JPS607051A - Method of controlling beam current - Google Patents

Method of controlling beam current

Info

Publication number
JPS607051A
JPS607051A JP11315583A JP11315583A JPS607051A JP S607051 A JPS607051 A JP S607051A JP 11315583 A JP11315583 A JP 11315583A JP 11315583 A JP11315583 A JP 11315583A JP S607051 A JPS607051 A JP S607051A
Authority
JP
Japan
Prior art keywords
beam current
circuit
current
voltage
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11315583A
Other languages
Japanese (ja)
Inventor
Hideki Kojima
児島 秀樹
Hideki Kobayashi
英樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11315583A priority Critical patent/JPS607051A/en
Publication of JPS607051A publication Critical patent/JPS607051A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/243Beam current control or regulation circuits

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To perform working with high accuracy and good reproducibility by controlling a beam current by comparing a set level with difference between a current flowing in a beam-detecting circuit during a period when a beam current after its rising is maintained at a constant state and a current flowing in the detecting circuit during a period when the beam current does not flow. CONSTITUTION:An electron beam 54 from an electron gun consisting of a cathode or filament 51, a grid 52 and an anode 53 is accelerated by an accelerating power source 34 before being irradiated upon a substance 55. The beam 54 is detected by a beam-current-detecting circuit 35. Voltage applied to the grid 52 undergoes feedback control by taking out a d.c. voltage almost proportional to bias voltage by means of a transformer 2 and a rectifying smoothing circuit 3 and comparing the above d.c. voltage with signal wave form 4 sent from a bias- voltage-adjusting circuit 31. The circuit 31 compares a set level (Ibc) with an actual level (Iba) which is obtained from difference between a current flowing in the circuit 35 during a period when a beam current after its rising is maintained at a constant state and a current flowing in the circuit 35 during a period when the beam current does not flow.

Description

【発明の詳細な説明】 この発明は、高速の電子ビームをワークに照射し、穴あ
け、溶接、熱処理などの加工を行う電子ビーム装置用の
ビーム電流制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a beam current control method for an electron beam apparatus that irradiates a workpiece with a high-speed electron beam to perform processing such as drilling, welding, and heat treatment.

この種電子ビーム装置では一般にビーム電流を制御して
所望の加工を行わせるが、多数のワーク金欠々と均一に
加工するためにはビーム電流の精度や再現性を良好に保
つ必要がある。そのため。
In this type of electron beam apparatus, the beam current is generally controlled to perform desired processing, but in order to uniformly process a large number of workpieces without missing pieces, it is necessary to maintain good accuracy and reproducibility of the beam current. Therefore.

ビーム電流の値を検出し設足値と比較してその偏差がな
くなるようにフィードバック制御するビーム電流自動制
御回路を用いることが多い、しかしながら、ビーム電流
の供給源である電子ビーム加速用電源が数十キロボルト
以上の高電圧を発生することなどから1通常、ビーム電
流検出回路にはかなりのノイズが混入する。そのノイズ
の影#全軽減スるためローパスフィルター回路などを用
いるが、それがビーム電流自動制御回路の応答性に限界
を与える。従ってビーム電流全急峻に立上らせたり低下
させたりしたい場合に間@を生ずることがある。上記の
応答性を改善する一法として。
An automatic beam current control circuit that detects the beam current value, compares it with the initial value, and performs feedback control to eliminate the deviation is often used. However, the beam current supply source, the electron beam acceleration power supply, is Since a high voltage of 10 kilovolts or more is generated, a considerable amount of noise usually enters the beam current detection circuit. A low-pass filter circuit is used to completely reduce the influence of noise, but this puts a limit on the responsiveness of the automatic beam current control circuit. Therefore, when it is desired to cause the total beam current to rise or fall sharply, a gap may occur. As a way to improve the above responsiveness.

ビーム加速電源の高電圧回路入力電源周波数を(開用周
波数より)上げ、ビーム電流検出回路へ混入するノイズ
の基本周波数を高くするや)方もあるが、その場合lI
′i電源周波数変換装置が必要になるなど装置の価格や
信頼性の点で不利になる。更にまた、このビーム電流検
出回路にはビーム電流會流さなくても高電圧印加による
漏洩電流が流れ。
There is a way to raise the input power frequency of the high voltage circuit of the beam accelerating power supply (below the operating frequency) and raise the fundamental frequency of the noise that enters the beam current detection circuit, but in that case, lI
'i A power frequency converter is required, which is disadvantageous in terms of the cost and reliability of the device. Furthermore, leakage current flows through this beam current detection circuit due to high voltage application even when no beam current flows.

しかもその大きさが徐々に変化したシしてビーム電流検
出精度を損うことがある・ この発明はビーム電流を急速に立上らせたり低下させた
りすることが可能で比較的安価かつ高信頼度の電子ビー
ム装置用ビーム電流制御装置全提供するものである。こ
の発明は、また、ビーム電流の精度や再現性が良好で同
種のワーク全くシ返し多数加工するのに適した電子ビー
ム装置用ビーム電流制御装丘全与えることも目的として
いる。
Moreover, the magnitude may change gradually, which may impair the accuracy of beam current detection.This invention allows the beam current to rise or fall rapidly, and is relatively inexpensive and highly reliable. The present invention provides a complete beam current control device for an electron beam device. Another object of the present invention is to provide a beam current control system for an electron beam apparatus that has good beam current accuracy and reproducibility and is suitable for processing many workpieces of the same type.

そのため不発明では、ビーム電流が立ち上った後、定常
状態を保つ期間内の一部期間にビーム電流検出回路に流
れる電流とビーム電流が流れない期間の一部期間に該検
出回路に流れる電流との差。
Therefore, in the invention, after the beam current rises, the current flowing through the beam current detection circuit during a part of the period during which the steady state is maintained and the current flowing through the detection circuit during a part of the period during which the beam current does not flow are different. difference.

即ち正味のビーム軍備そ検出し、その検出値とビーム電
流設定値とを比較するようにした電子ビーム装置用ビー
ム電流制御装置としている。
That is, the beam current control device for an electron beam device detects the net beam armament and compares the detected value with a beam current setting value.

以下に図を用いてこの発明の内容を述べる。The content of this invention will be described below using figures.

第1図は本発明によるビーム電流制御装置の一実施例の
要部説明図である。電子ビーム装置でビーム電流全制御
するには電子ビーム源、すなわちカソード又はフィラメ
ント51.グリッド52゜アノード53からなる電子銃
のグリッドーカソード間電圧(グリッドバイアス電圧)
によるのが一つの方法である。35はビーム電流検出回
路、34は加速電源、55は被照射物、54は電子ビー
ムである0本図はこのグリッドバイアス電圧によりビー
ム電流の大きさ全コントロールする方式の一例であり、
グリッドバイアス電蝕用変成器57゜および整流平滑回
路58の入力を与える単巻変成器1におけると同様な電
圧波形全フィードバック用変成器2に加えて整流平滑回
路3によりグリッドバイアス電圧にほぼ比例する直流電
圧をとシ出し、バイアス電圧設定回路31からの信号波
形4と比較してそれに倣うようフィートノ(ツク制御す
る。ここに述べたバイアス電圧設定回路31を詳述した
ものが、第3図である。図で、61は)くイアスミ圧潰
算回路で、外部から与えられるビーム電流目標値’bc
と加速電圧■9.および、あらかじめプリセットされる
電子銃のμ、係数Kを元に、3極管のビーム電流の公式
: 全変形した式: によりバイアス電圧を演算し、バイアス電圧設定信号V
go k得る。62はバイアス電圧補正回路で、演算回
路61で用いた式(1)のKの値を補正するものである
。すなわち、ビームの立上り以前は。
FIG. 1 is an explanatory diagram of a main part of an embodiment of a beam current control device according to the present invention. To fully control the beam current in an electron beam device, the electron beam source, ie the cathode or filament 51. Grid-cathode voltage (grid bias voltage) of an electron gun consisting of a grid 52° and an anode 53
One way is to. 35 is a beam current detection circuit, 34 is an accelerating power source, 55 is an object to be irradiated, and 54 is an electron beam. This figure is an example of a system in which the magnitude of the beam current is completely controlled by this grid bias voltage.
The voltage waveform similar to that in the autotransformer 1 which provides the input for the grid bias electrolytic erosion transformer 57° and the rectifier and smoothing circuit 58 is made approximately proportional to the grid bias voltage by the rectifier and smoothing circuit 3 in addition to the full feedback transformer 2. The DC voltage is output, compared with the signal waveform 4 from the bias voltage setting circuit 31, and the voltage is controlled to follow the signal waveform 4 from the bias voltage setting circuit 31.The bias voltage setting circuit 31 described here is detailed in FIG. In the figure, 61 is a Kuiasumi crush calculation circuit, which calculates the beam current target value 'bc given from the outside.
and accelerating voltage ■9. Then, based on μ and coefficient K of the electron gun that are preset in advance, the bias voltage is calculated by the formula for the beam current of the triode: Fully transformed formula: The bias voltage setting signal V
get go k. Reference numeral 62 denotes a bias voltage correction circuit that corrects the value of K in equation (1) used in the arithmetic circuit 61. That is, before the beam rises.

係数にのプリセット値KOの発生器65の電圧金。The voltage of the generator 65 is set to a preset value KO to the coefficient.

切替スイッチ66で選択してに、、、Koとして演算回
路61が演算するが、電子銃、特にフィラメントの特性
変化などによりにの値は少し変化することがある。そこ
で、実際にバイアス電圧設足イハ号としてバイアス制御
回路(偏差増幅器5と、サーイリスク回路6)に出力さ
れた電圧Vgoとビーム゛…;流検出回路35で検出さ
れる実際のビーム電流jba、実際の加速電圧Vpから
そ9時点での最新p 3 のKの値Kt k Kt=Iba/(V−go+T)X
なる式よりめ、ビーム電流が立上った後、定常状態全保
つ期間内の1部期間−第2図の11.12゜13−にビ
ーム電流指令信号発生器56から出されるサンプルホー
ルド信号59により、サンプルホールド回路63に、前
記KlO値kKt’ として保持し、サンプルホールド
回路にデータが有るか、無いかを記憶するフリップフロ
ップ64をセット(記憶有り)して、切替スイッチ66
’fK。
The arithmetic circuit 61 calculates Ko after selecting it with the changeover switch 66, but the value of Ko may change slightly due to changes in the characteristics of the electron gun, especially the filament. Therefore, the voltage Vgo actually outputted to the bias control circuit (deviation amplifier 5 and safety risk circuit 6) as the bias voltage, the actual beam current jba detected by the current detection circuit 35, and the actual beam current jba detected by the current detection circuit 35, The value of K of the latest p 3 from the acceleration voltage Vp at the 9th point Kt k Kt=Iba/(V-go+T)X
From the formula, after the beam current rises, the sample hold signal 59 is output from the beam current command signal generator 56 during a part of the period during which the steady state is maintained - 11.12° 13 in Fig. 2. Therefore, a flip-flop 64 is set (with memory) to hold the KlO value kKt' in the sample and hold circuit 63 and to store whether there is data in the sample and hold circuit.
'fK.

側からに1′側に切替える。これにより、演算回路61
はK : K 、 ’ として演算をやり直し、ビーム
電流指令値Ibcと実際値Iba の差をなくしてゆく
ものである。図示してないが実際値Lba はビーム電
流を流さない期間(第2図の14)での漏洩電流全差し
引くようにする。尚、サンプルホールドの保持するデー
タは1次のサンプル信号59が入るか、リセット67が
入るまでは保持されている、もし、ビーム電流の可変幅
が広く、電子銃の特性の非直線に↓す、1つのKlのデ
ータで全ビーム電流範囲をカバーし切れない時は、ビー
ム電流の可変111iii’ii7数等分し、各々の可
変域について。
Switch from side to 1' side. As a result, the arithmetic circuit 61
The calculation is redone as K:K,', and the difference between the beam current command value Ibc and the actual value Iba is eliminated. Although not shown, the actual value Lba is calculated by subtracting the entire leakage current during the period (14 in FIG. 2) in which no beam current is applied. The data held by the sample hold is held until the primary sample signal 59 is input or the reset 67 is input.If the beam current has a wide variable range and the electron gun characteristics are nonlinear, , If one Kl data cannot cover the entire beam current range, divide the beam current variable into 7 equal parts for each variable range.

各々1個づつのKl与える補正回路62.サンプルホー
ルド63.切替スイッチ66、フリップフロップ64.
プリセット値発生器65を等分した数だけ用意して、選
択的に使用する(図示せず)。
Correction circuits 62 each providing one Kl. Sample hold 63. Changeover switch 66, flip-flop 64.
An equal number of preset value generators 65 are prepared and used selectively (not shown).

ここで、例えばKの値全モニターし、Kの値カある範囲
外に出たときは警報を発するようにしておけば、フィラ
メント加熱電流の低下とか電子銃のセッティング不良と
か金兄出し適切な処置金族せるなどの利点も得られる。
For example, if you monitor all K values and issue an alarm when the K value goes out of a certain range, you can take appropriate measures to detect a drop in the filament heating current or a poor electron gun setting. You can also get benefits such as being a member of the metal family.

偏差増幅器5とサイリスタ回路6はここで述べたに、の
値を時々刻々と更新してゆくフィードバックループ内に
ちゃ、サイリスタ回路6は商用周波数父流電源7から給
電されている。こうして電子銃(51〜5,3)のグリ
ッドバイアス電圧奮はぼ信号波形4に類似させるように
制御できる。
As described here, the deviation amplifier 5 and the thyristor circuit 6 are in a feedback loop in which the value of is updated every moment, and the thyristor circuit 6 is supplied with power from the commercial frequency direct current power source 7. In this way, the grid bias voltage of the electron gun (51-5, 3) can be controlled to resemble signal waveform 4.

そうすると第2図に示すように時間と共に変化するビー
ム電流波形が得られる。前記したようにビーム電流が定
常値になる期間の一部11,12゜13において、それ
ぞれビーム電流の値全検出するが、その検出方法は、例
えは、期間11又は12゜13での平均的値、あるいは
、9:流リッノルの影響を少なくするため、リップル剃
波数に同期してサンプリングした値又は、放電等による
ノイズを取り除くため、複数回サンプリングして、前後
の値といちじるしい相異のある値は、それを除くような
データの処理上行なった値?取り出す方法を組み合わせ
て使用する。
In this case, a beam current waveform that changes over time as shown in FIG. 2 is obtained. As mentioned above, the full value of the beam current is detected during the periods 11 and 12°13 during which the beam current reaches a steady value. or 9: A value sampled in synchronization with the ripple shaving wave number to reduce the influence of flow ripple, or a value sampled multiple times to remove noise due to discharge etc., and a value that is significantly different from the previous and subsequent values. Is the value the value you did on the data processing such as excluding it? Use a combination of extraction methods.

以上に示すとおり、フィードバック161」御は、定常
状態においてのみ、サンプリングの形で行なわれ、ビー
ムの立上97立下り期間は、オープンループ制御となる
ため、立上り/立下り部分において、フィードバック信
号が不連続となる事により生シカちな、オーバーシュー
ト、アンダーシー−トもなくなシ、高電圧印加による予
測し難い漏洩電流分の影響も除け、再現性の良い、電子
ビーム加工全くり返し行わせ得る。
As shown above, the feedback control is performed in the form of sampling only in the steady state, and open-loop control is performed during the beam rise and fall periods, so the feedback signal is Due to the discontinuity, there is no possibility of raw edges, overshoots, and undersheets, and the influence of unpredictable leakage current due to high voltage application is also eliminated, and electron beam processing can be performed repeatedly with good reproducibility. .

さらに、第1図のバイアス電圧フィードバックサブクレ
ープは高電圧部の影響を受けないので充分早い応答性全
発揮し、高電圧回路入力電源周波数を上げなくても急速
なビーム電流の立ち上り等を可能にする・ このように本発明のビーム電流制御回路を用いた電子ビ
ーム装置は、ビーム加速用高電圧回路の人力電源に商用
周波数のものを用いても充分速くビーム電流を立ち上ら
せた。!lll低下させたりすることができ、装置が簡
単になり信頼性も良好で、比較的低価格でしかもワーク
を多数くシ返し再現性よ〈刀U工できるなど実用上大き
な利点を備えている。
Furthermore, since the bias voltage feedback sub-crepe shown in Figure 1 is not affected by the high voltage section, it fully exhibits sufficiently fast response and enables rapid beam current rise without increasing the high voltage circuit input power frequency. As described above, the electron beam device using the beam current control circuit of the present invention was able to raise the beam current sufficiently quickly even when a commercial frequency power source was used as the human power source of the high voltage circuit for beam acceleration. ! It has great practical advantages, such as being able to reduce the amount of heat, making the device simple and having good reliability, relatively low cost, and being able to repeat a large number of workpieces.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電子ビーム装置用ビーム電流制御回路
の一実施例を示す要部説明図、第2図はビーム電流の時
間的変化の一定を示す波形図、第3図は、第1図のバイ
アス電圧設定回路31を詳説する図である。 1・・・・・・単巻変成器、2・・・・・・変成器、3
・・・・・整流平滑回路、4・・・・・・1汀号波形、
5・・ ・偏差増幅器。 6・・・・・・サイリスク回#!J、8,9.10・・
・・・ビーム電流が定常値になる期間、11,12,1
3,8゜9.10で示す定常値になる期間内の1部期間
。 56・・・・・ビーム電流指令信号発生器、57・・・
・・・バイアストランス、58・・・・・・バイアス整
流器、51・・・・・・フィラメント、52・・・・・
グリッド、53・・・・・アノード、54・・・・・・
電子ビーム、55・・・・電子ビーム被照射物、34・
・・・・加速電圧源、35・・・・・ビーム電流検出回
路、31・・・・・・バイアス電圧設定器。 59・・・・・サンプルホールド信号、67・・・・・
サンプルホールドリセット信号、61・・・・・・バイ
アス電圧演算回路、62・・・・・バイアス電圧補正回
路、63・・・・・サンプルホールド回路、64・・・
・・フリップ7キツプ、65・・・・・・電子銃の比例
係数にの初期値KOの発生器、66・・・・・K”の切
替スイッチ。
FIG. 1 is an explanatory diagram of main parts showing one embodiment of a beam current control circuit for an electron beam device according to the present invention, FIG. 2 is a waveform diagram showing constant temporal changes in beam current, and FIG. FIG. 3 is a diagram illustrating in detail the bias voltage setting circuit 31 shown in the figure. 1...Single-turn transformer, 2...Transformer, 3
... Rectifier smoothing circuit, 4...1 waveform,
5... - Deviation amplifier. 6...Syrisk #! J, 8, 9, 10...
...Period when the beam current reaches a steady value, 11, 12, 1
3,8° 9. Part of the period within the period when the steady value is reached as shown in 10. 56... Beam current command signal generator, 57...
... Bias transformer, 58 ... Bias rectifier, 51 ... Filament, 52 ...
Grid, 53... Anode, 54...
Electron beam, 55...Electron beam irradiated object, 34.
... Acceleration voltage source, 35 ... Beam current detection circuit, 31 ... Bias voltage setting device. 59...Sample hold signal, 67...
Sample hold reset signal, 61...Bias voltage calculation circuit, 62...Bias voltage correction circuit, 63...Sample hold circuit, 64...
...Flip 7 key, 65... Generator of the initial value KO for the proportional coefficient of the electron gun, 66... K'' changeover switch.

Claims (1)

【特許請求の範囲】 電子ビームをワークに照射して加工する電子ビーム装置
において、電子ビーム照射を開始しビーム電流が立上っ
た後の定常状態を保つ期間の一部期間に、ビーム検出回
路に流れる電流と、ビーム電流が流れない期間の一部期
間に該検出回路に流れる電流との差であるビーム電流の
実際値をめ。 その実際値とそれに対応するビーム電流設足値と全比較
するようにした電子ビーム装置のビーム電流の制御方法
[Claims] In an electron beam device that processes a workpiece by irradiating it with an electron beam, a beam detection circuit is activated during a part of the period during which a steady state is maintained after the electron beam irradiation is started and the beam current rises. Find the actual value of the beam current, which is the difference between the current flowing through the detection circuit and the current flowing through the detection circuit during a part of the period when no beam current flows. A method for controlling the beam current of an electron beam device in which the actual value and the corresponding beam current initial value are completely compared.
JP11315583A 1983-06-23 1983-06-23 Method of controlling beam current Pending JPS607051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11315583A JPS607051A (en) 1983-06-23 1983-06-23 Method of controlling beam current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11315583A JPS607051A (en) 1983-06-23 1983-06-23 Method of controlling beam current

Publications (1)

Publication Number Publication Date
JPS607051A true JPS607051A (en) 1985-01-14

Family

ID=14604954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11315583A Pending JPS607051A (en) 1983-06-23 1983-06-23 Method of controlling beam current

Country Status (1)

Country Link
JP (1) JPS607051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216082A (en) * 2007-03-05 2008-09-18 Ihi Corp Dynamic tensile test method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216082A (en) * 2007-03-05 2008-09-18 Ihi Corp Dynamic tensile test method and device

Similar Documents

Publication Publication Date Title
GB2073446B (en) Method and apparatus for monitoring and controlling a resistance welding operation
JPS57202988A (en) Accommodation controlling device for resistance welding
JPS61123481A (en) Constant-current control method of resistance welder
JPS607051A (en) Method of controlling beam current
JPS59177845A (en) Beam-current-controlling device for electron beam device
US5266765A (en) Apparatus and method of induction-hardening machine components with precise power output control
JPS61210173A (en) Method and apparatus for controlling thermochemical treatment of work piece
JPS6223440B2 (en)
JPS59165354A (en) Electron beam device
JPS58201103A (en) Sampled value pid controller
US5053596A (en) Apparatus and method of induction-hardening machine components with precise power output control
JPS59147786A (en) Control device for beam current
JPH0453069B2 (en)
JPS59198649A (en) Electron beam device
KR970011547B1 (en) Apparatus and method of induction-hardening machine components with precise power output control
JPH03472A (en) Method and equipment for ac tig welding
JPS61289983A (en) Control device for resistance welding machine
Kasemir et al. Adaptive Feed Forward Beam-Loading Compensation Experience at the Spallation Neutron Source Linac
JPS61226803A (en) Process control device
JPS5874280A (en) Monitoring device for welding current
JPH0254850A (en) Control method of ion processor
JPS5971507A (en) Process controller
JPS6218026A (en) Control unit for filament heating
JPH0145960B2 (en)
JPH0614462B2 (en) Beam current control circuit