JPS60174487A - Heat transfer system - Google Patents

Heat transfer system

Info

Publication number
JPS60174487A
JPS60174487A JP2929584A JP2929584A JPS60174487A JP S60174487 A JPS60174487 A JP S60174487A JP 2929584 A JP2929584 A JP 2929584A JP 2929584 A JP2929584 A JP 2929584A JP S60174487 A JPS60174487 A JP S60174487A
Authority
JP
Japan
Prior art keywords
working fluid
pressure
evaporator
condenser
pressure generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2929584A
Other languages
Japanese (ja)
Inventor
Katsuhisa Suzuki
勝久 鈴木
Kazuo Taga
和夫 多賀
Noboru Ogasawara
昇 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP2929584A priority Critical patent/JPS60174487A/en
Publication of JPS60174487A publication Critical patent/JPS60174487A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To eliminate the necessity for a circulation pump and a compressor by connecting a condensor and a fluid medium storage section with a conduit, disposing a pressure generator between a vaporizer and the fluid medium storage section and connecting the pressure generator and fluid medium storage section with a pressurizing conduit having a valve. CONSTITUTION:A condenser 3 is arranged below the height of a vaporizer 1, and a fluid medium storage section 2 is arranged below the height of the condenser 3. The condenser 3 and fluid medium storage section 2 are connected through a conduit. A pressure generator 9 is arranged between the vaporizer 1 and fluid medium storage section 2. The vaporizer 1 and pressure generator 9 are connected by a fluid medium supply passage 10, and further the pressure generator 9 and fluid medium storage section 2 are connected by a pressurizing passage 11 which has a valve 17. Because of such an arrangement, the heat transfer can be conducted merely by heating the fluid medium inside the pressure generator 9, thus eliminating the necessity for a power source such as a circulation pump or a compressor.

Description

【発明の詳細な説明】 この発明は、たとえば太陽熱利用給湯システムにおいで
、太陽光から吸収した熱を熱媒を介して離れた場所にあ
る蓄熱槽内の水に伝え、この水を加温するシステムとし
て用いられる熱輸送システムに関する。
[Detailed Description of the Invention] This invention, for example, in a solar hot water supply system, heats the water by transmitting heat absorbed from sunlight via a heating medium to water in a heat storage tank located at a remote location. It relates to a heat transport system used as a system.

従来の太陽熱利用給湯システムにおいては、熱媒を循環
させるために循環ポンプや圧縮機などの動力源を必要と
したが、これらの動力源は故障し易く、修理や保守点検
が面倒であるという問題があった。
Conventional solar water heating systems require power sources such as circulation pumps and compressors to circulate the heat medium, but these power sources tend to break down easily and are troublesome to repair and maintain. was there.

この発明は上記実情に鑑みてなされたものであって、循
環ポンプや圧縮機などを必要としない熱輸送システムを
提供することを目的と1”る。
This invention was made in view of the above circumstances, and an object thereof is to provide a heat transport system that does not require a circulation pump or a compressor.

この発明による熱輸送システムは、蒸発器と、蒸発器以
下の高さ位置に配置された凝縮器と、凝縮器以下の高さ
位置に配置された作動液溜部どが導管を介して接続され
て内部に作動液が封入された密閉状作動液循環回路が構
成され、蒸発器と作動液溜部との間に圧力発生器が配置
され、蒸発器と圧力発生器どが作動液供給路で連通させ
られ、圧力発生器と作動液溜部とが加圧路で連通させら
れ、加圧路に弁が設けられているものである。
In the heat transport system according to the present invention, an evaporator, a condenser placed at a height below the evaporator, and a working liquid reservoir placed at a height below the condenser are connected via a conduit. A closed working fluid circulation circuit is constructed in which working fluid is sealed inside, and a pressure generator is placed between the evaporator and the working fluid reservoir, and the evaporator and pressure generator are connected to the working fluid supply path. The pressure generator and the working fluid reservoir are communicated through a pressurizing path, and the pressurizing path is provided with a valve.

上記において、作動液としてはフレオン11、フレオン
113、水等のように気相と液相とに相互に変化しやす
いものが用いられる。また、作動液は、システム内を真
空引きした後不凝縮ガスを除去した状態で蒸発器および
圧力発生器内に密閉される。
In the above, the working fluid used is one that easily changes between the gas phase and the liquid phase, such as Freon 11, Freon 113, and water. Furthermore, after the system is evacuated, the working fluid is sealed in the evaporator and pressure generator with non-condensable gas removed.

上記において、圧力発生器はその内部の作動液を加熱し
て気化させ、このガス状作動液を作動液溜部に送って作
動液溜部内の圧ノコを上昇させるためのものである。加
熱源としては、太陽熱、ガスヒータ、電気ヒータなどが
用いられる。
In the above, the pressure generator heats and vaporizes the working fluid inside the pressure generator, and sends this gaseous working fluid to the working fluid reservoir to raise the pressure saw inside the working fluid reservoir. As a heating source, solar heat, a gas heater, an electric heater, etc. are used.

圧力発生器内の作動液を加熱し気化させたときの内部蒸
気圧は、蒸発器内の作動液が加熱され気化させられたと
きの内部蒸気圧よりも大きくなるようにしておくのがよ
い。
The internal vapor pressure when the working fluid in the pressure generator is heated and vaporized is preferably greater than the internal vapor pressure when the working fluid in the evaporator is heated and vaporized.

作動液溜部としては、タンク、U字形管、蛇行管などか
らなるものが用いられる。作動液溜部の内容積は、作動
液循環回路における作動液溜部と蒸発器とを連通させる
部分の内容積よりも大きくしておくのがよい。こうして
おけば、圧力発生器から作動液溜部内にガス状作動液を
送り込んださいに、作動液溜部内の作動液は容易に蒸発
器に流れる。
As the working fluid reservoir, a tank, a U-shaped pipe, a meandering pipe, or the like is used. The internal volume of the working fluid reservoir is preferably larger than the internal volume of a portion of the working fluid circulation circuit that communicates the working fluid reservoir with the evaporator. With this arrangement, when the gaseous working fluid is sent from the pressure generator into the working fluid reservoir, the working fluid in the working fluid reservoir easily flows to the evaporator.

加圧路に設【ノられる弁は、圧力発生器内の圧力が所定
圧に達するまでは閉状態とされ、所定圧に達す、ると開
状態とされ、再度圧力が下がると開状態とされるもので
、1cとえば電磁弁、圧力調整弁などが用いられる。
The valve installed in the pressurizing path is closed until the pressure inside the pressure generator reaches a predetermined pressure, when it reaches the predetermined pressure, it is opened, and when the pressure drops again, it is opened. For example, a solenoid valve, a pressure regulating valve, etc. are used.

この熱輸送システムにおいて、圧力発生器内の作動液が
、太陽熱等で加熱されると圧力発生器内の作動液が蒸発
し、圧力発生器内の蒸気圧が高まる。この蒸気圧が高ま
って所定圧に達し1=ときに加圧路の弁が開状態となる
とこのガス状作動液が加圧路を通って凝縮器内に流れ込
んで凝縮器内の蒸気圧が高くなる。その結果、作動液は
、作動液循環回路における作動液溜部と蒸発器とを連通
させる部分を流れ、蒸発器内に流入する。蒸発器内の作
動液は、太陽熱等により加熱され気化させられる。また
、凝縮器から送り込まれた作動液は、作動液供給路を通
過して圧ノj発生器内に入る。一方、圧力発生器から凝
縮器内に流入したガス状作動液は凝縮器内に溜まってい
る。ガス状作動液が凝縮器に流入した結果圧力発生器内
の蒸気圧が所定圧以下に下がると、加圧路に設けられた
弁が閉状態となる。
In this heat transport system, when the working fluid in the pressure generator is heated by solar heat or the like, the working fluid in the pressure generator evaporates, and the vapor pressure in the pressure generator increases. When this vapor pressure increases and reaches a predetermined pressure, the valve in the pressurizing path is opened, and this gaseous working fluid flows into the condenser through the pressurizing path, increasing the vapor pressure in the condenser. Become. As a result, the working fluid flows through a portion of the working fluid circulation circuit that communicates the working fluid reservoir with the evaporator, and flows into the evaporator. The working fluid in the evaporator is heated and vaporized by solar heat or the like. Further, the working fluid sent from the condenser passes through the working fluid supply path and enters the pressure nozzle generator. On the other hand, the gaseous working fluid that has flowed into the condenser from the pressure generator remains in the condenser. When the vapor pressure in the pressure generator drops below a predetermined pressure as a result of the gaseous working fluid flowing into the condenser, the valve provided in the pressurizing path is closed.

そして、蒸発器で得られたガス状作動液は凝縮器に到り
、ここで放熱して凝縮する。凝縮するさいに放たれた熱
が蓄熱槽内の水等に伝えられて温水等が得られる。液化
した作動液は、作動液循環回路における凝縮器と作動液
溜部とを連通させる通液路を通って作動液溜部に送られ
る。
Then, the gaseous working fluid obtained in the evaporator reaches the condenser, where it radiates heat and condenses. The heat released during condensation is transferred to the water in the heat storage tank to obtain hot water. The liquefied working fluid is sent to the working fluid reservoir through a fluid path that communicates the condenser and the working fluid reservoir in the hydraulic fluid circulation circuit.

また、圧力発生器から作動液溜部に流入したガス状作動
液は、作動液溜部内の作動液に放熱して液化する。この
ような動作を繰返して、蒸発器で得られた熱が、作動液
の相変化の潜熱を仲介にして水等に伝えられ、これが加
熱される。
Further, the gaseous working fluid that has flowed into the working fluid reservoir from the pressure generator radiates heat to the working fluid in the working fluid reservoir and is liquefied. By repeating such an operation, the heat obtained in the evaporator is transferred to water etc. via the latent heat of phase change of the working fluid, and this is heated.

上述のように、この発明の熱輸送システムによれば、圧
力発生器内の作動液が加熱されるだ【ノで熱輸送を行な
うことが可能となるので、従来のように循環ポンプや圧
縮機を必要とじず、信頼性も高くなる。また、受熱部の
下方に放熱1部が位置していてもスムーズな熱輸送を行
なえる。
As mentioned above, according to the heat transport system of the present invention, it is possible to transport heat by heating the working fluid in the pressure generator, so that it is possible to transport heat by heating the working fluid in the pressure generator. is not required, and reliability is also increased. Furthermore, even if the heat dissipation section is located below the heat receiving section, smooth heat transport can be achieved.

この発明を、以下図面に示す実施例について説明する。This invention will be described below with reference to embodiments shown in the drawings.

図面には、この発明による熱輸送システムが太陽熱利用
給湯システムどして使用されている場合が示されている
The drawings show the case where the heat transport system according to the invention is used as a solar water heating system.

太陽熱利用給湯システムは、屋根の上等屋外の高所に配
置された太陽熱集熱器からなる蒸発器(1)と、蒸発器
(1)の下方に配置されたタンクからなる作動液溜部(
2)と、蒸発仝(1)と作動液溜部(2)との間の高さ
の中間部に配置された凝縮器(3)と、作動液溜部(2
)と蒸発器(1)とを連通させる揚液路(4)と、蒸発
器(1)と凝縮器(3)とを連通させるガス状作動液供
給路(5)と、凝縮器(3)と作動液溜部(2)とを連
通させる降液路(6)どで作動液が密閉された密閉状作
動液循環回路(7)が形成され、蒸発器(1)と作動液
溜部(2)との間において蒸発器〈1)とほぼ同じ高さ
位置に圧力発生器(9)が配置され、蒸発器(1)と圧
力発生器(9)とが作動液供給路(10)で連通さゼら
れ、圧力発生器(9)と作動液溜部(2)とが加圧路(
11)で連通させられたものである。
A solar hot water supply system consists of an evaporator (1) consisting of a solar heat collector placed at a high outdoor location such as on the roof, and a working fluid reservoir (1) consisting of a tank placed below the evaporator (1).
2), a condenser (3) located at an intermediate height between the evaporator (1) and the working fluid reservoir (2), and a working fluid reservoir (2).
) and the evaporator (1), a gaseous working liquid supply path (5) that communicates the evaporator (1) and the condenser (3), and a condenser (3). A closed working fluid circulation circuit (7) is formed in which the working fluid is sealed at a drop-off path (6) that communicates between the evaporator (1) and the working fluid reservoir (2). A pressure generator (9) is arranged at approximately the same height as the evaporator (1) between the evaporator (1) and the pressure generator (9). The pressure generator (9) and the working fluid reservoir (2) are connected to each other through the pressurizing path (
11).

凝縮器(3)は、その内部にコイル状バイブ(12)を
備えており、゛ガス状作動液供給路(5)を通って蒸発
器(1)から送られてきたガス状作動液が、コイル状パ
イプ(12)内を流れる水によって冷却されて凝縮する
。凝縮するさいに放たれた熱は冷水に伝わり、この水が
加熱されて温水が1りられる。
The condenser (3) is equipped with a coiled vibrator (12) inside thereof, and the gaseous working fluid sent from the evaporator (1) through the gaseous working fluid supply path (5) is It is cooled and condensed by the water flowing inside the coiled pipe (12). The heat released during condensation is transferred to the cold water, which is then heated to produce hot water.

揚液路(4)の一端部は作動液溜(2)内に入り込んで
その底部に開口し、他端部は蒸発器(1)の上端部に連
通状に接続されでいる。ガス状作動液供給路(5)の一
端は蒸発器(1)の上端部に連通状に接続され、他端は
凝縮器(3〉の頂壁に接続されて頂壁に開口している。
One end of the liquid pumping path (4) enters the working liquid reservoir (2) and opens at its bottom, and the other end is connected in communication with the upper end of the evaporator (1). One end of the gaseous working fluid supply path (5) is connected to the upper end of the evaporator (1) in a continuous manner, and the other end is connected to the top wall of the condenser (3>) and opens into the top wall.

また、ガス状作動液供給路(5)の凝縮器(3)寄りの
部分と作動液溜部(2)との間に凝縮器(3)内圧力と
作動液溜部(2)内圧力とを均圧化させる均圧路(13
)が設けられている。均圧路(13)は、一端がガス状
作動液供給路(5)の下端部に連通状に接続され、他端
部が作動液溜部(2)の頂壁に連通状に接続されている
Moreover, between the part of the gaseous working fluid supply path (5) near the condenser (3) and the working fluid reservoir (2), the internal pressure of the condenser (3) and the internal pressure of the working fluid reservoir (2) are connected. pressure equalization path (13
) is provided. The pressure equalization path (13) has one end connected in a continuous manner to the lower end of the gaseous working fluid supply path (5), and the other end connected in a continuous manner to the top wall of the working fluid reservoir (2). There is.

また、均圧路(13)にはフロート弁(14)が設けら
れている。
Further, a float valve (14) is provided in the pressure equalization path (13).

降液路(6)の上端は凝縮器(3)の下端に連通状に接
続され、下端部は作動液溜部(2)の頂壁に連通状に接
続されている。また、降液路(6)における作動液溜部
(2)よりも上方の部分でかつフロー1−弁(14)よ
りも下方の位置には逆止弁(15)が設けられている。
The upper end of the liquid descent path (6) is connected in a continuous manner to the lower end of the condenser (3), and the lower end is connected in a continuous manner to the top wall of the working liquid reservoir (2). Further, a check valve (15) is provided in a portion of the liquid descent path (6) above the working liquid reservoir (2) and below the flow 1-valve (14).

逆止弁(15)は、作動液が上方から下方、すなわち凝
縮器(3)から作動液溜部(2)にのみ流れるようにす
るものである。
The check valve (15) allows the hydraulic fluid to flow only from the top to the bottom, that is, from the condenser (3) to the hydraulic fluid reservoir (2).

圧力発生器(9)は、太陽熱集熱器がらなり屋根の上等
に配置されている。作動液供給路(10)は、一端が蒸
発器(1)の下端に連通状に接続され、他端が圧力発生
器(9)の下端に連通状に接続されている。また、作!
F!IJ液供給路(10)には逆止弁(16)が設けら
れている。逆止弁(1G)は、作動液が蒸発器(1)か
ら圧力発生器(9)にだけ流れるようにりるものぐある
。また、作動液供給路(10)とガス状作動液供給路(
5)とにまたがって、蒸発器(1)向上端部と下端部と
を均圧化する均圧路(18)が設けられている。加圧路
(11)の一端は圧力発生器(9)の上端に連通状に接
続され、他端は作動液溜部(2)の周壁の下端部に連通
状に接続されている。加圧路(11)には、圧力発生器
(9)内の蒸気圧が所定圧に達するまでは閉状態で、所
定圧に達したときにのみ開状態となり、蒸気圧が再度下
がると閉状態となる電磁弁(17)が設けられている。
The pressure generator (9) is arranged on the roof of the solar collector. The working fluid supply path (10) has one end connected to the lower end of the evaporator (1) in a communicating manner, and the other end connected to the lower end of the pressure generator (9) in a communicating manner. Also, made!
F! A check valve (16) is provided in the IJ liquid supply path (10). A check valve (1G) is provided to ensure that the working fluid flows only from the evaporator (1) to the pressure generator (9). In addition, a hydraulic fluid supply path (10) and a gaseous hydraulic fluid supply path (
5), a pressure equalizing passage (18) is provided to equalize the pressure between the upper end and the lower end of the evaporator (1). One end of the pressurizing path (11) is connected in a communicating manner to the upper end of the pressure generator (9), and the other end is connected in a communicating manner to the lower end of the peripheral wall of the working fluid reservoir (2). The pressurizing path (11) is closed until the steam pressure in the pressure generator (9) reaches a predetermined pressure, opens only when the predetermined pressure is reached, and closes when the steam pressure drops again. A solenoid valve (17) is provided.

上記所定圧とは、この実施例においては、蒸発器〈1)
向上部の蒸気圧に、作動液を作動液溜部(2)から揚液
路(4)の上端まで揚げるのに必要な圧力を加えたもの
である。
In this embodiment, the above-mentioned predetermined pressure refers to the evaporator (1)
The pressure required to lift the working fluid from the working fluid reservoir (2) to the upper end of the liquid pumping path (4) is added to the vapor pressure in the booster.

作動液は、システム内を真空引ぎした後に蒸発器(1)
および迂ツノ発生器(9)に入れられる。作動液の量は
、熱輸送システムの稼動中、蒸発器(1)および圧力発
生器(9)が決して空にならないようなmとされている
After the system is evacuated, the working fluid is transferred to the evaporator (1).
and put into the round horn generator (9). The amount of working fluid is such that the evaporator (1) and the pressure generator (9) are never empty during operation of the heat transport system.

このような太陽熱利用給湯システムにおいて、まず蒸発
器(1)内の作動液が太陽熱により加熱されて気化させ
られ、ガス状作動液がガス状作動液供給路(5)を通っ
て凝縮器(3)内に送られる。そして、コイル状バイブ
(12)内を流れる冷水によって冷却されて液化し、液
化した作動液が降液路(6)を通って作動液溜部(2)
内に流入し、その液面が揚液路(4)の下端部L1より
も上方にくる。圧力発生器(9)内の作動液が太陽熱に
より加熱され気化させられると圧力発生器(9)内の蒸
気圧がF昇する。
In such a solar hot water supply system, first, the working fluid in the evaporator (1) is heated and vaporized by solar heat, and the gaseous working fluid passes through the gaseous working fluid supply path (5) to the condenser (3). ) is sent within. Then, it is cooled and liquefied by the cold water flowing inside the coiled vibrator (12), and the liquefied working fluid passes through the downflow path (6) and enters the working fluid reservoir (2).
The liquid level is above the lower end L1 of the liquid pumping path (4). When the working fluid in the pressure generator (9) is heated and vaporized by solar heat, the vapor pressure in the pressure generator (9) increases by F.

この蒸気圧が所定圧に達すると¥X電磁弁11)が間ぎ
、高圧のガス状作動液が加圧路(11)を通って勢いよ
く作動液溜部(2)に送込まれる。
When this vapor pressure reaches a predetermined pressure, the ¥X electromagnetic valve 11) is closed, and the high-pressure gaseous working fluid is forcefully sent into the working fluid reservoir (2) through the pressurizing path (11).

そして、フロートが押上げられてフロート弁(14)が
閉じるとともに逆止弁(15)が閉じられて凝縮器(3
)から作動液溜部(2)への作動液の流入が停止する。
Then, the float is pushed up and the float valve (14) is closed, and the check valve (15) is closed and the condenser (3) is closed.
) to the hydraulic fluid reservoir (2) is stopped.

その結果作動液溜部(2)内に溜まっている作動液が揚
液路(4)を通って蒸発器(1)内に送込まれるととも
に作動液供給路(10)を通って圧力発生器(9)に送
込まれる。作動液溜部(2)内に送り込まれたガス状作
動液は作動液溜部(2)内にとどまっている。凝縮器(
3)内の液面が下がって揚液路(4)の下端よりも下方
にくると圧力発生器(9)内の蒸気圧が所定圧以下に下
がって電磁弁(11)が閉じる。一方、圧力発生器(9
)内のガス状作動液が凝縮器(3)に送り込まれている
間にも蒸発器(1)内の作動液は太陽熱により加熱され
気化させられており、このガス状作動液がガス状作動液
供給路(5)を通って凝縮器(3)内に流入し、コイル
状バイブ(12)内を流れる水に放熱して凝縮する。ガ
ス状作動液が凝縮するさいに放たれ7.−熱によりコイ
ル状バイブ(12)内の水が加熱される。こうして温水
が得ら・れ、この温水が給湯、暖房等に供せられる。電
磁弁(17)が閉じて圧ツノ発生器(9)から作動液溜
部(2)内へのガス状作動液の供給が停止され、かつ作
動液溜部(2)内の液面が揚液路(4)の下端よりも下
方にくると作動液溜部(2)内の圧力が下がり、フロー
ト弁(14)が開く。その結果、均圧路(13)によっ
て作動液溜部(2)内の圧力と凝縮器(3)内の圧ノJ
とが均圧下され、逆止弁(15)が聞いて凝縮器(3)
で液化した作動液が作動液溜部(2)に送られる。圧力
発生器(9)から作動液溜部(2)に送り込まれたガス
状作動液は、凝縮器(3)から作動液溜部(2)に流入
してきた作動液に放熱して凝縮する。そして、作動液溜
部(2)内の作動液の液面が揚液路(4)の下端r11
0よりも上方にきて、しかも圧力発生器(9)内の圧力
が所定圧に達すると上記と同様な動作が行なわれる。こ
のような動作が繰返して行なわれ、太陽熱が、作動液の
相変化の潜熱を仲介にして水に伝えられる。
As a result, the hydraulic fluid accumulated in the hydraulic fluid reservoir (2) is sent into the evaporator (1) through the liquid pumping path (4), and also passes through the hydraulic fluid supply path (10) to the pressure generator. (9). The gaseous hydraulic fluid sent into the hydraulic fluid reservoir (2) remains within the hydraulic fluid reservoir (2). Condenser(
3) When the liquid level in the pressure generator (9) falls below the lower end of the liquid pumping path (4), the steam pressure in the pressure generator (9) falls below a predetermined pressure and the solenoid valve (11) closes. On the other hand, the pressure generator (9
) is being sent to the condenser (3), the working fluid in the evaporator (1) is being heated and vaporized by solar heat, and this gaseous working fluid is being fed into the condenser (3). The liquid flows into the condenser (3) through the liquid supply path (5), radiates heat to the water flowing in the coiled vibrator (12), and is condensed. 7. released when the gaseous working fluid condenses. - The heat heats the water in the coiled vibrator (12). In this way, hot water is obtained, and this hot water is used for hot water supply, space heating, etc. The solenoid valve (17) closes, the supply of gaseous hydraulic fluid from the pressure horn generator (9) to the hydraulic fluid reservoir (2) is stopped, and the liquid level in the hydraulic fluid reservoir (2) rises. When the liquid reaches below the lower end of the liquid path (4), the pressure in the working liquid reservoir (2) decreases and the float valve (14) opens. As a result, the pressure in the working fluid reservoir (2) and the pressure in the condenser (3) are controlled by the pressure equalization path (13).
When the pressure is equalized and the check valve (15) is activated, the condenser (3)
The liquefied hydraulic fluid is sent to the hydraulic fluid reservoir (2). The gaseous working fluid sent from the pressure generator (9) to the working fluid reservoir (2) radiates heat to the working fluid flowing into the working fluid reservoir (2) from the condenser (3) and condenses. Then, the liquid level of the hydraulic fluid in the hydraulic fluid reservoir (2) reaches the lower end r11 of the liquid pumping path (4).
When the pressure inside the pressure generator (9) reaches a predetermined pressure, the same operation as described above is performed. Such operations are repeated, and solar heat is transferred to the water via the latent heat of the phase change of the working fluid.

上記実施例においては圧力発生器として太陽熱集熱器か
らなるものが用いられているが、これに限らず電気ヒー
タ、ガスヒータ等により加熱されるものを用いてもよい
。また、上記実施例では、この発明の熱輸送システムが
太陽熱利用給湯システムに適用された場合が示されてい
るが、これに限らず排熱回収システムに適用することも
可能である。この場合、蒸発器(1)内の作動液が排熱
で加熱されるようにしておく。
In the above embodiments, a solar heat collector is used as the pressure generator, but the pressure generator is not limited to this, and a pressure generator heated by an electric heater, gas heater, etc. may also be used. Further, in the above embodiments, the case where the heat transport system of the present invention is applied to a solar hot water supply system is shown, but the present invention is not limited to this, and can also be applied to an exhaust heat recovery system. In this case, the working fluid in the evaporator (1) is heated by exhaust heat.

さらに、この発明の熱輸送システムは他のシステムにも
適用可能である。
Furthermore, the heat transport system of the present invention is applicable to other systems.

また、上記実施例においでは、蒸発器の下方に凝縮器が
配置され、凝縮器の下方に作動液溜部が配置されている
が、これに限るものではなく、蒸発器と凝縮器、凝縮器
と作動液溜部、または3者を同一高さ位置に配置してお
いてもよい。
In addition, in the above embodiment, the condenser is placed below the evaporator, and the working fluid reservoir is placed below the condenser, but the invention is not limited to this. and the hydraulic fluid reservoir, or the three may be arranged at the same height.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示す太陽熱利用給湯システム
の回路図である。 (1)・・・蒸発器、(2)・・・作動液溜部、(3)
・・・凝縮器、(7)・・・作動液が密閉された密閉状
作動液循環回路、(9)・・・圧力発生器、(10〉・
・・作動液供給路、(11)・・・加圧路、(11)・
・・電磁弁。 以 上 外4名 手続補正書 昭和59 年5月3Q日 1、事件の表示 昭和59任特Il願第29295 号
2、発明の名称 熱輸送システム 3、補正をする者 事件との関係 特1.′1出願人 住 所 堺市海山町6丁224番地 ンヨウワ 氏名・名称 昭和アルミニウム株式会社4、代 理 人 外4名 5、補正命令の日付 昭和 年 月 116 補正によ
り増加する発明の数 以上 明 細 書 (補正) 1、発明の名称 熱輸送システム 2、特許請求の範囲 蒸発器(1)と、蒸発器(1)以下の高さ位置に配置さ
れた凝縮器(3)と、凝縮器(3)以下の高さ位置に配
置された作動液溜部(2)とが導慎を介して接続されて
内部に作動液が封入されIC密閉状作動液循環回路く7
)が構成され、蒸発器(1)と作動液溜部く2)どの間
に圧ツノ発生器(9)が配置され、蒸発器(1)と圧ノ
j発生器(9)とが作動液供給路(10)で連通させら
れ、圧力発生器(9)と作動液溜部(2)とが加圧路(
11)で連通させられ、加圧路(11)に弁(17)が
段りられている熱輸送システム。 3、発明の詳細な説明 この発明は、たとえば太陽熱利用給湯システムにおいて
、太陽光から吸収した熱を熱媒を介して離れた場所にあ
る蓄熱槽内の水に伝え、この水を加温するシステムとし
て用いられる熱輸送システムに関づる。 従来の太陽熱利用給湯システムにおいでは、熱媒を循環
させるために循環ポンプや圧縮機などの動力源を必要と
したが、これらの動力源は故障し易く、修理や保守点検
が面倒であるという問題があった。 この発明は上記実情に鑑みてなされたものであって、循
環ポンプや圧縮Iaなどを必要としない熱輸送システム
を提供することを目的とする。 この発明による熱輸送システムは、蒸発器と、蒸発器以
下の高さ位置に配置された凝縮器と、凝縮器以下の高さ
位置に配置された作動液溜部とが導管を介して接続され
て内部に作動液が封入された密閉状作動液循環回路が構
成され、蒸発器と作動液溜部との間に圧力発生器が配置
され、蒸発器と圧力発生器とが作動液供給路で連通させ
られ、圧ノコ発生器と作動液溜部とが加圧路で連通させ
られ、加圧路に弁が設(プられているものである。 上記において、作動液としてはフレオン11、フレオン
113、水等のように気相と液相とに相互に変化しやす
いものが用いられる。また、作動液は、システム内を真
空引きしだ後不凝縮ガスを除去した状態で蒸発器および
圧力発生器内に密閉される。 上記において、圧力発生器はその内部の作動液を加熱し
て気化させ、このガス状作動液を作初演溜部に送って作
動液溜部内の圧力を上昇させる1=めのものである。加
熱源としては、太陽熱、ガスヒータ、電気ヒータなどが
用いられる。 圧力発生器内の作動液を加熱し気化さけ−たときの内部
蒸気圧は、蒸発器内の作動液が加熱され気化させられた
ときの内部蒸気圧よりも大ぎくなるようにしておくのが
よい。 作動液溜部としては、タンク、U字形管、蛇行管などか
らなるものが用いられる。作動液溜部の内容積は、作動
液循環回路における作動液溜部゛と蒸発器とを連通させ
る部分の内容積よりも大きくしておくのがよい。こうし
てお(プば、圧力発生器から作動液溜部内にガス状作動
液を送り込んだざいに、作動液溜部内の作動液は容易に
蒸発器に流れる。 加圧路に設けられる弁は、圧力発生器内の圧力が所定圧
に達するまでは開状態とされ、所定圧に達すると開状態
とされ、再度圧力が下がると閉状態とされるものでまた
とえば電磁弁、圧力調整弁などが用いられる。 この熱輸送システムにおいて、圧力発生器内の作動液は
太陽熱等で加熱されて蒸発し、圧力発生器内の蒸気圧が
高まる。この蒸気圧が高まって所定圧に達したときに加
圧路の弁が開状態どなると、このガス状作動液が加圧路
を通って作動液溜部内に流れ込んで作動液溜部内の蒸気
圧が高くなる。その結果、作動液は、作動液循環回路に
おける作動液溜部と蒸発器とを連通さlる部分を流れ、
蒸発器内に流入Jる。蒸発器内の作動液は、太陽熱等に
より加熱され気化させられる。また、作動液溜部から送
り込まれた作動液は、作動液供給路を通過して圧)〕発
生器内に入る。一方、圧力発生器から作動液溜部内に流
入したガス状作動液は作動液溜部内に浦まっている。ガ
ス状作動液が作動液溜部に流入した結果圧力発生器内の
蒸気圧が所定圧以下に一トがると、加圧路に設けられた
弁が閉状態となる。 そして、蒸発器で得られたガス状作動液は凝縮器に到り
、ここで放熱して凝縮する。凝縮するさいに放たれた熱
が蓄熱槽内の水等に伝えられて渇水等が得られる。液化
した作動液は、作動液循環回路にd3 Lプる凝縮器と
作動液溜部どを連通させる部分を通って作動液溜部に送
られる。 また、L[力発生器から作動液溜部に流入したガス状作
動液は、作動液溜部内の作動液に放熱して液化する。こ
のような動作を繰返して、蒸発器で得られた熱が、作動
液の相変化の潜熱を仲介にして水等に伝えられ、これが
加熱される。 上述のように、この発明の熱輸送システムによれば、圧
力発生器内の作動液が加熱されるだ【)で熱輸送を行な
うことが可能となるので、従来のように循環ポンプや圧
縮機を必要とせず、信頼性も高くなる。また、受熱部の
一ドIjに放熱部が位置していてもスムーズな熱輸送を
行なえる。 この発明を、以下図面に示す実施例について説明づる。 図面には、この発明にJ:る熱輸送システムが太陽熱利
用給温システムとして使用されている場合が示されてい
る。 太陽熱利用給湯システムは、屋根の上等屋外の高所に配
置された太陽熱集熱器からなる蒸発器(1)と、蒸発器
(1)の下方に配置されたタンクからなる作動液溜部(
2)と、蒸発器(1)と作動液溜部(2)との間の高さ
の中間部に配置された1Etlii器(3〉ど、作動液
溜部(2)と蒸発器(1)とを連通させる揚液路(4)
と、蒸発器(1)と凝縮器(3)とを連通させるガス状
作動液供給路(5)と、凝縮器(3)と作動液溜部(2
)とを連通さμる降液路(6)とで作動液が密閉された
密閉状作動液循環回路(7)が形成され、蒸発器(1)
と作動液溜部(2)との間において蒸発器(1)と番よ
ぼ同じ高さ位置に圧力発生器(9)が配置され、蒸発器
(1)と圧力発生器(9)とが作動液供給路(10)で
連通させられ、圧力発生器(9)と作動液溜部(2)と
が加圧路(11)で連通させられたものである。 凝縮器(3)は、その内部にコイル状パイプ(12)を
備えており、ガス状作動液供給路(5)を通って蒸発器
(1)から送られてきたガス状作動液が、コイル状バイ
ブ(12)内を流れる水によって冷却されて凝縮する。 凝縮するさいに放たれた熱は冷水に伝わり、この水が加
熱されて温水が1ηられる。 揚液路(4)の一端は作動液溜部(2)内に入り込んで
その底部に開口し、他端岸は蒸発器(1)の上端部に連
通状に接続されている。ガス状作動液供給路(5)の一
端は蒸発器(1)の上端部に連通状に接続され、他端は
凝縮器(3)の頂壁に連通状に接続されている。また、
ガス状作動液供給路(5)の凝縮器(3)寄りの部分と
作動液溜部(2)との間に凝縮器(3)内圧力と作動液
溜部(2)内圧ノjとを均圧化させる均圧路(13)が
設けられている。均圧路(13〉は、一端がガス状作動
液供給路(5)の下端部に連通状に接続され、他端が作
動液溜部(2)の頂壁に連通状に接続されている。また
、均圧路(13)にはフロート弁(14)が設けられて
いる。 降液路(6)の上端は凝縮器(3)の下端に連通状に接
続され、下端は作動液溜部(2)の頂壁に連通状に接続
されている。また、降液路(6)にお【ノる作動液溜部
(2)よりも上方の部分でかつフロート弁(14)より
も下方の位置には逆止弁(15)が設(プられている。 逆止弁(15)は、作動液が上方から下方、1なわち凝
縮器(3)から作動液溜部(2)に向ってのみ流れるよ
うにするものである。 圧力発生器(9)は、太陽熱集熱器からなり屋根の上等
に配置されている。作動液供給路(10)は、一端が蒸
発器(1)の下端に連通状に接続され、他端が圧力発生
器(9)の下端に連通状に接続されている。まIC1作
動液供給路(10)には逆止弁〈16)が設けられてい
る。逆止弁(16)は、作動液が蒸発器(1)から圧力
発生器(9)に向ってのみ流れるようにするものでζる
。また、作動液供給路(10)とガス状作動液供給路(
5)とにまたがつ−(、蒸発器(1)向上端部と下端部
とを均圧化する均圧路(18)が設()られている。加
圧路(11)の一端は圧力発生器(9)の上端に連通状
に接続され、他端は作動液溜部(2)の周壁の下端部に
連通状に接続されている。加圧路(11)には、圧力発
生器(9)内の蒸気圧が所定圧に達するまでは閉状態で
、所定圧に達しICときにのみ開状態となり、蒸気圧が
再度下がると閉状態となる電磁弁(17)が設置ノられ
ている。上記所定圧とは、この実施例においては、蒸発
器(1)向上部の蒸気圧に、作動液を作動液溜部(2)
から揚液路(4)の上端まで揚げるのに必要な圧力を加
えたものである。 作動液は、システム内を真空引きした後に蒸発器(1)
および圧力発生器(9)に入れられる。作動液のmは、
熱輸送システムの稼動中、蒸発器(1)および圧力発生
器(9)が決して空にならないような量とされている。 このような太陽熱利用給温システムにおいて、まず蒸発
器(1)内の作動液が太陽熱により加熱されて気化させ
られ、ガス試作・初演がガス状作動液供給路(5)を通
って凝縮器(3)内に送られる。そして、コイル状パイ
プ(12)内を流れる冷水によって冷月1され−C液化
し、液化した作動液が降液路(6)を通って作動液溜部
(2)内に流入し、その液面が揚液路(4)の下端間口
よりも上方にくる。圧力発生器(9)内の作動液が太陽
熱により加熱され気化させられると圧力発生器(9)内
の蒸気圧が上昇する。 この蒸気圧が所定圧に達すると電磁弁(17)h(聞さ
、高圧のガス状作動液が加圧路(11)を)rflって
勢いよく作動液溜部(2)に送込まれる。 そして、フロートが押上げられてフロート弁(14)が
閉じるとともに逆止弁(15)が閉じられて凝縮器(3
)から作動液溜部(2)への作動液の流入が停止する。 その結果作動液溜部(2)内に溜まっている作動液が揚
液路(4)を通って蒸発器(1)内に送込まれるととも
に作動液供給路(10)を通って圧力発生器(9)に送
込まれる。作動液溜部(2)内に送り込まれたガス状作
動液は作動液溜部(2)内にとどよっている。作動液溜
部(2)内の液面が下がって揚液路(4〉の下端よりも
下方にくると圧り発生器(9)内の蒸気圧が所定圧以下
に下がって電磁弁(17)が閉じる。一方、圧ツノ発生
器(9)内で発2生したガス状作動液が作動液溜部(2
)に送り込まれている間にも蒸発器(1)内の作動液は
太陽熱により加熱され気化さμられており、このガス状
作動液がガス状作動液供給路(5)を通って凝縮器(3
)内に流入し、コイル状パイプ(12)内を流れる水に
放熱して凝縮する。ガス状作動液が凝縮Jるさいに放た
れた熱によりコイル状パイプ(12)内の水が加熱され
る。こうして渇水が得られ、この渇水が給湯、暖房等に
供せられる。電磁弁(17〉が閉じて圧力発生器(9)
から作動液溜部(2〉内へのガス状作動液の供給が停止
され、かつ作動液溜部(2)内の液面が揚液路(4)の
下端よりも下方にくると作動液溜部(2)内の圧力が下
がり、フロート弁(14)が開く。その結果、均圧路(
13)によって作動液溜部(2)内の圧力と凝縮器(3
)内の圧力とか均圧下され、逆止弁(15)が聞いて凝
縮器(3)で液化した作動液が作動液溜部(2)に送ら
れる。圧ツノ発生器(9)から作動液溜部(2)に送り
込まれたガス状作動液は、凝縮器(3)から作動液溜部
(2)に流入してきた作動液に放熱して凝縮する。そし
て、作動液溜部(2)内の作動液の液面が揚液路く4)
の下端開口よりも上方にきて、しかも圧力発生器(9)
内の圧力が所定圧に達Jると上記と同様な動作が行なわ
れる。このような動作が繰返して行なわれ、太陽熱が、
作動液の相変化の潜熱を仲介にして水に伝えられる。 上記実施例においては圧力発生器として太陽熱集熱器か
らなるものが用いられているが、これに限らず電気ヒー
タ、ガスヒータ等により加熱されるものを用いてもよい
。また、上記実施例では、この発明の熱輸送システムが
太陽熱利用給温システムに適用された場合が示されてい
るが、これに限らず排熱回収システムに適用することも
可能である。この場合、蒸発器(1)内の作動液が排熱
で加熱されるようにしておく。 さらに、この発明の熱輸送システムは他のシステムにも
適用可能である。 また、上記実施例においては、蒸発器の下方に凝縮器が
配置され、凝縮器の下1ノに作動液溜部が配置されてい
るが、これに限るしのではなく、蒸発器と凝縮器、凝縮
器と作動液溜部、または3者を同一高さ位置に配置して
おいてもよい。 4、図面の簡単な説明 図面はこの発明の実施例を示す太陽熱利用給湯システム
の回路図である。 (1)・・・蒸発器、(2)・・・作動液溜部、(3)
・・・凝縮器、(7)・・・作動液が密閉された密閉状
作動液循環回路、(9)・・・圧力発生器、(10)・
・・作動液供給路、(11)・・・加圧路、(17)・
・・電磁弁。 以 上 外4名
The drawing is a circuit diagram of a solar hot water supply system showing an embodiment of the present invention. (1)...Evaporator, (2)...Working fluid reservoir, (3)
... Condenser, (7) ... Closed hydraulic fluid circulation circuit in which the working fluid is sealed, (9) ... Pressure generator, (10>.
... Hydraulic fluid supply path, (11) ... Pressure path, (11)
··solenoid valve. Procedural amendment written by the above four persons, May 3Q, 19801, Indication of the case: Special Patent Application No. 29295 No. 29295, Title of the invention: Heat transport system 3, Relationship with the amended person's case: Special 1. '1 Address of applicant Nyowa 6-224, Kaiyama-cho, Sakai City Name Showa Aluminum Co., Ltd. 4 Agents 4 non-human agents 5 Date of amendment order Showa Month 116 Details of the number of inventions to be increased by the amendment (Amendment) 1. Title of the invention Heat transport system 2. Claims An evaporator (1), a condenser (3) disposed at a height below the evaporator (1), and a condenser (3) ) is connected to the hydraulic fluid reservoir (2) located at the following height position via a conductor, and the hydraulic fluid is sealed inside to form an IC sealed hydraulic fluid circulation circuit 7.
), a pressure horn generator (9) is arranged between the evaporator (1) and the working fluid reservoir (2), and the evaporator (1) and the pressure horn generator (9) The pressure generator (9) and the working fluid reservoir (2) communicate with each other through the supply path (10).
11), and a heat transport system in which a pressure passage (11) is provided with a valve (17). 3. Detailed Description of the Invention The present invention is a system that heats water by transmitting heat absorbed from sunlight via a heating medium to water in a heat storage tank located at a remote location, in a solar water heating system, for example. related to heat transport systems used as Conventional solar water heating systems require power sources such as circulation pumps and compressors to circulate the heat medium, but these power sources are prone to failure and are troublesome to repair and maintain. was there. This invention has been made in view of the above circumstances, and an object thereof is to provide a heat transport system that does not require a circulation pump, compression Ia, or the like. In the heat transport system according to the present invention, an evaporator, a condenser disposed at a height below the evaporator, and a working fluid reservoir disposed at a height below the condenser are connected via a conduit. A closed working fluid circulation circuit is constructed in which working fluid is sealed inside, and a pressure generator is disposed between the evaporator and the working fluid reservoir, and the evaporator and pressure generator are connected to each other in the working fluid supply path. The pressure saw generator and the hydraulic fluid reservoir are communicated through a pressurizing path, and a valve is provided in the pressurizing path. In the above, the hydraulic fluid includes Freon 11 and Freon. 113, a substance that easily changes between the gas phase and the liquid phase, such as water, is used.Also, after the system is evacuated, the working fluid is transferred to the evaporator and pressure with non-condensable gas removed. In the above, the pressure generator heats and vaporizes the working fluid inside it, and sends this gaseous working fluid to the working reservoir to increase the pressure inside the working fluid reservoir. The heating source used is solar heat, a gas heater, an electric heater, etc. When the working fluid in the pressure generator is heated to avoid vaporization, the internal vapor pressure is the same as that of the working fluid in the evaporator. It is best to keep the pressure higher than the internal vapor pressure when the liquid is heated and vaporized.The hydraulic fluid reservoir may consist of a tank, a U-shaped pipe, a meandering pipe, etc. The internal volume of the reservoir is preferably larger than the internal volume of the part of the hydraulic fluid circulation circuit that communicates the hydraulic fluid reservoir with the evaporator. When the gaseous working fluid is fed into the reservoir, the working fluid in the reservoir easily flows to the evaporator. A solenoid valve, a pressure regulating valve, etc. are used for this type of heat transport system. The working fluid is heated by solar heat and evaporates, increasing the vapor pressure inside the pressure generator.When this vapor pressure increases and reaches a predetermined pressure, if the valve in the pressurizing path is opened, this gaseous The hydraulic fluid flows into the hydraulic fluid reservoir through the pressurizing path, increasing the vapor pressure within the hydraulic fluid reservoir.As a result, the hydraulic fluid communicates between the hydraulic fluid reservoir and the evaporator in the hydraulic fluid circulation circuit. Flowing through the part where
It flows into the evaporator. The working fluid in the evaporator is heated and vaporized by solar heat or the like. Further, the hydraulic fluid sent from the hydraulic fluid reservoir passes through the hydraulic fluid supply path and enters the pressure generator. On the other hand, the gaseous working fluid that has flowed into the working fluid reservoir from the pressure generator remains in the working fluid reservoir. When the vapor pressure in the pressure generator drops below a predetermined pressure as a result of the gaseous working fluid flowing into the working fluid reservoir, the valve provided in the pressurizing path is closed. Then, the gaseous working fluid obtained in the evaporator reaches the condenser, where it radiates heat and condenses. The heat released during condensation is transferred to the water in the heat storage tank, resulting in a water shortage. The liquefied working fluid is sent to the working fluid reservoir through a portion that communicates the condenser d3L in the working fluid circulation circuit with the working fluid reservoir. Furthermore, the gaseous working fluid that has flowed into the working fluid reservoir from the force generator radiates heat to the working fluid in the working fluid reservoir and liquefies. By repeating such an operation, the heat obtained in the evaporator is transferred to water etc. via the latent heat of phase change of the working fluid, and this is heated. As mentioned above, according to the heat transport system of the present invention, it is possible to transport heat by heating the working fluid in the pressure generator. is not required, and reliability is also increased. Moreover, even if the heat radiating part is located at one side of the heat receiving part Ij, smooth heat transport can be performed. This invention will be described below with reference to embodiments shown in the drawings. The drawings show a case where the heat transport system according to the present invention is used as a solar heating system. A solar hot water supply system consists of an evaporator (1) consisting of a solar heat collector placed at a high outdoor location such as on the roof, and a working fluid reservoir (1) consisting of a tank placed below the evaporator (1).
2), and an Etliii vessel (3) placed at an intermediate height between the evaporator (1) and the working fluid reservoir (2), the working fluid reservoir (2), and the evaporator (1). Pumping liquid path (4) that communicates with
, a gaseous working fluid supply path (5) that connects the evaporator (1) and the condenser (3), and a working fluid reservoir (2) that connects the condenser (3) with the working fluid reservoir (2).
) and a liquid downfall path (6) that communicates with the evaporator (1) to form a closed hydraulic fluid circulation circuit (7) in which the working fluid is sealed.
A pressure generator (9) is disposed at approximately the same height as the evaporator (1) between the evaporator (1) and the working fluid reservoir (2), and the evaporator (1) and pressure generator (9) are operated. The pressure generator (9) and the working fluid reservoir (2) are communicated through a pressurizing path (11). The condenser (3) is equipped with a coiled pipe (12) inside thereof, and the gaseous working fluid sent from the evaporator (1) through the gaseous working fluid supply path (5) is passed through the coil. It is cooled and condensed by the water flowing inside the shaped vibrator (12). The heat released during condensation is transferred to the cold water, which heats up the temperature of the hot water by 1η. One end of the liquid pumping path (4) enters the working liquid reservoir (2) and opens at the bottom thereof, and the other end is connected in communication with the upper end of the evaporator (1). One end of the gaseous working fluid supply path (5) is connected in a continuous manner to the upper end of the evaporator (1), and the other end is connected in a continuous manner to the top wall of the condenser (3). Also,
The internal pressure of the condenser (3) and the internal pressure of the working fluid reservoir (2) are connected between the part of the gaseous working fluid supply path (5) near the condenser (3) and the working fluid reservoir (2). A pressure equalizing passage (13) is provided to equalize the pressure. One end of the pressure equalization passage (13>) is connected in a continuous manner to the lower end of the gaseous working fluid supply path (5), and the other end is connected in a continuous manner to the top wall of the working fluid reservoir (2). In addition, the pressure equalization path (13) is provided with a float valve (14).The upper end of the liquid drop path (6) is connected to the lower end of the condenser (3) in a communicating manner, and the lower end is connected to the working fluid reservoir. It is connected to the top wall of the section (2) in a communicating manner.It is also connected to the top wall of the liquid downflow path (6) above the working liquid reservoir section (2) and above the float valve (14). A check valve (15) is installed in the lower position. The pressure generator (9) is made of a solar heat collector and is placed on the roof or the like.The working fluid supply path (10) has one end connected to the evaporator ( 1), and the other end is connected to the lower end of the pressure generator (9) in a communicating manner.The IC1 hydraulic fluid supply path (10) is also provided with a check valve (16). The check valve (16) allows the hydraulic fluid to flow only from the evaporator (1) to the pressure generator (9). Gaseous hydraulic fluid supply path (
5) A pressure equalizing passage (18) is provided which equalizes the pressure between the upper end and the lower end of the evaporator (1). One end of the pressurizing passage (11) is The upper end of the pressure generator (9) is connected in a communicating manner, and the other end is connected in a communicating manner to the lower end of the peripheral wall of the working fluid reservoir (2). A solenoid valve (17) is installed that remains closed until the steam pressure in the vessel (9) reaches a predetermined pressure, opens only when the predetermined pressure is reached, and closes when the steam pressure drops again. In this embodiment, the above-mentioned predetermined pressure means that the working fluid is pumped into the working fluid reservoir (2) to maintain the vapor pressure in the upper part of the evaporator (1).
This applies the pressure necessary to fry the liquid from the top to the top of the liquid lifting path (4). After the system is evacuated, the working fluid is transferred to the evaporator (1).
and into a pressure generator (9). The m of the hydraulic fluid is
The quantities are such that during operation of the heat transport system, the evaporator (1) and the pressure generator (9) are never empty. In such a solar heating system, first the working fluid in the evaporator (1) is heated by solar heat and vaporized, and the gas prototype/premier is passed through the gaseous working fluid supply path (5) to the condenser ( 3) Sent within. The cold water flowing through the coiled pipe (12) liquefies the liquid, and the liquefied working fluid flows into the working fluid reservoir (2) through the downflow path (6). The surface is located above the lower end frontage of the liquid pumping path (4). When the working fluid in the pressure generator (9) is heated and vaporized by solar heat, the vapor pressure in the pressure generator (9) increases. When this vapor pressure reaches a predetermined pressure, the high-pressure gaseous hydraulic fluid is sent through the solenoid valve (17) through the pressurizing path (11) into the hydraulic fluid reservoir (2). . Then, the float is pushed up and the float valve (14) is closed, and the check valve (15) is closed and the condenser (3) is closed.
) to the hydraulic fluid reservoir (2) is stopped. As a result, the hydraulic fluid accumulated in the hydraulic fluid reservoir (2) is sent into the evaporator (1) through the liquid pumping path (4), and also passes through the hydraulic fluid supply path (10) to the pressure generator. (9). The gaseous hydraulic fluid sent into the hydraulic fluid reservoir (2) remains within the hydraulic fluid reservoir (2). When the liquid level in the working liquid reservoir (2) falls and reaches below the lower end of the liquid pumping path (4>), the steam pressure in the pressure generator (9) falls below a predetermined pressure, and the solenoid valve (17) ) closes.Meanwhile, the gaseous hydraulic fluid generated within the pressure horn generator (9) closes.
), the working fluid in the evaporator (1) is heated by solar heat and vaporized, and this gaseous working fluid passes through the gaseous working fluid supply path (5) to the condenser. (3
), the water radiates heat to the water flowing in the coiled pipe (12) and condenses. The water in the coiled pipe (12) is heated by the heat released when the gaseous working fluid condenses. In this way, drought water is obtained, and this drought water is used for hot water supply, space heating, etc. The solenoid valve (17) closes and the pressure generator (9)
When the supply of gaseous hydraulic fluid into the hydraulic fluid reservoir (2) is stopped and the liquid level in the hydraulic fluid reservoir (2) becomes lower than the lower end of the liquid pumping path (4), the hydraulic fluid stops flowing into the hydraulic fluid reservoir (2). The pressure in the reservoir (2) decreases and the float valve (14) opens.As a result, the pressure equalization path (
13) to reduce the pressure in the working fluid reservoir (2) and the condenser (3).
) is equalized, the check valve (15) operates, and the hydraulic fluid liquefied in the condenser (3) is sent to the hydraulic fluid reservoir (2). The gaseous working fluid sent from the pressure horn generator (9) to the working fluid reservoir (2) radiates heat to the working fluid flowing into the working fluid reservoir (2) from the condenser (3) and condenses. . Then, the liquid level of the hydraulic fluid in the hydraulic fluid reservoir (2) reaches the liquid pumping path 4)
above the lower end opening of the pressure generator (9)
When the internal pressure reaches a predetermined pressure, the same operation as above is performed. This kind of action is repeated, and the solar heat is
It is transferred to the water via the latent heat of the phase change of the working fluid. In the above embodiments, a solar heat collector is used as the pressure generator, but the pressure generator is not limited to this, and a pressure generator heated by an electric heater, gas heater, etc. may also be used. Further, in the above embodiments, the case where the heat transport system of the present invention is applied to a solar heat supply system is shown, but the present invention is not limited to this, and the heat transport system can also be applied to an exhaust heat recovery system. In this case, the working fluid in the evaporator (1) is heated by exhaust heat. Furthermore, the heat transport system of the present invention is applicable to other systems. Further, in the above embodiment, the condenser is disposed below the evaporator, and the working fluid reservoir is disposed below the condenser; however, the present invention is not limited to this. , the condenser and the working fluid reservoir, or the three may be arranged at the same height. 4. Brief description of the drawings The drawings are circuit diagrams of a solar hot water supply system showing an embodiment of the present invention. (1)...Evaporator, (2)...Working fluid reservoir, (3)
... Condenser, (7) ... Closed hydraulic fluid circulation circuit in which the working fluid is sealed, (9) ... Pressure generator, (10) ...
... Hydraulic fluid supply path, (11) ... Pressure path, (17)
··solenoid valve. 4 people other than the above

Claims (1)

【特許請求の範囲】[Claims] 蒸発器(1)と、蒸発器(1)以下の高さ位置に配置さ
れた凝縮器〈3)と、凝縮器(3)以下の高さ位置に配
置された作動液溜部(2)とが導管を介して接続されて
内部に作動液が封入された密閉状作動液循環回路(7)
が構成され、蒸発器(1)と作動液溜部(2)との間に
圧力発生器(9)が配置され、蒸発器(1)と圧ノj光
生器(9)とが作動液供給路(10)で連通さVられ、
圧力発生器(9)と作動液溜部(2)とが加圧路(11
)で連通させられ、加圧路(11)に弁〈17〉が設り
られている熱輸送システム。
An evaporator (1), a condenser (3) located at a height below the evaporator (1), and a working fluid reservoir (2) located at a height below the condenser (3). A closed hydraulic fluid circulation circuit (7) connected via a conduit and with hydraulic fluid sealed inside.
A pressure generator (9) is arranged between the evaporator (1) and the working fluid reservoir (2), and the evaporator (1) and the pressure nozzle generator (9) supply working fluid. connected by the road (10),
The pressure generator (9) and the working fluid reservoir (2) are connected to the pressurizing path (11).
), and the pressurizing path (11) is provided with a valve <17>.
JP2929584A 1984-02-17 1984-02-17 Heat transfer system Pending JPS60174487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2929584A JPS60174487A (en) 1984-02-17 1984-02-17 Heat transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2929584A JPS60174487A (en) 1984-02-17 1984-02-17 Heat transfer system

Publications (1)

Publication Number Publication Date
JPS60174487A true JPS60174487A (en) 1985-09-07

Family

ID=12272247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2929584A Pending JPS60174487A (en) 1984-02-17 1984-02-17 Heat transfer system

Country Status (1)

Country Link
JP (1) JPS60174487A (en)

Similar Documents

Publication Publication Date Title
US4552208A (en) Heat actuated system for circulating heat transfer fluids
JPS62280547A (en) Passive type heat transfer device
US7201017B2 (en) Refrigeration unit
JPS61186767A (en) Heating system
US4224925A (en) Heating system
JPS60174487A (en) Heat transfer system
JP3303644B2 (en) Loop heat transport system
JPS60122286A (en) Steam pressure pump
JPH0428993B2 (en)
JPH0377438B2 (en)
JPS60174486A (en) Heat transfer system
JPS60205187A (en) Heat transport system
JPH0535355B2 (en)
JPS6071856A (en) Heat transportation system
US4412529A (en) Closed loop solar collector system with dual reservoirs and fluid bypass
JPS60174488A (en) Heat transfer system
JPS6071857A (en) Heat transportation system
JPS6071855A (en) Heat transporting system
JPS625572Y2 (en)
AU770892B2 (en) Water heater with vapour phase downward heat transfer
US4649902A (en) Solar collector
JPS6251394B2 (en)
CA1170522A (en) Heat transfer apparatus and method
JPS5971985A (en) Heat transporting apparatus
JPS6066059A (en) Solar water heater