the highly thermally conductive filler dispersed in the cured insulating layer are compressed to a high density, resulting in a cured insulating layer with further improved heat dissipation properties. However, in this case, even if the cured insulating layer is completely cured and then pressed, the effect will be weak, so a dry or semi-cured state is preferable.

発明の効果 以上の説明から明らかなように本発明は、金属ベース、
絶縁層および導体からなる高熱伝導性金属ベースプリン
ト基板の絶縁層が接着性のある有機高分子中に高熱伝導
性充填剤を分散した高熱伝導性接着剤からなり、その製
法が前記高熱伝導性接着剤を金属ベース側に少なくとも
2回積層塗布した後に、前記導体を前記塗布した高熱伝
導性接着層に積層し、熱プレスして製造するものであり
、これにより、この種の高熱伝導性接着剤を使う場合さ
けることができない製造上の課題点、すなわち誘電率の
関係で厚く塗布したい課題、導体側に塗布すれば、塗布
から金属ベースとの貼り合せ工程の過程において前記導
体が反った9、絶縁層が17ベ −・ 割れたり、気泡が発生したシする課題等を解決し、量産
が容易となる優れた効果が得られる。
Effects of the Invention As is clear from the above explanation, the present invention has a metal base,
The insulating layer of a highly thermally conductive metal-based printed circuit board consisting of an insulating layer and a conductor is made of a highly thermally conductive adhesive in which a highly thermally conductive filler is dispersed in an adhesive organic polymer. After coating the adhesive on the metal base side at least twice, the conductor is laminated on the coated high thermal conductive adhesive layer and heat pressed to produce this type of high thermal conductive adhesive. There are certain manufacturing issues that cannot be avoided when using a metal base, such as the need to apply a thick coating due to the dielectric constant, and if the coating is applied to the conductor side, the conductor may warp during the process from coating to bonding with the metal base9. This solves problems such as cracking of the insulating layer and generation of bubbles, and provides an excellent effect of facilitating mass production.

さらに、高熱伝導性接着剤を金属ベースに少なくとも2
回積層塗布する工程は、硬化絶縁層と接着絶縁層とに区
別して多層に積層塗布することにより、塗布中に発生す
る気泡のだめの絶縁耐圧不良がなくなることは勿論、絶
縁層の厚みにばらつきがなく安定したものが得られる。
Additionally, at least two coats of highly thermally conductive adhesive are applied to the metal base.
In the multilayer coating process, by separating the cured insulating layer and the adhesive insulating layer and applying the multilayer coating, it not only eliminates dielectric breakdown voltage defects caused by air bubbles that occur during coating, but also eliminates variations in the thickness of the insulating layer. You can get something stable.

また塗布方法として、スクリーン印刷、メタルマスク印
刷、ブレードコーターを採用することにより、高熱伝導
性充填剤を高配合した高粘度の高熱伝導性接着剤でも絶
縁層として容易に塗布できる特徴があシ、これによって
厚い絶縁層でも放熱性の優れた高熱伝導性金属ベースプ
リント基板が得られる効果がある。さらには、硬化絶縁
層として高熱伝導性接着剤を塗布し、乾燥および硬化す
る工程の中で、乾燥または半硬化した前記硬化絶縁層を
プレスする工程を付加することによって、熱放散性がさ
らに向上した硬化絶縁層が得られる等々の効果がある。
In addition, by using screen printing, metal mask printing, and a blade coater as coating methods, even high-viscosity, high-thermal conductive adhesives containing high thermally conductive fillers can be easily applied as an insulating layer. This has the effect of providing a highly thermally conductive metal-based printed circuit board with excellent heat dissipation even with a thick insulating layer. Furthermore, heat dissipation is further improved by adding a step of pressing the dried or semi-cured cured insulating layer during the process of applying, drying and curing a highly thermally conductive adhesive as a cured insulating layer. There are effects such as the ability to obtain a hardened insulating layer.

181. ・−181.・−

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は従来のプリント基板の製造
方法の工程を示す断面図、第2図(、)〜(C)および
第3図(a)〜(d)は本発明の一実施例におけるプリ
ント基板の製造方法を説明するための断面図および斜視
図である。 4.8・・・・・・金属ベース、6,9・・・・・・絶
縁硬化層、6.1o・・・・・・絶縁接着層、7,11
・・・・・・導体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−一
一 賊 匂 − へ ど− 叶
FIGS. 1(a) and (b) are cross-sectional views showing the steps of a conventional printed circuit board manufacturing method, and FIGS. FIG. 2 is a cross-sectional view and a perspective view for explaining a method of manufacturing a printed circuit board in one embodiment. 4.8...Metal base, 6,9...Insulating hardened layer, 6.1o...Insulating adhesive layer, 7,11
······conductor. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (1)

【特許請求の範囲】 (1)金属ベースに接着性のある有機高分子中に高熱伝
導性フィラーを分散した高熱伝導性接着剤からなる絶縁
物を少なくとも1回塗布、硬化し硬化絶縁層を形成し、
さらにその硬化絶縁層に前記高熱伝導性接着剤と同質の
高熱伝導性接着剤からなる絶縁物を塗布し、未硬化の状
態に乾燥し接着絶縁層を形成し、その接着絶縁層に導体
を積層し、(2) スクリーン印刷、メタルマスク印刷
、ブレードコーターのいずれかを単独または併用して高
熱伝導性接着剤を塗布する特許請求の範囲第1項記載の
高熱伝導性金属ベースプリント基板の製造方法。 (a) 1ooメツシユ〜300メツシユのスクリーン
によるスクリーン印刷により高熱伝導性接着剤を塗布す
る特許請求の範囲第1項記載の高熱伝導2べ =“ 性金属ベースプリント基板の製造方法。 (4)金属ベースとしてアルミニウムまたはアルマイト
処理をしたアルミニウムを使用する特許請求の範囲第1
項記載の高熱伝導性金属ベースプリント基板の製造方法
。 許請求の範囲第1項記載の高熱伝導性金属ベースプリン
ト基板の製造方法。 (6)接着性のある有機高分子として高温硬化型のもの
を使用した特許請求の範囲第1項記載の高熱伝導性金属
ベースプリント基板の製造方法。 け)高熱伝導性フィラーに、少なくともアルミナの粒子
を単独もしくは複合した組成を用いた特許請求の範囲第
1項記載の高熱伝導性金属ベースプリント基板の製造方
法。 (8)高熱伝導性接着剤として、高温硬化型の接着性を
有する有機高分子を用いた特許請求の範囲第1項記載の
高熱伝導性金属ベースプリント基板の製造方法。 3 ミ −゛
[Claims] (1) An insulator made of a highly thermally conductive adhesive in which a highly thermally conductive filler is dispersed in an adhesive organic polymer is applied at least once to a metal base and cured to form a cured insulating layer. death,
Furthermore, an insulator made of a highly thermally conductive adhesive of the same quality as the above-mentioned highly thermally conductive adhesive is applied to the cured insulating layer, dried to an uncured state to form an adhesive insulating layer, and a conductor is laminated on the adhesive insulating layer. and (2) the method for manufacturing a highly thermally conductive metal-based printed circuit board according to claim 1, which comprises applying a highly thermally conductive adhesive by using screen printing, metal mask printing, or a blade coater alone or in combination. . (a) A method for manufacturing a highly thermally conductive metal-based printed circuit board according to claim 1, wherein a highly thermally conductive adhesive is applied by screen printing with a screen of 100 to 300 meshes. (4) Metal Claim 1 using aluminum or anodized aluminum as the base
A method for manufacturing a highly thermally conductive metal-based printed circuit board as described in . A method for manufacturing a highly thermally conductive metal-based printed circuit board according to claim 1. (6) A method for manufacturing a highly thermally conductive metal-based printed circuit board according to claim 1, wherein a high temperature curing type is used as the adhesive organic polymer. (h) The method for manufacturing a highly thermally conductive metal-based printed circuit board according to claim 1, wherein the highly thermally conductive filler contains at least alumina particles alone or in combination. (8) A method for manufacturing a highly thermally conductive metal-based printed circuit board according to claim 1, wherein an organic polymer having high temperature curing adhesive properties is used as the highly thermally conductive adhesive. 3 Mi -゛
JP11453583A 1983-06-24 1983-06-24 Method of producing high thermal conductive metal base printed board Pending JPS607195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11453583A JPS607195A (en) 1983-06-24 1983-06-24 Method of producing high thermal conductive metal base printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11453583A JPS607195A (en) 1983-06-24 1983-06-24 Method of producing high thermal conductive metal base printed board

Publications (1)

Publication Number Publication Date
JPS607195A true JPS607195A (en) 1985-01-14

Family

ID=14640185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11453583A Pending JPS607195A (en) 1983-06-24 1983-06-24 Method of producing high thermal conductive metal base printed board

Country Status (1)

Country Link
JP (1) JPS607195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061981A1 (en) * 2011-10-28 2013-05-02 積水化学工業株式会社 Laminate and method for producing component for power semiconductor modules

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061981A1 (en) * 2011-10-28 2013-05-02 積水化学工業株式会社 Laminate and method for producing component for power semiconductor modules
CN103748673A (en) * 2011-10-28 2014-04-23 积水化学工业株式会社 Laminate and method for producing component for power semiconductor modules
CN103748673B (en) * 2011-10-28 2016-12-14 积水化学工业株式会社 Laminated body and the manufacture method of power semiconductor modular parts

Similar Documents

Publication Publication Date Title
JP3312723B2 (en) Heat conductive sheet, method of manufacturing the same, heat conductive substrate using the same, and method of manufacturing the same
WO2019203266A1 (en) Insulation sheet, laminate, and substrate
JP2007153969A (en) Highly heat-conductive resin composition and substrate for wiring
JPH1064331A (en) Conductive paste, electric circuit using conductive paste, and manufacture of electric circuit
JPS607195A (en) Method of producing high thermal conductive metal base printed board
JPH10509277A (en) Thermal control for additional printed circuits
JPH05174623A (en) Insulating sheet, metal wiring board using the same and manufacture therefor
JPS62206861A (en) Ceramic multilayer circuit board and semiconductor mounting structure
JPS605589A (en) High thermal conductive metal base printed board
JPS605598A (en) Method of producing high thermal conductive metal base printed board
JP4863543B2 (en) Conductive paste and method for manufacturing wiring board using the same
JPH0575225A (en) Metallic base printed wiring substrate and its manufacture
JPH09293952A (en) Manufacture of wiring board
JP3255814B2 (en) Metal-based circuit board and module using the same
JPH0883979A (en) Manufacture of metal-based board
JPH118472A (en) Multilevel interconnection board
JPH06350212A (en) Metal base circuit board and production thereof
JPH07297509A (en) Metallic base substrate and its manufacture
JPH09270584A (en) Multilayer wiring board
JPH1034806A (en) Laminate material and laminate
JPH10178247A (en) Wiring board and method for manufacturing the same
JPS6043891A (en) High thermal conductivity metal base printed board
JP2708821B2 (en) Electric laminate
JPH06232552A (en) Manufacture of printed wiring board
JPH01275622A (en) Epoxy resin composition