JPS6070352A - Electromagnetic ultrasonic transducer - Google Patents

Electromagnetic ultrasonic transducer

Info

Publication number
JPS6070352A
JPS6070352A JP58178898A JP17889883A JPS6070352A JP S6070352 A JPS6070352 A JP S6070352A JP 58178898 A JP58178898 A JP 58178898A JP 17889883 A JP17889883 A JP 17889883A JP S6070352 A JPS6070352 A JP S6070352A
Authority
JP
Japan
Prior art keywords
coils
frequency current
magnetic field
permanent magnet
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58178898A
Other languages
Japanese (ja)
Inventor
Kazuo Morimoto
森本 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58178898A priority Critical patent/JPS6070352A/en
Publication of JPS6070352A publication Critical patent/JPS6070352A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To propagate an ultrasonic wave only to one direction, by combining a plurality of high frequency current coils provided on a permanent magnet and a condenser. CONSTITUTION:A permanent magnet 21 having N and S poles povided to both side end surfaces thereof generates a magnetic field B in a direction vertical to the surface of a body to be inspected. A plurality of divided high frequency current coils L1-L4 are arranged at constant pitches so as to cross the direction of the magnetic field B at right angles and respectively connected in series. Condensers C1-C3 are respectively interposed between the respective connection parts of the coils L1-L4 and the terminal parts thereof and the values of the coils L1-L4 and the condensers C1-C3 are set to predetermined relation and time difference is respectively generated to currents flowing to the coils L1-L4. By this mechanism, an ultrasonic wave can be propagated only to one direction.

Description

【発明の詳細な説明】 この発明は、例えば船体等の金属性構造部材を探傷する
探傷装置のi+i磁超音波トランスデーーサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an i+i magnetic ultrasonic transducer for a flaw detection device for flaw detection of metallic structural members such as ship hulls.

例えは船体溶接部内部の溶接状態を超音波で探傷するに
は、第1図(a)に示すようなトランスデー−サを用い
て超音波を発生させている。このトランスデユーサには
例えばコ字状の永久磁石11が用いられるもので、この
磁石11のN極とS極との間には磁界の生じる方向と直
角にした複数の直線部分を有するコイル12を配置して
構成している。
For example, in order to detect welding conditions inside a hull weld using ultrasonic waves, a transducer as shown in FIG. 1(a) is used to generate ultrasonic waves. This transducer uses, for example, a U-shaped permanent magnet 11, and between the N and S poles of this magnet 11 there is a coil 12 having a plurality of straight portions perpendicular to the direction in which the magnetic field is generated. It is arranged and configured.

すなわち同図(b)に示すように、このコイル12に高
周波電流工、を流すと、上記船体溶接部に相当する被検
査体13には渦電流■1〜I7が発生するもので、この
渦電流11〜■7は永久磁石1ノにより被検査体13の
内部にN極からS極方向に向けて生じるようになる磁束
B、〜B7との相互作用によシローレンツカFl〜F7
を発生する。このローレンツ力F1〜F7は上記渦電流
11〜■7に伴なってコイルノ2の間隔Toで方向が縦
波状に1800変化するもので、このローレンツ力Fl
−F7の方向変化に対応するように被検査体13の内部
には超音波が発生する。
In other words, as shown in FIG. 6(b), when a high-frequency electric current is passed through this coil 12, eddy currents 1 to 17 are generated in the object 13 to be inspected corresponding to the hull welds, and these eddy currents The currents 11 to 7 are caused by the siren flux Fl to F7 due to the interaction with the magnetic flux B, ~B7, which is generated inside the test object 13 from the N pole to the S pole direction by the permanent magnet 1.
occurs. The direction of these Lorentz forces F1 to F7 changes by 1800 degrees in the form of a longitudinal wave at the interval To of the coil nozzle 2 along with the above-mentioned eddy currents 11 to 7.
Ultrasonic waves are generated inside the object to be inspected 13 in response to the direction change of -F7.

ここで超音波が合成波面14を形成し伝播する方向θは
、 を満足するような角度に設定される。
Here, the direction θ in which the ultrasonic wave forms the composite wavefront 14 and propagates is set to an angle that satisfies the following.

また上記のようなコ字型の永久磁石1ノを使用するもの
の他に、第2図(、)に示すように両側端面にNおよび
S極を有する長方形状の永久磁石15を用いるトランス
デー−サが考えられている。そしてこの磁石15のN極
に対面して直線部が横切るコイル12を配置して構成し
ている。
In addition to the U-shaped permanent magnet 1 as described above, a transmagnet using a rectangular permanent magnet 15 having N and S poles on both end faces as shown in FIG. Sa is considered. The coil 12 is arranged so as to face the north pole of the magnet 15 and whose straight portion crosses the coil 12.

すなわち第2図(b)に示すように、このトランスデユ
ーサはローレンツ力F1〜F8を横波状に180°変化
して発生するもので、この横波状のローレンツ力F、〜
F8によシ上記と同様の伝播方向θで超音波の合成波面
14を形成している。
That is, as shown in FIG. 2(b), this transducer generates Lorentz forces F1 to F8 by changing them by 180° in the form of transverse waves, and the Lorentz forces F1 to F8 in the form of transverse waves change by 180 degrees.
At F8, an ultrasonic composite wavefront 14 is formed in the same propagation direction θ as described above.

ここで、超音波の合成波面14は、上記第1図および第
2図の倒れの場合においても、θ方向たけでなく破線で
示すような一θ方向にも形成されるものである。
Here, the composite wavefront 14 of the ultrasonic waves is formed not only in the θ direction but also in one θ direction as shown by the broken line even in the case of the tilt shown in FIGS. 1 and 2.

つまり被検翁体13の内部に傷等が存在する場合、超音
波は傷の存在する位置で反射されるようになシ、この反
射波は上述したのと逆の過程でトランスデー−サによシ
ミ気信号に変換され検出されるものである。
In other words, if there is a flaw or the like inside the subject's body 13, the ultrasonic wave will be reflected at the position where the flaw exists, and this reflected wave will be transmitted to the transducer in the reverse process as described above. This is converted into a stain signal and detected.

しかしながら、このようなトランスデユーサでは、超音
波の合成波面14がθ方向および一〇方向共に形成され
てしまうため、例えばこのトランスデー−サで超音波探
傷を行なう場合には、検出欠陥部がθまたは−θの何れ
方向に存在しているのかを判定できないを同時に、探傷
領域外にも超音波が伝播するようになシ、誤判定を招く
恐れがある。
However, in such a transducer, the ultrasonic composite wavefront 14 is formed in both the θ direction and the 10 direction. It is not possible to determine whether the flaw exists in the θ or -θ direction, and at the same time, the ultrasonic wave propagates outside the flaw detection area, which may lead to erroneous determination.

この為、例えば第3図(a)および(b)に示すように
、超音波をθ方向にのみ伝播させる構成のトランスデ−
−サが考えられている。すなわち、このトランスデー−
ザは、複数に分割した高周波電流コイル16a〜16d
を備えるもので、このぞれぞれのコイル16a〜16d
に流れる高周波電流■H1〜■H4を、一定時間間隔も
で遅延制御することによシ、1方向(θ方向)にのみ超
音波の合成波面14を形成するようにしている。つまシ
、この場合、超音波の入射角(伝播方向)をθ、音速1
vとすれは、コイルJ6bTは2T−s石θ/■、コイ
ル16cでは4T−6Inθ/■、コイル16dでは6
T−slnθ/■となシ、θ方向にのみ超fi波の合成
波面14が形成されるものである。
For this reason, for example, as shown in FIGS. 3(a) and 3(b), a transducer configured to propagate ultrasonic waves only in the θ direction.
-Sa is considered. In other words, this transday
The high frequency current coils 16a to 16d are divided into multiple parts.
Each of the coils 16a to 16d
By delay-controlling the high-frequency currents (H1 to (H4)) flowing at fixed time intervals, a composite wavefront 14 of ultrasonic waves is formed only in one direction (the θ direction). In this case, the incident angle (propagation direction) of the ultrasonic wave is θ, and the sound speed is 1.
Coil J6bT is 2T-s stone θ/■, coil 16c is 4T-6Inθ/■, coil 16d is 6
When T-slnθ/■, a super-fi wave composite wavefront 14 is formed only in the θ direction.

しかしこのように複数に分割した高周波電流コイル16
a〜16dに流ず高周波電流IH1〜工H4それぞれを
、一定時間間隔tで遅延制御したのでは、上記コイル1
6a〜16dそれぞれに対応する数たりの複数の電流送
信装置および受信装置がt髪となり、このトランスデー
−サの全体構成か松雑大型化してしまう。
However, the high frequency current coil 16 divided into multiple parts like this
If the high-frequency currents IH1 to H4 are delayed and controlled at fixed time intervals t without flowing to the coils a to 16d, the above coil 1
A plurality of current transmitting devices and receiving devices corresponding to each of 6a to 16d become a huge number, and the overall structure of this transducer becomes large.

この発明は上記のような問題点に入みなされたもので、
複数に分割した高周波電流コイルに対して、ぞt′1そ
れ別々の送イムあよひ受信装置を必りとすることなく、
簡ヰな構成で超音波を一方向にのみ伝播させることがで
きるようになる電磁超音波]・ランステ゛ユーサを提供
することを目的とJる。
This invention was made in view of the problems mentioned above.
For high-frequency current coils divided into multiple parts, it is not necessary to have separate time transmitting and receiving devices.
It is an object of the present invention to provide an electromagnetic ultrasonic run stage user that can propagate ultrasonic waves in only one direction with a simple configuration.

すなわちこの発明に係る霜磁超音波トランスデーーサは
、被検面に対して垂直または平行な磁界を生じさせる磁
気回路と、この磁気回路が生じさせる磁界の方向と面角
にして一定ピッチで配列され直列に接続される複数の高
周波電流コイルと、この複数の高周波電流コイルそれぞ
れの接続部とその終端部との間に介在される複数のコン
デンサとを具備し、上記それぞれの高周波電流コイルと
コンデンサとの値を用定の関係に設定するようにしたも
のである。
That is, the frost magnetic ultrasonic transducer according to the present invention includes a magnetic circuit that generates a magnetic field perpendicular or parallel to the surface to be measured, and a magnetic circuit that is arranged at a constant pitch at a plane angle with the direction of the magnetic field generated by this magnetic circuit. A plurality of high-frequency current coils are connected in series, and a plurality of capacitors are interposed between the connection portions of the plurality of high-frequency current coils and their terminal ends, and each of the high-frequency current coils and the capacitors are The values of and are set in a predetermined relationship.

以下図m1によシこの発明の一実施例を眩・、明する。An embodiment of the present invention will be clearly explained below with reference to Figure m1.

第4図はその構成を示すもので、このトランスデユーサ
は、例えは両側端面にNおよびS極を有する長方形状の
永久磁石21を備えている。
FIG. 4 shows its configuration, and this transducer is equipped with a rectangular permanent magnet 21 having, for example, N and S poles on both end faces.

この永久磁石21は、被検査体の表面に対して垂白な方
向に磁界B音生じさせるもので、この磁石2ノによシ生
じる磁界Bの方向と直角にして、一定ピツチTで複動に
分割した高周波電流コイルし1〜L4を配列し、そのそ
れぞれを直列に接続する。そして、この複数の高周波電
流コイルし1〜L4それぞれの接続部とその終端部との
間には、並列にして複数のコンデンサC1〜C3を介在
し、さらに上記コイルし1〜L4の終端側には、反射防
止用抵抗Rを接続して構成する。
This permanent magnet 21 generates a magnetic field B sound in a direction perpendicular to the surface of the object to be inspected, and double-acts at a constant pitch T at right angles to the direction of the magnetic field B generated by this magnet 2. The high-frequency current coils divided into 1 to L4 are arranged, and each of them is connected in series. A plurality of capacitors C1 to C3 are interposed in parallel between the connection portions of the plurality of high-frequency current coils 1 to L4 and their terminal ends, and furthermore, a plurality of capacitors C1 to C3 are interposed in parallel to the terminal ends of the coils 1 to L4. is constructed by connecting an anti-reflection resistor R.

ここで、第5図は上記複数の高周波電流コイルL1〜L
4 iよび複数のコンデンサC1〜C3、そして、抵抗
Rそれぞれの回路構成を示すもので、この複数のコイル
L1〜L4、コンデンサC1−c3、抵抗Rそれぞれの
値を次のような所定の関係に醗定する。
Here, FIG. 5 shows the plurality of high frequency current coils L1 to L.
4 i, multiple capacitors C1 to C3, and resistor R. The values of these multiple coils L1 to L4, capacitors C1 to C3, and resistor R are set in the following predetermined relationship. Decide.

L2=L3 =L4= −・= Ln、 = L −=
 1式し+ = Ln = L/ 2 ・= 2式2T
−廊θ/V = ’rc ・・・3式R−Jロ扉−・・
・4式 但し、■ 音速 すなわちこのように構成されるトランスデユーサにおい
ては、上記第5図における高周波電流コイルL1〜L4
、コンデンサC1〜C3および抵抗Rそれぞれから々る
回路網は、第6図に示すような等価回路に置き換えられ
るようになる。ここで、破線A−Cで囲んで示すような
、それぞれの回路網は、すべて第7図に示すような集中
定数系による定に型遅延回路網となる。この場合、各コ
イルLz/2に流れるそれぞれの電流i1とi2との間
には、次のような時間差tdが生じるようになる。
L2=L3 =L4= -・= Ln, = L -=
1 equation + = Ln = L/ 2 ・= 2 equation 2T
- Corridor θ/V = 'rc... Type 3 R-J Ro door...
・Type 4 However, ■ The speed of sound, that is, in the transducer configured in this way, the high frequency current coils L1 to L4 in Fig. 5 above
, capacitors C1 to C3, and resistor R, respectively, can be replaced with an equivalent circuit as shown in FIG. Here, each of the circuit networks shown surrounded by broken lines A-C is a constant type delay circuit network based on a lumped constant system as shown in FIG. In this case, the following time difference td occurs between the currents i1 and i2 flowing through each coil Lz/2.

td≧J琵−・・・5弐 つtJ)、上記第4図および第5図におけるそれぞれの
コイルL、〜L4に流れる電流IIN〜■H4には、必
然的に上記5式における時間差tdが生じるようになり
、前記第3図(b)におけ、る場合と同様の渦電流■!
〜■8および横波状のローレンツ力F、〜F8が、被検
査体I3内に生じるようになる。
td≧J琵-...52tJ), the currents IIN~■H4 flowing through the respective coils L and ~L4 in FIGS. 4 and 5 above necessarily have the time difference td in the above equation 5. An eddy current ■! similar to that shown in FIG. 3(b) occurs.
.about.8 and transverse wave-like Lorentz forces F and .about.F8 are generated within the object to be inspected I3.

すなわち、前述したように、高周波電流コイルL1〜L
4に流れるそれぞれの高周波電流工H1〜IH4が、一
定時間間隔tで遅延制御源れることによシ、超音波は前
記第3図(b)における場合と同様にしてθ方向にのみ
伝播するようになシ、千の方向にのみ超音波の合成波面
14を形成するようになる。この場合、複数のコイルL
1〜L4列の終端に、反射防止用抵抗Rを接続したこと
により、再度、コイルL1〜L4に電流が肪起されるよ
うなことはない。
That is, as mentioned above, the high frequency current coils L1 to L
Since each of the high-frequency currents H1 to IH4 flowing through the channel 4 is controlled by a delay control source at a fixed time interval t, the ultrasonic wave propagates only in the θ direction, similar to the case in FIG. 3(b). A composite wavefront 14 of ultrasonic waves is formed only in a thousand directions. In this case, multiple coils L
By connecting the anti-reflection resistor R to the end of the 1-L4 rows, no current is caused to flow through the coils L1-L4 again.

したがってこのように構成されるトランスデー−−ザに
よれは、複数の高周波電流コイルL1〜L4とコンデン
ザ自〜C3とを組み合わせた、北朝的簡単な回路構成で
、確実に超音波を一方向θにのみ伝播させることができ
るようになる。
Therefore, the transducer configured in this manner has a simple circuit configuration similar to that of North Korea, which combines a plurality of high-frequency current coils L1 to L4 and capacitors to C3, and reliably transmits ultrasonic waves in one direction θ. can only be propagated to

尚、上記実施例では、長方形状の永久磁石2ノにより、
被検査体130表面に対して、垂直方向に磁界Bを生じ
させるようにしたが、例えば第8図(a)および(b)
に示すようK、長方形状の永久磁石21の両側端面にヨ
ーク22h、22bを設け、被検査体130表面に対し
て、平行方向に磁界Bf生じさせるようにしてもよい。
In the above embodiment, the two rectangular permanent magnets
The magnetic field B was generated in a direction perpendicular to the surface of the object to be inspected 130. For example, as shown in FIGS. 8(a) and 8(b)
As shown in K, yokes 22h and 22b may be provided on both end surfaces of the rectangular permanent magnet 21 to generate a magnetic field Bf in a direction parallel to the surface of the object to be inspected 130.

この場合、薔検査体13内には細波状のローレンツ力F
1〜F8が発生するようになるもので、この縦波状のロ
ーレンツ力Fl−FBにより上記実施例と同様の伝播方
向θに超音波の合成波面14が形成されるようになる。
In this case, a thin wave-like Lorentz force F exists within the rose test object 13.
1 to F8 are generated, and this longitudinal wave-like Lorentz force Fl-FB forms an ultrasonic composite wavefront 14 in the same propagation direction θ as in the above embodiment.

以上のようにこの発明によれば、複数の高周波電流コイ
ルに対して、それぞれ別々の送信および受信装置を必要
とすることなく、複数のコンデンサとの簡単な組み合わ
せ構成で超音波を一方向にのみ伝播させることが可能と
なる。これによシ、トランスデユーサの全体構成が複雑
大型化することなく、探傷領域に正確に対応した超音波
探傷を行なうことができる。
As described above, according to the present invention, ultrasonic waves can be transmitted in one direction only by a simple combination configuration with multiple capacitors, without requiring separate transmitting and receiving devices for multiple high-frequency current coils. It becomes possible to propagate it. As a result, ultrasonic flaw detection can be performed that accurately corresponds to the flaw detection area, without making the overall structure of the transducer complicated or large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来のトランスデー−サ
を説明する図、第3図(a)および(b)はそれぞれ超
音波を一方向にのみ伝播させるトランスデー−サを示す
構成図およびその超音波の伝播状態を示す図、第4図は
この発明の一実施例に係る電磁超音波トランスデユーサ
を示す構成図、第5図は上記1.磁超音波トランスデー
ーサの高周波電流コイルとコンデンサとの組み合わせを
示す回路構成図、第6図は上記第5図におV)る回路網
を等価して示す回路構成図、第7図は上記第6図におけ
る等価回路に対応する定に型遅延回路網を示す図、第8
図はこの発明の他の実施例を示す図である。 13・・・被検査体、14・・・超音波の合成波面、2
1 ・・・永久磁石、22 a 、 22 b−ヨーク
、Ll〜L4・・・高周波電流コイル、自〜C3・・コ
ンデンサ。 出願人復桟理人 弁理士 鈴 江 武 彦第1図 (a) (b) 第2図 (a) 第3図 (a) 第4図 第6図 A B C
FIGS. 1 and 2 are diagrams explaining a conventional transducer, respectively, and FIGS. 3(a) and 3(b) are block diagrams showing a transducer that propagates ultrasonic waves only in one direction, respectively. FIG. 4 is a configuration diagram showing an electromagnetic ultrasonic transducer according to an embodiment of the present invention, and FIG. 5 is a diagram showing the state of propagation of the ultrasonic waves. A circuit configuration diagram showing a combination of a high-frequency current coil and a capacitor of a magneto-ultrasonic transducer. Figure 6 is a circuit configuration diagram equivalent to the circuit network shown in Figure 5 (V) above. Figure 7 is an equivalent circuit diagram showing the circuit network shown in Figure 5 above. A diagram showing a constant-type delay network corresponding to the equivalent circuit in FIG.
The figure shows another embodiment of the invention. 13... Test object, 14... Ultrasonic composite wavefront, 2
1...Permanent magnet, 22a, 22b-yoke, Ll~L4...High frequency current coil, Self~C3...capacitor. Patent attorney Takehiko Suzue Figure 1 (a) (b) Figure 2 (a) Figure 3 (a) Figure 4 Figure 6 A B C

Claims (1)

【特許請求の範囲】[Claims] 被検面に対して垂直または平行な磁界を生じさせる磁気
回路と、この磁気回路が生じさせる磁界の方向と直角に
して一定ピッチで配列され偉効に接続される複数の高周
波電流コイルと、この複数の高周波電流コイルそれぞれ
の接続部とその終端部上の間にそれぞれ介在される複数
のコンデンサとを具備し、上記それぞれの高周波電流コ
イルとコンデンサとの値を所定の関係に設定したことを
特徴とするm、磁超脩波トランスデューザ。
A magnetic circuit that generates a magnetic field perpendicular or parallel to the surface to be inspected, a plurality of high-frequency current coils that are arranged at a constant pitch and connected at right angles to the direction of the magnetic field generated by this magnetic circuit, and It is characterized by comprising a plurality of capacitors interposed between the connection portions of each of the plurality of high-frequency current coils and their terminal ends, and the values of the respective high-frequency current coils and the capacitors are set in a predetermined relationship. m, a magnetotransducer.
JP58178898A 1983-09-27 1983-09-27 Electromagnetic ultrasonic transducer Pending JPS6070352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178898A JPS6070352A (en) 1983-09-27 1983-09-27 Electromagnetic ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178898A JPS6070352A (en) 1983-09-27 1983-09-27 Electromagnetic ultrasonic transducer

Publications (1)

Publication Number Publication Date
JPS6070352A true JPS6070352A (en) 1985-04-22

Family

ID=16056615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178898A Pending JPS6070352A (en) 1983-09-27 1983-09-27 Electromagnetic ultrasonic transducer

Country Status (1)

Country Link
JP (1) JPS6070352A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078998A1 (en) * 2002-03-15 2003-09-25 Pii Limited Elecromagnetic acoustic transducer
KR101066247B1 (en) 2009-08-04 2011-09-20 서울대학교산학협력단 Non-contact type transducer for plate having multi-loop coil
CN103582804A (en) * 2011-03-31 2014-02-12 瑞士罗森股份有限公司 Acoustic flowmeter
CN105004797A (en) * 2015-07-24 2015-10-28 广州彩磁信息技术有限公司 Object detection method and device based on constant electromagnetic source motor variable frequency induction field
JP2016121949A (en) * 2014-12-25 2016-07-07 株式会社神戸製鋼所 Electromagnetic ultrasonic sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078998A1 (en) * 2002-03-15 2003-09-25 Pii Limited Elecromagnetic acoustic transducer
KR101066247B1 (en) 2009-08-04 2011-09-20 서울대학교산학협력단 Non-contact type transducer for plate having multi-loop coil
CN103582804A (en) * 2011-03-31 2014-02-12 瑞士罗森股份有限公司 Acoustic flowmeter
JP2016121949A (en) * 2014-12-25 2016-07-07 株式会社神戸製鋼所 Electromagnetic ultrasonic sensor
CN105004797A (en) * 2015-07-24 2015-10-28 广州彩磁信息技术有限公司 Object detection method and device based on constant electromagnetic source motor variable frequency induction field

Similar Documents

Publication Publication Date Title
KR101061590B1 (en) Magnetostrictive transducers, structural diagnostic devices and structural diagnostic methods using the same
US6038925A (en) Focal type electromagnetic acoustic transducer and flaw detection system and method
EP0024707B1 (en) Electromagnetic ultrasonic apparatus
JP6818977B2 (en) Electromagnetic ultrasonic sensor
JPS6070352A (en) Electromagnetic ultrasonic transducer
IE47295B1 (en) Ultrasonic testing
JP3759798B2 (en) Lightning point location method
JP3504430B2 (en) Beveled electromagnetic ultrasonic transducer
JPS62100615A (en) Ultrasonic flowmeter
JPH09287990A (en) Ultrasonic flowmeter
JPH0248060B2 (en)
JP2538596B2 (en) Electromagnetic ultrasonic transducer
JPS6175259A (en) Electromagnetic ultrasonic transducer
JPS62277556A (en) Electromagnetic ultrasonic probe
JP2001074759A (en) Non-contact flow velocity/flow rate measurement method using electromagnetic ultrasonic wave
JP2778390B2 (en) Partial discharge detection device
JPH0143265B2 (en)
JPH0215018B2 (en)
JPH0447274A (en) Sensor for measuring zero phase current
JP3844282B2 (en) Object identification apparatus and method
JP2008196924A (en) Ultrasonic flowmeter
JPH04188057A (en) Flaw detecting apparatus for metal material
RU1340381C (en) Metal detector
JPS5938663A (en) Current measuring apparatus using optical fiber
JPH0142379B2 (en)