JPS6071855A - Heat transporting system - Google Patents

Heat transporting system

Info

Publication number
JPS6071855A
JPS6071855A JP58182405A JP18240583A JPS6071855A JP S6071855 A JPS6071855 A JP S6071855A JP 58182405 A JP58182405 A JP 58182405A JP 18240583 A JP18240583 A JP 18240583A JP S6071855 A JPS6071855 A JP S6071855A
Authority
JP
Japan
Prior art keywords
working fluid
reservoir
fluid reservoir
hydraulic fluid
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58182405A
Other languages
Japanese (ja)
Inventor
Katsuhisa Suzuki
勝久 鈴木
Noboru Ogasawara
昇 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIWA ALUM KK
Original Assignee
NICHIWA ALUM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIWA ALUM KK filed Critical NICHIWA ALUM KK
Priority to JP58182405A priority Critical patent/JPS6071855A/en
Publication of JPS6071855A publication Critical patent/JPS6071855A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • F24S90/10Solar heat systems not otherwise provided for using thermosiphonic circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To eliminate a circulating pump and a compressor by a method wherein a closed working fluid circulating circuit consists in connecting an evaporator, a condenser and a working fluid reservoir with conduits and the working fluid in the working fluid reservoir is heated. CONSTITUTION:The vapor pressure in a working fluid reservoir 2 is raised by the heating of the reservoir 2 with a heater 9, resulting in raising a working fluid in a liquid lifting passage 4, an equalizing passage 14 and a liquid lowering passage 6 in the same manner at first. However, after a while the liquid lowering passage 6 is blocked by a check valve 16 and the equalizing passage 14 is blocked by a float valve 15, resulting in allowing for only the working fluid in the liquid lifting passage 4 to keep on rising so as to be heated and vaporized by the solar heat in an evaporator 1 and flowed in a condenser 3 in order to release heat and condense by means of a coiled pipe 13. When the level in the working fluid reservoir 2 lowers below the lower end of the equalizing passage 14, the working fluid locating below the float valve 15 falls down in the reservoir, resulting in opening the float valve 15 and consequently equalizing the pressures in the working fluid reservoir 2 and in the condenser 3 and accordingly opening the check valve 16. By repeating similar action, the solar heat is transmitted to water through the channel of the latent heat of phase transformation of the working fluid.

Description

【発明の詳細な説明】 この発明は、たとえば太陽熱利用給湯システムにおいて
、太陽光から吸収した熱を熱媒を介1− して離れた場所にある蓄熱槽内の水に伝え、この水を加
温するシステムとして用いられる熱輸送システムに関す
る。
[Detailed Description of the Invention] For example, in a solar water heating system, the present invention transmits heat absorbed from sunlight via a heating medium to water in a heat storage tank located at a remote location, and heats this water. This invention relates to a heat transport system used as a warming system.

従来の太陽熱利用給湯システムにおいては、熱媒を循環
させるために循環ポンプや圧縮機等の動力源を必要とし
たが、これらの動力源は故障し易(、修理や保守点検が
面倒であるという問題があった。
Conventional solar water heating systems require power sources such as circulation pumps and compressors to circulate the heat medium, but these power sources are prone to breakdowns (and are difficult to repair and maintain). There was a problem.

この発明は上記実情に鑑みてなされたものであって、循
環ポンプや圧縮機などを必要としない熱輸送システムを
提供することを目的とする。
This invention has been made in view of the above circumstances, and an object thereof is to provide a heat transport system that does not require a circulation pump or a compressor.

この発明による熱輸送システムは、蒸発器と、蒸発器と
同一高さ位置またはこれより下方に配置された凝縮器と
、凝縮器と同一高さ位置またはこれより下方に配置され
た作動液溜部とが導管を介して接続されて内部に作動液
が封入された密閉状作動液循環回路が構成され、作動液
溜部に内部の作動液を加熱するための加熱手段が設けら
れているものである。
The heat transport system according to the present invention includes an evaporator, a condenser disposed at the same height as the evaporator or below the evaporator, and a working fluid reservoir disposed at the same height as the condenser or below the condenser. A sealed hydraulic fluid circulation circuit is constructed in which the hydraulic fluid is sealed inside and connected through a conduit, and the hydraulic fluid reservoir is provided with heating means for heating the internal hydraulic fluid. be.

上記において、作動液としてはフレオン11、フレオン
113、水等のように気相と液相とに相互に変化しやす
いものが用いられる。また、作動液は不凝縮ガスを除去
した状態で作動液循環回路内に密閉される。
In the above, the working fluid used is one that easily changes between the gas phase and the liquid phase, such as Freon 11, Freon 113, and water. Further, the working fluid is sealed within the working fluid circulation circuit in a state in which non-condensable gases are removed.

作動液溜部としては、タンク、U形管、蛇行管などから
なるものが用いられる。作動液溜部の内容積は、作動液
循環回路における作動液溜部と蒸発器とを連通させる部
分の内容積よりも大きくしておくことが好ましい。こう
しておけば、加熱手段により作動液を加熱した場合に、
作動液溜部内の作動液は、容易に蒸発器に流れる。
As the working fluid reservoir, a tank, a U-shaped pipe, a meandering pipe, or the like is used. The internal volume of the working fluid reservoir is preferably larger than the internal volume of a portion of the working fluid circulation circuit that communicates the working fluid reservoir with the evaporator. By doing this, when the hydraulic fluid is heated by the heating means,
The working fluid in the working fluid reservoir easily flows to the evaporator.

加熱手段としては、電気ヒータ、ガスヒータ、熱湯など
があげられる。
Examples of the heating means include an electric heater, a gas heater, and hot water.

この熱輸送システムにおいて、作動液溜部内の作動液を
、電気ヒータ、ガスヒータ、熱湯等の加熱手段で加熱す
ると作動液溜部内に溜まっている作動液が蒸発し、作動
液溜部内の蒸気圧が高くなる。その結果、作動液は、作
動液循環回路における作動液溜部と蒸発器とを連通させ
る部分を通って蒸発器内に流入する。蒸発器内の作動液
は、太陽熱等により加熱され気化させられる。ガス状作
動液は、作動液循環回路における蒸発器と凝縮器とを連
通させるガス状作動液供給路を通って凝縮器に到り、こ
こで放熱して凝縮する。凝縮するさいに放たれた熱が蓄
熱槽内の水等に伝えられて渇水等が得られる。液化した
作動液は、作動液循環回路における凝縮器と作動液溜部
とを連通させる通液路を通って作動液溜部に送り込まれ
る。このような動作を繰返して、蒸発器で得られた熱が
、作動液の相変化の潜熱を仲介にして水等に伝えられこ
れが加熱される。
In this heat transport system, when the working fluid in the working fluid reservoir is heated by a heating means such as an electric heater, gas heater, or hot water, the working fluid collected in the working fluid reservoir evaporates, and the vapor pressure in the working fluid reservoir increases. It gets expensive. As a result, the working fluid flows into the evaporator through a portion of the working fluid circulation circuit that communicates the working fluid reservoir with the evaporator. The working fluid in the evaporator is heated and vaporized by solar heat or the like. The gaseous working fluid reaches the condenser through a gaseous working fluid supply path that communicates the evaporator and the condenser in the working fluid circulation circuit, where it radiates heat and condenses. The heat released during condensation is transferred to the water in the heat storage tank, resulting in a water shortage. The liquefied working fluid is sent to the working fluid reservoir through a fluid passageway that communicates the condenser and the working fluid reservoir in the hydraulic fluid circulation circuit. By repeating this operation, the heat obtained in the evaporator is transferred to water etc. via the latent heat of the phase change of the working fluid, and this is heated.

上述のように、この発明の熱輸送システムによれば、加
熱手段によって作動液溜部内に溜まっている作動液を加
熱するだけで熱輸送を行なうことが可能となるので、従
来のように循環ポンプや圧縮機を必要とせず、信頼性も
高くなる。
As described above, according to the heat transport system of the present invention, it is possible to transport heat simply by heating the working fluid accumulated in the working fluid reservoir using the heating means. It does not require a compressor or a compressor, and is highly reliable.

この発明を、以下図面に示す実施例について説明する。This invention will be described below with reference to embodiments shown in the drawings.

図面には、この発明による熱輸送システムが太陽熱利用
給湯システムとして使用されている場合が示されている
The drawing shows the case where the heat transport system according to the invention is used as a solar water heating system.

第1図において、太陽熱利用給湯システムは、屋根の上
等屋外の高所に配置された太陽熱集熱5− 4− 器からなる蒸発器(1)と、蒸発器(1)の下方に配置
されたタンクからなる作動液溜部(2)と、蒸発器(1
)と作動液溜部(2)との間の高さの中間部に配置され
た凝縮器(3)と、作動液溜部(2)と蒸発器(1)と
を連通させる揚液路(4)と、蒸発器(1)と凝縮器(
3)とを連通させるガス状作動液供給路(5)と、凝縮
器(3)と作動液溜部(2)とを連通させる降液路(6
)とで作動液が密閉された作動液循環回路(7)が形成
され、この回路(7)内における蒸発器(1)よりも上
方の位置において揚液路(4)とガス状作動液供給路(
5)にまたがるように気液分離器(8)が配置されたも
のである。
In Figure 1, the solar hot water supply system consists of an evaporator (1) consisting of a solar heat collector placed at a high outdoor location such as on the roof, and an evaporator (1) placed below the evaporator (1). a working fluid reservoir (2) consisting of a tank, and an evaporator (1).
) and the working liquid reservoir (2), and a liquid pumping path ( 4), evaporator (1) and condenser (
3), and a liquid dropout path (6) that communicates between the condenser (3) and the working fluid reservoir (2).
) to form a hydraulic fluid circulation circuit (7) in which the hydraulic fluid is sealed, and in this circuit (7), at a position above the evaporator (1), the liquid pumping path (4) and the gaseous hydraulic fluid supply are connected. Road (
A gas-liquid separator (8) is arranged so as to straddle 5).

作動液溜部(2)の下半部の周囲には作動液加熱用ヒー
タ(9)が配置されている。凝縮器−〇− (3)は、下端部に冷水入口(10)を備えかつ上端部
に温水出口(11)を備えたタンク(12)と、タンク
(12)内に垂直状に配置されたコイル状パイプ(13
)とよりなる。そして、ガス状作動液供給路(5)を通
って蒸発器(1)から送られてきたガス状作動液が、冷
水入口(10)からタンク(12)内に供給された冷水
によって冷却されて凝縮する。凝縮するさいに放たれた
熱は冷水に伝わり、この水が加熱されて温水が得られる
。この渇水が温水出口(11)から送り出される。
A heater (9) for heating the hydraulic fluid is arranged around the lower half of the hydraulic fluid reservoir (2). The condenser (3) includes a tank (12) equipped with a cold water inlet (10) at the lower end and a hot water outlet (11) at the upper end, and is arranged vertically within the tank (12). Coiled pipe (13
). The gaseous working fluid sent from the evaporator (1) through the gaseous working fluid supply path (5) is cooled by the cold water supplied into the tank (12) from the cold water inlet (10). Condense. The heat released during condensation is transferred to the cold water, which is then heated to produce hot water. This dry water is sent out from the hot water outlet (11).

揚液路(4)における作動液溜部(2)と気液分離器(
8)とを連通ずる部分(4a)の下端部は作動液溜部(
2)内に入り込んでその底部で開口している。また、こ
の部分(4a)の上端は気液分離器(8)の周壁に連通
状に接続されている。揚液路(4)における気液分離器
(8)と蒸発器(1)とを連通ずる部分(4b)の上端
は気液分離器(8)の底壁に連通状に接続され、下端は
蒸発器(1)の下端に連通状に接続されている。ガス状
作動液供給路(5)における蒸発器(1)と気液分離器
(8)とを連通ずる部分(5a)の下端は蒸発器(1)
の上端に連通状に接続されており、上端部は気液分離器
(8)の底壁を貫通してその中に入り込んで気液分離器
(8)内の頂部に開口しており、この部分(5a)の上
端は常に作動液の液面よりも上方にくるようになってい
る。したがって、この部分(5a)により蒸発器(1)
内と気液分離器(8)内の上部空間とが均圧化され、気
液分離器(8)内の作動液は自重により揚液路(4)の
部分(4b)を通って蒸発器(1)内7− に流れる。ガス状作動液供給路(5)における気液分離
器(8)と凝縮器(3)とを連通する部分(5b)の上
端は気液分離器(8)の頂壁に連通状に接続され、下端
は凝縮器(3)のコイル状パイプ(13)の上端に連通
状に接続されている。また、この部分(5b)の下端部
と作動液溜部(2)との間には凝縮器(3)内圧力と作
動液溜部(2)内圧力とを均圧化させる均圧路(14)
が設けられている。均圧路(14)は、一端がガス状作
動液供給路(5)の部分(5b)に連通状に接続され、
他端部が作動液溜部(2)の頂壁を貫通してその内部に
入り込み、揚液路(4)の下端開口よりも上方の位置で
作動液溜部〈2〉内に開口している。そして、この均圧
路(14)によって作動液溜部(2)内と凝縮器(3)
内とが均圧化される。また、均圧路(14)8− における作動液溜部(2)よりも上方の部分には70−
ト弁(15)が設けられている。
The working liquid reservoir (2) and the gas-liquid separator (
The lower end of the portion (4a) that communicates with the hydraulic fluid reservoir (
2) It goes inside and opens at the bottom. Moreover, the upper end of this portion (4a) is connected to the peripheral wall of the gas-liquid separator (8) in a continuous manner. The upper end of the portion (4b) that communicates between the gas-liquid separator (8) and the evaporator (1) in the pumping path (4) is connected to the bottom wall of the gas-liquid separator (8), and the lower end is connected to the bottom wall of the gas-liquid separator (8). It is connected in communication with the lower end of the evaporator (1). The lower end of the portion (5a) that communicates the evaporator (1) and the gas-liquid separator (8) in the gaseous working fluid supply path (5) is connected to the evaporator (1).
The upper end penetrates the bottom wall of the gas-liquid separator (8), enters therein, and opens at the top inside the gas-liquid separator (8). The upper end of the portion (5a) is always located above the level of the hydraulic fluid. Therefore, this part (5a) allows the evaporator (1) to
The pressure inside the gas-liquid separator (8) is equalized, and the working liquid in the gas-liquid separator (8) passes through part (4b) of the liquid pumping path (4) due to its own weight to the evaporator. (1) Flows into 7-. The upper end of a portion (5b) of the gaseous working fluid supply path (5) that communicates between the gas-liquid separator (8) and the condenser (3) is connected to the top wall of the gas-liquid separator (8) in a communicating manner. , the lower end is connected in communication with the upper end of the coiled pipe (13) of the condenser (3). Moreover, between the lower end of this part (5b) and the working fluid reservoir (2), there is a pressure equalizing path ( 14)
is provided. The pressure equalization path (14) is connected at one end to a portion (5b) of the gaseous hydraulic fluid supply path (5) in a communicating manner,
The other end penetrates the top wall of the hydraulic fluid reservoir (2) and enters therein, and opens into the hydraulic fluid reservoir <2> at a position above the lower end opening of the fluid pumping path (4). There is. This pressure equalization path (14) connects the inside of the working fluid reservoir (2) and the condenser (3).
The pressure inside and outside is equalized. Further, in the pressure equalizing passage (14) 8-, a portion 70-
A valve (15) is provided.

降液路(6)の上端は凝縮器(3)のコイル状パイプ(
13)の下端に連通状に接続され、下端部は作動液溜部
(2)の頂壁を貫通してその内部に入り込み、均圧路(
14)の下端よりも上方の位置で作動液溜部(2)内に
開口している。
The upper end of the downfall path (6) is connected to the coiled pipe (
13), and the lower end penetrates the top wall of the working fluid reservoir (2) and enters the inside of the pressure equalizing path (2).
14) opens into the working fluid reservoir (2) at a position above the lower end of the hydraulic fluid reservoir (2).

また、降液路(6)の下端と均圧路(14)の下端は同
一高さ位置にあってもよい。降液路(6)における作動
液溜部(2)よりも上方の部分でかつフロート弁(15
)よりも下方の位置には逆止弁(16)が設けられてい
る。逆止弁(16)は、作動液が上方から下方にのみ流
れるようにするものである。
Further, the lower end of the droplet passageway (6) and the lower end of the pressure equalization passageway (14) may be located at the same height position. A portion of the liquid descent path (6) above the working liquid reservoir (2) and a float valve (15).
) is provided with a check valve (16) at a position below. The check valve (16) allows the hydraulic fluid to flow only from above to below.

このような太陽熱利用給温システムにおいて、ヒータ(
9)によって作動液溜部(2)内の作動液を加熱すると
、作動液が気化させられ、作動液溜部(2)内の蒸気圧
が上昇する。その結果、作動液は揚液路(4)、均圧路
(14)および降液路(6)内を上昇する。まず、降液
路(6)を上昇する作動液が逆止弁(16)まで到りそ
の上昇が逆1[弁(16〉により停止させられる。つぎ
に、均圧路(14)を上昇する作動液がフロート弁(1
5)まで到り、フロートが押上げられてフロート弁(1
5)が閉じ作動液の上昇が停止させられる。そうすると
、作動液溜部(2)内の蒸気圧は一層高くなり、揚液路
(4)内の作動液は速やかに上昇を続け、一旦気液分離
器(8)内に流れ込む′。そして、気液分離器(8)の
作用により作動液だけが自重によって蒸発器(1)内に
流入する。蒸発器〈1)内の作動液は太陽熱によって加
熱されて気化させられ、蒸発器(1)内の蒸気圧が高ま
るとこのガス状作動液が気液分離器(8)内の上部空間
およびガス状作動液供給路(5)を経て凝縮器(3)に
流入し、コイル状パイプ(13)の外周面で放熱して凝
縮する。ガス状作動液が凝縮するさいに放たれた熱はタ
ンク(12)内の水に伝わり、この水が加熱される。こ
うして渇水が得られ、この温水が給湯、暖房等に供せら
れる。再液化した作動液は降液路(6)内にたまる。こ
のようにして作動液溜部(2)内の作動液は図面に矢印
で示す方向だ(プに流れるが、作動液溜部(2)内の作
動液が減少してその液面が均圧路(14)の下端開口よ
りも下方にくると、均圧路(14)内におけるフロート
弁(15)よりも下方の部分の作動液が作動液溜部(2
)内に落下し、フロート弁(15)が開く。その結果、
均圧路(14)+1 − によって作動液溜部(2)内の圧力と凝縮器(3)内の
圧力が均圧化され、逆止弁(16)が開いて降液路(6
)内の作動液が作動液溜部(2)に送り込まれる。そし
て、作動液溜部(2)内の作動液の液面が均圧路(14
)の下端開口よりも上方にくると、作動液は再び揚液路
(4)、均圧路(14)および降液路(6)内を上昇し
、上記と同様な動作が行なわれる。このような動作が繰
返してスムーズに行なわれ、太陽熱が、作動液の相変化
の潜熱を仲介にして水に伝えられる。
In such a solar heating system, the heater (
When the hydraulic fluid in the hydraulic fluid reservoir (2) is heated by step 9), the hydraulic fluid is vaporized and the vapor pressure in the hydraulic fluid reservoir (2) increases. As a result, the working fluid rises in the liquid lift path (4), the pressure equalization path (14), and the liquid drop path (6). First, the hydraulic fluid rising in the descending path (6) reaches the check valve (16) and its rise is stopped by the reverse valve (16).Next, the hydraulic fluid rises in the pressure equalizing path (14). Hydraulic fluid flows through the float valve (1
5), the float is pushed up and the float valve (1) is reached.
5) is closed and the rise of the hydraulic fluid is stopped. As a result, the vapor pressure in the working liquid reservoir (2) further increases, and the working liquid in the liquid pumping path (4) continues to rise rapidly and once flows into the gas-liquid separator (8). Then, due to the action of the gas-liquid separator (8), only the working fluid flows into the evaporator (1) by its own weight. The working liquid in the evaporator (1) is heated and vaporized by solar heat, and when the vapor pressure in the evaporator (1) increases, this gaseous working liquid flows into the upper space and gas in the gas-liquid separator (8). The hydraulic fluid flows into the condenser (3) through the hydraulic fluid supply path (5), radiates heat on the outer peripheral surface of the coiled pipe (13), and condenses. The heat released during condensation of the gaseous hydraulic fluid is transferred to the water in the tank (12), heating it. In this way, drought is obtained, and this hot water is used for hot water supply, space heating, etc. The reliquefied working fluid accumulates in the downflow path (6). In this way, the hydraulic fluid in the hydraulic fluid reservoir (2) flows in the direction shown by the arrow in the drawing, but the hydraulic fluid in the hydraulic fluid reservoir (2) decreases and the liquid level equalizes the pressure. When the passage (14) comes below the lower end opening, the hydraulic fluid in the pressure equalizing passage (14) below the float valve (15) flows into the hydraulic fluid reservoir (2).
) and the float valve (15) opens. the result,
The pressure in the working liquid reservoir (2) and the pressure in the condenser (3) are equalized by the pressure equalization path (14) +1 -, and the check valve (16) opens to open the liquid downfall path (6).
) is sent to the hydraulic fluid reservoir (2). Then, the liquid level of the hydraulic fluid in the hydraulic fluid reservoir (2) is lowered to the pressure equalizing path (14).
), the working fluid rises again in the liquid lift path (4), pressure equalization path (14), and liquid drop path (6), and the same operation as described above is performed. These operations are repeated and smoothly performed, and solar heat is transferred to the water via the latent heat of the phase change of the working fluid.

第2図にはこの発明の他の実施例が示されている。第2
図に示されている太陽熱利用給湯システムにおいては、
タンクからなる作動液溜部に代えてU字管からなる作動
液溜部(20)が用いられている。そして、揚液路(4
)における13− 12− 作動液溜部(20)と気液分離機(8)とを連通ずる部
分(4a)の下端がU字形作動液溜部(20)の2つの
立上り部(20a > (20b ) +7)うち一方
の立上り部(20a)の上端に連通状に接続され、降液
路(6)の下端が作動液溜部(20)の同他方の立上り
部(20b)の上端に連通状に接続されている。また、
均圧路(14)の下端は、作動液溜部(20)における
揚液路(4)と接続された立上り部(20a )の上端
に連通状に接続されている。作動液溜部(20)におけ
る降液路(6)と接続された立上り部(20b )の周
囲に作動液加熱用ヒータ(21)が配置されている。
Another embodiment of the invention is shown in FIG. Second
In the solar water heating system shown in the figure,
In place of the hydraulic fluid reservoir consisting of a tank, a hydraulic fluid reservoir (20) consisting of a U-shaped tube is used. And the pumping path (4
13-12- The lower end of the portion (4a) communicating between the working liquid reservoir (20) and the gas-liquid separator (8) is U-shaped in the U-shaped working fluid reservoir (20). 20b) +7) Connected to the upper end of one of the rising parts (20a) in a communicating manner, and the lower end of the liquid drop passage (6) communicates with the upper end of the other rising part (20b) of the working liquid reservoir (20). connected in a similar manner. Also,
The lower end of the pressure equalization path (14) is connected in communication with the upper end of the rising portion (20a) of the working fluid reservoir (20), which is connected to the liquid pumping path (4). A heater (21) for heating the hydraulic fluid is arranged around the rising portion (20b) of the hydraulic fluid reservoir (20) that is connected to the descending path (6).

その伯の構成は第1図に示すシステムと同一であり、同
一物品および同一部分には同一符号を付して説明を省略
する。
The configuration of this system is the same as that of the system shown in FIG. 1, and the same items and parts are given the same reference numerals and the explanation thereof will be omitted.

このような構成において、ヒータ(21)によ−17!
l− つて作動液溜部(20)内の作動液を加熱すると、作動
液が気化させられて作動液溜部(20)内の蒸気圧が上
昇し、その結果作動液溜部(20)内の作動液は、揚液
路(4)、均圧路〈14)および降液路(6)内を上昇
し、第1図に示すシステムと同様にして渇水が得られる
。作動液溜部(20)内の作動液が減少し、揚液路(4
)内を上昇している部分の下端がフロート弁〈15)よ
りも上方にくると均圧路(14)内におけるフロート弁
(15)よりも下方の部分の作動液が作動液溜部(20
)内に落下し、フロート弁(15)が開く。その結果、
均圧路(14)によって作動液溜部(20)内の圧力と
凝縮器(3)内の圧力とが均圧化され、降液路(6)内
の作動液が作動液溜部(20)内に流下して元の状態に
戻る。このような動作が繰返して行われる。
In such a configuration, the heater (21) provides -17!
l- When the hydraulic fluid in the hydraulic fluid reservoir (20) is heated, the hydraulic fluid is vaporized and the vapor pressure in the hydraulic fluid reservoir (20) increases. The working fluid rises in the liquid lift path (4), pressure equalization path (14), and liquid drop path (6), and drought is obtained in the same manner as the system shown in FIG. The hydraulic fluid in the hydraulic fluid reservoir (20) decreases and the hydraulic fluid in the hydraulic fluid pumping path (4
) is above the float valve (15), the hydraulic fluid in the pressure equalizing passage (14) below the float valve (15) flows into the hydraulic fluid reservoir (20).
) and the float valve (15) opens. the result,
The pressure in the working fluid reservoir (20) and the pressure in the condenser (3) are equalized by the pressure equalizing path (14), and the working fluid in the downflow path (6) is equalized by the pressure in the working fluid reservoir (20). ) and return to its original state. Such operations are repeated.

上記2つの実施例においては気液分離器(8)が設けら
れているが、これは必ずしも必要とするものではない。
Although a gas-liquid separator (8) is provided in the above two embodiments, this is not necessarily required.

また、上記2つの実施例では、この発明の熱輸送システ
ムが太陽熱利用給湯システムに適用された場合が示され
ているが、これに限らず排熱回収システムに適用するこ
とも可能である。この場合、蒸発器(1)内の作動液が
排熱で加熱されるようにしておく。さらに、この発明の
熱輸送システムは他のシステムにも適用可能である。
Further, in the above two embodiments, the case where the heat transport system of the present invention is applied to a solar hot water supply system is shown, but the present invention is not limited to this, and it is also possible to apply it to an exhaust heat recovery system. In this case, the working fluid in the evaporator (1) is heated by exhaust heat. Furthermore, the heat transport system of the present invention is applicable to other systems.

また、上記2つの実施例においては、蒸発器の下方に凝
縮器が配置され、凝縮器の下方に作動液溜部が配置され
ているが、これに限るものではなく、蒸発器と凝縮器、
凝縮器と作動液溜部、または3者を同一高さ位置に配置
しておいてもよい。
Further, in the above two embodiments, the condenser is disposed below the evaporator, and the working fluid reservoir is disposed below the condenser, but the present invention is not limited to this.
The condenser and the working fluid reservoir, or the three may be placed at the same height.

−1J −-1J-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示ず太陽熱利用ある。 (1)・・・蒸発器、(2>(20)・・・作動液溜部
、(3)・・・凝縮器、(7)・・・密閉状作動液循環
回路、(9) (21)・・・加熱ヒータ(加熱手段)
。 以 上 17− 16一
FIG. 1 does not show an embodiment of the present invention, which uses solar heat. (1)... Evaporator, (2>(20)... Working fluid reservoir, (3)... Condenser, (7)... Sealed working fluid circulation circuit, (9) (21 )...heater (heating means)
. Above 17-16-1

Claims (1)

【特許請求の範囲】[Claims] 蒸発器(1)と、蒸発器(1)と同一高さ位置またはこ
れより下方に配置された凝縮器(3)と、凝縮器(3)
と同一高さ位置またはこれより下方に配置された作動液
溜部(2)(20)とが導管を介して接続されて内部に
作動液が封入された密閉状作動液循環回路(7)が構成
され、作動液溜部(2)(20)に内部の作動液を加熱
するための加熱手段(9)が設けられている熱輸送シス
テム。
An evaporator (1), a condenser (3) located at the same height as the evaporator (1) or below it, and a condenser (3)
A closed hydraulic fluid circulation circuit (7) in which the hydraulic fluid reservoirs (2) and (20) arranged at the same height or below are connected via a conduit, and the hydraulic fluid is sealed inside. A heat transport system in which a heating means (9) for heating the internal working fluid is provided in the working fluid reservoir (2) (20).
JP58182405A 1983-09-29 1983-09-29 Heat transporting system Pending JPS6071855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58182405A JPS6071855A (en) 1983-09-29 1983-09-29 Heat transporting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58182405A JPS6071855A (en) 1983-09-29 1983-09-29 Heat transporting system

Publications (1)

Publication Number Publication Date
JPS6071855A true JPS6071855A (en) 1985-04-23

Family

ID=16117727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58182405A Pending JPS6071855A (en) 1983-09-29 1983-09-29 Heat transporting system

Country Status (1)

Country Link
JP (1) JPS6071855A (en)

Similar Documents

Publication Publication Date Title
US4552208A (en) Heat actuated system for circulating heat transfer fluids
US4224805A (en) Subterranean heat exchanger for refrigeration air conditioning equipment
US4270521A (en) Solar heating system
US4327555A (en) Solar air conditioning system
KR20190067207A (en) Sub-atmospheric heat and cold system
MX2012002813A (en) Self-powered pump for heated liquid and heat driven liquid close - loop automatic circulating system employing same.
CN208222880U (en) A kind of fused salt emptying system of solar energy optical-thermal heat-exchange system
US4441902A (en) Heat reclaiming method and apparatus
CN107702240A (en) A kind of combined type solution dehumidification again generating apparatus and dehumidifying renovation process
US4171721A (en) Refrigeration apparatus
US4224925A (en) Heating system
JPS6071855A (en) Heat transporting system
US4270522A (en) Solar heat collection and transfer system
JPS6071856A (en) Heat transportation system
JPS6071857A (en) Heat transportation system
JPH09178376A (en) Loop type heat transporting system
AU2007312922A1 (en) Absorption refrigerator
EP0065048B1 (en) System and method for heating a liquid by solar heat
JPH0535355B2 (en)
CA1126115A (en) Phase-change heat transfer system
JPS60174488A (en) Heat transfer system
JPS60174487A (en) Heat transfer system
CA1170522A (en) Heat transfer apparatus and method
AU770892B2 (en) Water heater with vapour phase downward heat transfer
JPS60205187A (en) Heat transport system