JPS607123A - Photo heating method - Google Patents
Photo heating methodInfo
- Publication number
- JPS607123A JPS607123A JP11380283A JP11380283A JPS607123A JP S607123 A JPS607123 A JP S607123A JP 11380283 A JP11380283 A JP 11380283A JP 11380283 A JP11380283 A JP 11380283A JP S607123 A JPS607123 A JP S607123A
- Authority
- JP
- Japan
- Prior art keywords
- film
- interface
- reflectance
- semiconductor
- transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000010438 heat treatment Methods 0.000 title claims description 12
- 230000003287 optical effect Effects 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 17
- 239000000758 substrate Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 47
- 230000001681 protective effect Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は物体の加熱方法、特に狭い発光スペクトルをも
つ光を用いて物体を加熱する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of heating an object, and in particular to a method of heating an object using light with a narrow emission spectrum.
光を用いた加熱方法は、半導体のイオン注入層の不純物
イオンの活性化等に広く用いられている。A heating method using light is widely used for activating impurity ions in an ion-implanted layer of a semiconductor.
半導体結晶を高温に加熱する場合には表面の汚染防止、
半導体の飛散防止や形状変化の防止のため、表面に保護
膜をけけるととが行なわれる。この膜は光を用いる加熱
法であることから当然に透明である必要があるが、その
場合保護膜と空気、保護膜と半導体との面界面による反
射光の干渉のため入射強度が膜厚に依存して大きく変化
するという問題がある。When heating semiconductor crystals to high temperatures, prevent surface contamination,
In order to prevent the semiconductor from scattering or changing its shape, a protective film is applied to the surface. Since this film is heated using light, it naturally needs to be transparent, but in this case, the incident intensity will vary depending on the film thickness due to the interference of reflected light from the surface interface between the protective film and the air, and between the protective film and the semiconductor. The problem is that it varies greatly depending on the situation.
一方、LSIなどへの応用を考えると、半導体結晶は直
径数センチの円板状ウェハを用いるが、このような広い
面積に均一な厚さの膜を形成することはむずかしい。現
状では膜厚を光源の発光波長よりずっと薄くして膜厚の
変化の影響を少くする方法がとられている。しかし、半
導体の形状変化の防止のためにはある程度の機械的強度
が必要て、従来法で用いられる薄い膜では形状変化を起
したシ、また任意の厚さの膜では膜厚の分散によシ半導
体への光の入射強度が場所によって大きく変化してしま
う。通常、半導体プロセスで用いる光加熱法の場合、試
料の温度のわずかな変化が、結晶の性質を大きく変化さ
せてしまうため、このような入射強度のばらつきは光加
熱法の再現性、均一性をそとない、実用化の大きな妨げ
となっている。On the other hand, when considering applications to LSI and the like, semiconductor crystals use disk-shaped wafers with a diameter of several centimeters, but it is difficult to form a film with a uniform thickness over such a wide area. Currently, the method used is to make the film thickness much thinner than the emission wavelength of the light source to reduce the effect of changes in film thickness. However, a certain degree of mechanical strength is required to prevent the shape of the semiconductor from changing, and the thin films used in the conventional method tend to change shape, and the films of arbitrary thickness are prone to variations in film thickness. The intensity of light incident on the semiconductor varies greatly depending on the location. Normally, in the case of the optical heating method used in semiconductor processes, a slight change in the temperature of the sample can greatly change the properties of the crystal, so such variations in incident intensity affect the reproducibility and uniformity of the optical heating method. However, this is a major hindrance to practical application.
本発明は上記問題点を解消するもので、主な発光波長が
一つの狭い波長域に存在するような光源を用いて、表面
を透明膜で覆った物体を加熱する方法において、上記物
体と透明膜との界面に、上記光源よシ発せられる光線の
波長に対し、上記界面の反射率よりも小さな反射率の膜
を介在させるととを特徴とするものである。The present invention solves the above problems, and includes a method of heating an object whose surface is covered with a transparent film using a light source whose main emission wavelength exists in one narrow wavelength range. It is characterized in that a film having a reflectance smaller than that of the interface with respect to the wavelength of the light beam emitted from the light source is interposed at the interface with the film.
以下に本発明の実施例を図によって説明する。Embodiments of the present invention will be described below with reference to the drawings.
第1図は半導体表面に透明保護膜をつけた場合の断面図
である1図中1は半導体、2は透明保護膜、3は空気、
4は1と2の界面、5は透明保護膜2と空気3との界面
、6は入射光である。半導体1、透明保護膜2、空気3
の屈折率をそれぞれ111 it 、ns p透明保護
膜2の厚さをtl、入射光6の波長をλとし、rl*r
ltδを
rx =(nt −ns )/ (ng ”ns )
(1)rfi =(n、−ng )/ (ns ”nt
) (2)δ−2πn、t、/λ (3)
とすると、反射率Rは次式で表わされる。Figure 1 is a cross-sectional view when a transparent protective film is attached to the surface of a semiconductor. In the figure, 1 is the semiconductor, 2 is the transparent protective film, 3 is air,
4 is an interface between 1 and 2, 5 is an interface between transparent protective film 2 and air 3, and 6 is incident light. Semiconductor 1, transparent protective film 2, air 3
Let the refractive index of each be 111 it, the thickness of the ns p transparent protective film 2 be tl, the wavelength of the incident light 6 be λ, and rl*r
ltδ as rx = (nt − ns)/(ng ”ns)
(1) rfi = (n, -ng)/ (ns ”nt
) (2) δ-2πn,t,/λ (3) Then, the reflectance R is expressed by the following formula.
第2図は、λとしてアルゴンレーザの最高強度をもつ波
長0.5145μm1半導体1として屈折率4.21の
シリコン、保護膜2として屈折率1.46の810.と
したときの膜厚d、の変化による反射率の変化を示す、
第2図によって、膜厚により反射率が大きく変化してい
ることが判る。この場合の内部界面5での反射率はlr
、l” で表わされ、その値は0.235である。In FIG. 2, λ is the wavelength at which the maximum intensity of the argon laser occurs, 0.5145 μm, silicon with a refractive index of 4.21 is used as the semiconductor 1, and 810 μm with a refractive index of 1.46 is used as the protective film 2. It shows the change in reflectance due to change in film thickness d when
It can be seen from FIG. 2 that the reflectance varies greatly depending on the film thickness. In this case, the reflectance at the internal interface 5 is lr
, l'', and its value is 0.235.
第3図は本発明方法を実施する構造を示す図である。図
中、7は本発明の界面反射率を低下させるだめの膜、8
は半導体1と膜7との界面、9は膜7と透明保護膜2と
の界面である。第1図と同一部分には同一番号を付して
いる。FIG. 3 is a diagram showing a structure for implementing the method of the present invention. In the figure, 7 is a film for reducing the interface reflectance of the present invention, 8
9 is the interface between the semiconductor 1 and the film 7, and 9 is the interface between the film 7 and the transparent protective film 2. The same parts as in FIG. 1 are given the same numbers.
第4図は膜7として厚さ0.062μ電のsi、N4膜
を用いて、界面9での反射率を0.0455とした場合
、第5図は膜7として厚さ0.049μm、屈折率2.
5の甚聾宴)膜を考え界面9での反射率を0.0010
4とした場合のλ= 0.5145μmの光に対する反
射率と、S10!膜厚との関係を示す図である。図から
明らかなとおり、反射率は低下し、かつその膜厚に対す
る振巾も減少していることが判る。すなわち、入射光強
度の相対的なゆらぎが大巾に減少していることが判る。Figure 4 shows a case where a Si, N4 film with a thickness of 0.062 μm is used as the film 7, and the reflectance at the interface 9 is set to 0.0455. Rate 2.
5) Consider the film and set the reflectance at interface 9 to 0.0010.
4, the reflectance for light with λ = 0.5145 μm and S10! It is a figure showing the relationship with film thickness. As is clear from the figure, it can be seen that the reflectance decreases and the amplitude with respect to the film thickness also decreases. That is, it can be seen that the relative fluctuation in the intensity of the incident light is greatly reduced.
内部界面9での反射率を川、空気と透明保護膜との界面
5での反射率を4とすると、膜厚くよって変化する表面
反射率の最大値RmaX%最小値Rimは次のように表
わせる。Assuming that the reflectance at the internal interface 9 is a river and the reflectance at the interface 5 between air and the transparent protective film is 4, the maximum value RmaX% and the minimum value Rim of the surface reflectance, which changes depending on the film thickness, is expressed as follows. Ru.
第6図にSin、と、空気との界面での反射率R8左0
.035とした場合に、内部反射率角と、Rmaxlo
、R,!11、反射率の振巾Uとの関係を示す。Figure 6 shows Sin, and the reflectance R8 at the interface with air is 0 on the left.
.. 035, the internal reflectance angle and Rmaxlo
,R,! 11 shows the relationship between reflectance and amplitude U.
図中13は従来法による内部反射率を示す。同図により
表面反射率を0.235より低くすれば、反射率の変動
幅が減少し、より安定した加熱を行えるととが判る。内
部界面の反射率を低下させる膜構成としては以上説明し
たような一層膜に限らず、多層膜によってもよい。また
物体としては半導体シリコン、透明膜としてはStO,
を例にと9説明をしたが、半導体以外の物体でも、他の
種類の透明膜でも適用可能なことは説明より明らかであ
る。In the figure, 13 indicates the internal reflectance according to the conventional method. It can be seen from the figure that if the surface reflectance is lower than 0.235, the fluctuation range of the reflectance is reduced and more stable heating can be performed. The film structure for reducing the reflectance at the internal interface is not limited to the single-layer film as described above, but may also be a multi-layer film. In addition, the object is semiconductor silicon, the transparent film is StO,
9 has been explained using an example, but it is clear from the explanation that it can be applied to objects other than semiconductors and other types of transparent films.
以上のように本発明方法によるときには従来の欠点を解
消し、表面保護膜の膜厚が大きく変化しても充分に安定
な入射強度を維持して試料の性質を変化させず、均一な
製品を得ることができる効果を有するものである。As described above, the method of the present invention eliminates the conventional drawbacks, maintains a sufficiently stable incident intensity even when the thickness of the surface protective film changes greatly, does not change the properties of the sample, and produces a uniform product. It has the effect that can be obtained.
第1図拡物体を光を用いて加熱する場合の断面模式図、
第2図は波長0.5145μmの光に対し、シリコン表
面に810w膜をつけた場合の反射率のStO。
膜厚依存性を示す図、第3図は本発明による加熱物体の
断面図、第4図は反射率を低下させるための膜として厚
さ0.062μmのS i sN、膜を用いた場合、ま
た第5図は厚さ0.049μmで屈折率2.5の材質よ
りなる膜での波長0.5145μmの光に対する反射率
とstow膜厚との関係を示す図、第6図は透明膜とし
てsio、を用いた場合の内部界面反射率と表面反射率
との関係を示す図である。
1・・・半導体、2・・・透明保護膜、3・・・空気、
6・・・入射光、7・・・膜、5,8.9・・・界面特
許出願人 日本電気株式会社
第1図
酸化膜厚(刃■)
酸化膜厚(pm)
酸化膜厚(戸)Figure 1: Schematic cross-sectional diagram when heating an expanded object using light,
Figure 2 shows the StO reflectance when an 810W film is attached to the silicon surface for light with a wavelength of 0.5145 μm. FIG. 3 is a cross-sectional view of a heated object according to the present invention, and FIG. 4 is a diagram showing film thickness dependence. FIG. Figure 5 is a diagram showing the relationship between the reflectance of light with a wavelength of 0.5145 μm and the stow film thickness for a film made of a material with a thickness of 0.049 μm and a refractive index of 2.5. FIG. 3 is a diagram showing the relationship between internal interface reflectance and surface reflectance when using sio. 1... Semiconductor, 2... Transparent protective film, 3... Air,
6... Incident light, 7... Film, 5, 8.9... Interface Patent applicant NEC Corporation Figure 1 Oxide film thickness (blade ■) Oxide film thickness (pm) Oxide film thickness (door) )
Claims (1)
な光源を用いて表面を透明膜で覆った物体を加熱する方
法において、上記物体と透明膜との界面に上記光源よシ
発せられる光線の波長に対し、上記界面の反射率よシも
小さな反射率の膜を介在させることを特徴とする光加熱
方法。(1) In a method of heating an object whose surface is covered with a transparent film using a light source whose main emission wavelength exists in one narrow wavelength range, the light source is emitted at the interface between the object and the transparent film. An optical heating method characterized in that a film having a reflectance smaller than that of the interface is interposed with respect to the wavelength of the light beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11380283A JPS607123A (en) | 1983-06-24 | 1983-06-24 | Photo heating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11380283A JPS607123A (en) | 1983-06-24 | 1983-06-24 | Photo heating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS607123A true JPS607123A (en) | 1985-01-14 |
Family
ID=14621436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11380283A Pending JPS607123A (en) | 1983-06-24 | 1983-06-24 | Photo heating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS607123A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006295097A (en) * | 2004-06-04 | 2006-10-26 | Advanced Lcd Technologies Development Center Co Ltd | Crystallizing method, thin-film transistor manufacturing method, crystallized substrate, thin-film transistor, and display device |
US7943936B2 (en) | 2004-06-04 | 2011-05-17 | Advanced Lcd Technologies Development Center Co., Ltd. | Crystallizing method, thin-film transistor manufacturing method, thin-film transistor, and display device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5837916A (en) * | 1981-08-31 | 1983-03-05 | Fujitsu Ltd | Manufacture of semiconductor device |
-
1983
- 1983-06-24 JP JP11380283A patent/JPS607123A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5837916A (en) * | 1981-08-31 | 1983-03-05 | Fujitsu Ltd | Manufacture of semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006295097A (en) * | 2004-06-04 | 2006-10-26 | Advanced Lcd Technologies Development Center Co Ltd | Crystallizing method, thin-film transistor manufacturing method, crystallized substrate, thin-film transistor, and display device |
US7943936B2 (en) | 2004-06-04 | 2011-05-17 | Advanced Lcd Technologies Development Center Co., Ltd. | Crystallizing method, thin-film transistor manufacturing method, thin-film transistor, and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3743847A (en) | Amorphous silicon film as a uv filter | |
Gittleman et al. | Textured silicon: A selective absorber for solar thermal conversion | |
EP0585055B1 (en) | Wideband anti-reflection coating for indium antimonide photodetector device | |
US3539883A (en) | Antireflection coatings for semiconductor devices | |
US4710433A (en) | Transparent conductive windows, coatings, and method of manufacture | |
JP7504072B2 (en) | Apparatus and method for conductive photo-semiconductor coatings | |
JP2023029334A (en) | Device and method for conductive optical semiconductor coating | |
JPS607123A (en) | Photo heating method | |
Sussner et al. | Brillouin scattering from surface waves on Al-coated transparent media | |
US6121103A (en) | Optically transparent, electrically conductive semiconductor windows | |
JPS607124A (en) | Photo heating method | |
JP2018163339A (en) | Method of coating optical substrate, and window | |
JPH0253001A (en) | Production of multilayer film for soft x-rays and vacuum ultraviolet rays | |
US4033786A (en) | Temperature gradient zone melting utilizing selective radiation coatings | |
JPH02244153A (en) | Lowering of structural dimensional change based on reflection generated in cover layer | |
JP3257245B2 (en) | Method of forming fine pattern | |
US11976002B2 (en) | Methods for encapsulating silver mirrors on optical structures | |
Nayak et al. | Optical constants of Zn3P2-Cd3P2 thin films | |
JP3323893B2 (en) | Semiconductor manufacturing method | |
JPS63150976A (en) | Infrared ray detector | |
US5724180A (en) | Long wavelength infrared transparent conductive window | |
JPS63207184A (en) | Semiconductor photodetector | |
JPH03215957A (en) | Measurement of film thickness | |
Murray et al. | Nondestructive Determination of Thickness and Perfection of Silica Films | |
Barrie et al. | Zirconium silicate thin films for antireflection coatings |