JPS6175259A - Electromagnetic ultrasonic transducer - Google Patents

Electromagnetic ultrasonic transducer

Info

Publication number
JPS6175259A
JPS6175259A JP59196207A JP19620784A JPS6175259A JP S6175259 A JPS6175259 A JP S6175259A JP 59196207 A JP59196207 A JP 59196207A JP 19620784 A JP19620784 A JP 19620784A JP S6175259 A JPS6175259 A JP S6175259A
Authority
JP
Japan
Prior art keywords
frequency current
current path
permanent magnets
high frequency
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59196207A
Other languages
Japanese (ja)
Inventor
Michio Sato
道雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59196207A priority Critical patent/JPS6175259A/en
Publication of JPS6175259A publication Critical patent/JPS6175259A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the operability, by forming a high frequency current path in a ladder to enable the implementation of an angle beam flaw detection involving a scanning in a completely non-contact manner simply by selecting the frequency of current flowing through the high frequency current path. CONSTITUTION:A high frequency current path 20 is built up in a ladder as a whole with a pair of main conductor sections 21a and 21b extending parallel and branch conductor sections 22 for connecting both the main conductors at the pitch P equal to the pitch P of arranging permanent magnets 11a-11d. It also is fastened on the surface of an electric insulator 2 in such a manner that the branch conductor sections 22 face respectively yokes 11a-12d. Then, as a high frequency current flows through the high frequency current path 20, a thigh frequency induced eddy current 25 runs through the surface of material B to be inspected to generate an ultrasonic wave 27. In addition, the ultrasonic wave 27 can be controlled in the direction of propagation by varying the frequency of the high frequency current to be fed to enable the implementation of an angle beam flaw detection of the material B being inspected involving a scanning and in a non-contact manner thereby improving the ease of use.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電磁超音波トランスジューサに係り、特に、
使い易さを大幅に向上させた電磁超音波トランスジュー
サに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electromagnetic ultrasonic transducer, and in particular:
This invention relates to an electromagnetic ultrasonic transducer that has greatly improved ease of use.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超音波探傷試験を実施するには超音波トランスジューサ
を必要とする。このような超音波トランスジューサとし
ては、従来、種々のタイプのものが提案されている。こ
れら超音波トランスジューサの1つとして電磁超音波ト
ランスジューサが知られている。この電磁超音波トラン
スジューサは、磁歪素子や電歪素子を用いたものとは違
って、〇−レンツカで被検査材中に超音波を生起させる
ようにしたもので、被検査材とは非接触状態にセットで
きると言う特徴を備えている。したがって、被検査材の
表面に凹凸が存在しているような場合でも格別な処置な
どを施すことなく試験を実施することができる。
An ultrasonic transducer is required to perform an ultrasonic flaw detection test. Various types of ultrasonic transducers have been proposed in the past. An electromagnetic ultrasonic transducer is known as one of these ultrasonic transducers. Unlike those that use magnetostrictive elements or electrostrictive elements, this electromagnetic ultrasonic transducer uses an 〇-lenska to generate ultrasonic waves in the material to be inspected, and is in a non-contact state with the material to be inspected. It has the feature that it can be set to Therefore, even if the surface of the material to be inspected has irregularities, the test can be carried out without any special measures.

ところで、このような電11趣音波トランスジューサは
、通常、第5図中にAで示すように構成されている。す
なわら、この電磁超音波トランスジューサAは、大きく
別けて、磁性ブロック1と、この磁性ブロック1の一側
面に薄い電気絶縁材2を介して配設された高周波電流路
3とで構成されている。
Incidentally, such an electric sonic transducer is usually constructed as shown by A in FIG. 5. In other words, this electromagnetic ultrasonic transducer A is mainly composed of a magnetic block 1 and a high frequency current path 3 disposed on one side of the magnetic block 1 via a thin electrical insulating material 2. There is.

磁性ブロック1は、複数個の永久磁石11a、11b、
11G、・・・・・・と、高透磁率材で形成された複数
個のヨーク12a、12b、12G、・・・・・・とで
構成されている。各永久磁石11a、11b、11C1
・・・・・・は、それぞれ同一形状の平板状に形成され
ており、その厚み方向にそれぞれ着磁されている。また
、各ヨーク12a、12b112c、・・・・・・は、
上記各永久磁石の面形状と等しい、それぞれ同一形状に
形成されている。このように形成された各永久磁石と各
ヨークとを、各永久磁石相互間にヨークをそれぞれ介在
させ、かつ上記ヨークを挟んで隣接する永久磁石の着磁
方向が相異なるように積層一体化して磁性ブロック1が
構成されている。
The magnetic block 1 includes a plurality of permanent magnets 11a, 11b,
11G, . . . and a plurality of yokes 12a, 12b, 12G, . Each permanent magnet 11a, 11b, 11C1
. . . are each formed into the same flat plate shape, and are each magnetized in the thickness direction. In addition, each yoke 12a, 12b112c,...
They are formed in the same shape, which is the same as the surface shape of each of the above-mentioned permanent magnets. The permanent magnets and yokes thus formed are laminated and integrated in such a way that the yokes are interposed between each permanent magnet, and the magnetization directions of adjacent permanent magnets with the yoke in between are different. A magnetic block 1 is configured.

一方、高周波1i21i路3は、第6因に示すように、
磁性ブロック1を構成する永久磁石の積層方向とは直交
する方向に永久磁石の配設ピッチで屈曲しながら永久磁
石の積層方向に延びるジグザグ状の導電体片13によっ
て構成されており、永久磁石の積層方向と直交する部分
13aが第5図に示すように、丁度、ヨーク12a、1
2b、12c、・・・・・・の端面と対向するように電
気絶縁材2の表面に固定されている。
On the other hand, the high frequency 1i21i path 3, as shown in the sixth factor,
It is composed of a zigzag-shaped conductor piece 13 extending in the stacking direction of the permanent magnets while being bent at the arrangement pitch of the permanent magnets in a direction perpendicular to the stacking direction of the permanent magnets constituting the magnetic block 1. As shown in FIG.
2b, 12c, . . . are fixed to the surface of the electrical insulating material 2 so as to face the end faces thereof.

そして、上記のように構成された電磁超音波トランスジ
ューサAを用いて被検査材Bの探傷試験を行なうときに
は、第5図に示すように、高周波電流路3の位置する側
を被検査材Bの表面に向けるとともに被検査材Bの表面
と高周波電流路3との間に所定の間隙Cをあけてセット
し、この状態で高周波電流路3の両端を図示しない高周
波電源および図示しない信号受信装置に接続して使用に
供される。
When performing a flaw detection test on the material B to be inspected using the electromagnetic ultrasonic transducer A configured as described above, as shown in FIG. The high-frequency current path 3 is set so as to face the surface, with a predetermined gap C between the surface of the material to be inspected B and the high-frequency current path 3, and in this state, both ends of the high-frequency current path 3 are connected to a high-frequency power source (not shown) and a signal receiving device (not shown). Connected and ready for use.

ここで、この電磁超音波トランスジューサAの動作を簡
単に説明すると以下の通りである。この電磁超音波トラ
ンスジューサAを被検査材Bの表面に対向させてセット
すると、各永久磁石11a、11b、11C1・・・・
・・からでた磁力線は、第7図中に破線矢印で示すよう
に各ヨーク 12a112t)、12G、・・・・・・
と被検査材Bとを直列に経由する経路で通る。したがっ
て、被検査材Bの表面では、これと垂直なバイアス磁界
14が印加された状態となる。しかして、高周波電流路
3に高周波電流を流すと、上記高周波電流路3を構成し
ている導電体片13の部分13aには、第7図中に15
で示すように隣接する部分13a相互では逆向きとなる
電流が流れる。この電流によって、被検査材Bの表面に
は、第7図中16で示す向きの高周波の誘導渦電流が流
れる。この誘導渦電流とバイアス磁界14との相互作用
によって、被検査材B内に被検査材Bの表面と平行な方
向に同位相のローレンツ力17が発生し、このローレン
ツ力17と垂直な方向に横波の超音波18が生起される
。このような原理で超音波を発生させるようにしている
。なお、高周波電流路3を構成する導電体片13の部分
13aを永久磁石 11a、11b、lIC1・・・・
・・の側面に対向する位置までずらすと、被検査材Bの
表面と垂直な方向のローレンツ力を発生させることがで
き、これによって縦波の超音波を生起させることもでき
る。
Here, the operation of this electromagnetic ultrasonic transducer A will be briefly explained as follows. When this electromagnetic ultrasonic transducer A is set facing the surface of the material to be inspected B, each permanent magnet 11a, 11b, 11C1...
...The lines of magnetic force coming out from each yoke 12a112t), 12G, ... as shown by the broken line arrows in Fig. 7.
and inspected material B in series. Therefore, the bias magnetic field 14 perpendicular to the surface of the inspected material B is applied thereto. When a high-frequency current is passed through the high-frequency current path 3, the portion 13a of the conductor piece 13 constituting the high-frequency current path 3 is exposed to the numeral 15 in FIG.
As shown by , currents flow in opposite directions in adjacent portions 13a. This current causes a high frequency induced eddy current in the direction shown by 16 in FIG. 7 to flow on the surface of the material to be inspected B. Due to the interaction between this induced eddy current and the bias magnetic field 14, a Lorentz force 17 with the same phase is generated in the inspected material B in a direction parallel to the surface of the inspected material B, and a Lorentz force 17 is generated in a direction perpendicular to this Lorentz force 17. A transverse ultrasound wave 18 is generated. Ultrasonic waves are generated using this principle. Note that the portion 13a of the conductor piece 13 constituting the high frequency current path 3 is made of permanent magnets 11a, 11b, IC1...
By shifting it to a position opposite to the side surface of the object B, it is possible to generate a Lorentz force in a direction perpendicular to the surface of the material to be inspected B, and thereby it is also possible to generate longitudinal ultrasonic waves.

しかしながら、上記のように構成された従来の電磁超音
波トランスジューサAにあっては、被検査材Bの表面と
垂直な超音波しか発生させることができないため、たと
えば第8図に示すように被検査材Bの表面と!直な欠陥
Xに対しては感度が非常に悪い。したがって、このよう
な欠陥に対処するために途中に音響部材を介在させる斜
角探傷法を適用せざるを得ない。このため、原理的には
非接触探(具が可能であると言う特徴を最大限に発揮さ
せることができず、かえって使い難いと言う問題があっ
た。
However, the conventional electromagnetic ultrasonic transducer A configured as described above can only generate ultrasonic waves perpendicular to the surface of the inspected material B. With the surface of material B! Sensitivity to direct defect X is very poor. Therefore, in order to deal with such defects, it is necessary to apply an oblique flaw detection method in which an acoustic member is interposed in the middle. For this reason, there was a problem in that, in principle, it was not possible to make full use of the features that non-contact probes were capable of, and on the contrary, it was difficult to use.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、良好な感度を維持した状態で完
全非接触での使用を可能化でき、もって使い易さを大幅
に向上させ得る電磁超音波トランスジューサを提供する
ことにある。
The present invention was made in view of these circumstances, and its purpose is to enable completely non-contact use while maintaining good sensitivity, thereby greatly improving ease of use. An object of the present invention is to provide an electromagnetic ultrasonic transducer that can

〔発明の概要〕[Summary of the invention]

本発明に係る電磁超音波トランスジューサは、高周波電
流路を梯子状に形成したことを特徴としている。
The electromagnetic ultrasonic transducer according to the present invention is characterized in that the high frequency current path is formed in a ladder shape.

また、本発明に係る電磁超音波トランスジューサは、梯
子状の高周波電流路とジグザグ状の高周波電流路とを互
いに絶縁分離させて併設したことを特徴としている。
Furthermore, the electromagnetic ultrasonic transducer according to the present invention is characterized in that a ladder-like high-frequency current path and a zigzag-like high-frequency current path are installed side by side and insulated from each other.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る電磁超音波トランスジ
ューサA1を局部的に取出し切断して示すものであり、
第5図に示した従来のものと同一部分は同一符号で示し
である。したがって、重複する部分の説明は省略する。
FIG. 1 shows an electromagnetic ultrasonic transducer A1 according to an embodiment of the present invention, partially taken out and cut.
The same parts as the conventional one shown in FIG. 5 are indicated by the same reference numerals. Therefore, the explanation of the overlapping parts will be omitted.

この実施例に係る電磁超音波トランスジューサA1が従
来のものと異なる点は高周波電流路20の構成にある。
The electromagnetic ultrasonic transducer A1 according to this embodiment differs from the conventional one in the configuration of the high frequency current path 20.

すなわら、高周波電流路20は、第2図に示すように、
たとえば薄い導電板に打ち扱き加工を施して、全体とし
て梯子状に構成されている。具体的には、永久磁石11
a、11t)、11G、・・・・・・のfi1方向に互
いに平行に延びる一対の主導電体部21a、21bと、
これら主導電体部21a、21b間を上記永久磁石11
a、11b、11C1・・・・・・の配設ピッチPと等
しいピッチで接続する複数の枝導電体部22とで構成さ
れている。そして、上記のように構成された高周波電流
路20は、枝導電体部22が電気絶縁材2を挟んで各ヨ
ーク12a、12b、12G、・・・・・・の端面に対
向するように上記電気絶縁材2の表面に固定されている
In other words, the high frequency current path 20 is as shown in FIG.
For example, a thin conductive plate is punched to form a ladder-like structure as a whole. Specifically, the permanent magnet 11
a, 11t), 11G, . . . a pair of main conductor portions 21a and 21b extending parallel to each other in the fi1 direction;
The permanent magnet 11 is connected between these main electric conductor parts 21a and 21b.
It is composed of a plurality of branch conductor parts 22 connected at a pitch equal to the arrangement pitch P of a, 11b, 11C1, . . . The high frequency current path 20 configured as described above is arranged such that the branch conductor portion 22 faces the end surface of each yoke 12a, 12b, 12G, . . . with the electrical insulating material 2 in between. It is fixed to the surface of the electrical insulating material 2.

このように構成された電磁超音波トランスジューサA!
を用いて被検査材Bの深川試験を行なうときには、第1
図に示すように、高周波電流路20の位置する側を被検
査材Bの表面に向けるとともに被検査材Bの表面と高周
波電流路20との間に所定の間隙Cをあけてセットし、
この状態で高周波電流路20を構成している主導電体部
21a、211)を図示しない可変高周波電源の出力端
に接続するとともに図示しない信号受信装置に接続して
使用に供される。
Electromagnetic ultrasonic transducer A! configured in this way!
When performing the Fukagawa test on material B to be inspected using
As shown in the figure, the side on which the high-frequency current path 20 is located faces the surface of the material to be inspected B, and the surface of the material to be inspected B and the high-frequency current path 20 are set with a predetermined gap C,
In this state, the main conductor portions 21a, 211) constituting the high frequency current path 20 are connected to the output end of a variable high frequency power source (not shown) and connected to a signal receiving device (not shown) for use.

このような構成であると、高周波電流路20に流れる電
流の周波数を選択するだけで、完全非接触のまま走査の
伴う斜角探傷法を実施することができる。
With such a configuration, by simply selecting the frequency of the current flowing through the high-frequency current path 20, it is possible to perform an oblique flaw detection method that involves scanning in a completely non-contact manner.

すなわち、この電磁超音波トランスジューサAlを被検
査材Bの表面に対向させてセットすると、各永久磁石1
1a、11b、11C1・・・・・・からでた磁力線は
、第3図中に破線矢印で示すように各ヨーク12a、1
2b、12C1・・・・・・と被検査材Bとを直列に経
由する経路で通る。したがって、被検査材Bの表面では
、これと垂直なバイアス磁界23が印加された状態とな
る。しかして、高周波電流路20に高周波電流を流すと
、上記高周波電流路2oを構成している各校導電体部2
2には第3図中24で示すように全て同方向の電流が流
れる。この電流によって、被検査材Bの表面には、第3
図中に25で示す向きの高周波の誘導渦電流が流れる。
That is, when this electromagnetic ultrasonic transducer Al is set facing the surface of the material to be inspected B, each permanent magnet 1
1a, 11b, 11C1..., the lines of magnetic force from each yoke 12a, 11C1, as shown by the broken line arrows in FIG.
2b, 12C1... and the material to be inspected B in series. Therefore, the bias magnetic field 23 perpendicular to the surface of the inspected material B is applied thereto. Therefore, when a high frequency current is passed through the high frequency current path 20, each of the conductor portions 2 constituting the high frequency current path 2o
As shown by 24 in FIG. 3, currents flow in the same direction. Due to this current, the surface of the material to be inspected B has a third
A high frequency induced eddy current flows in the direction indicated by 25 in the figure.

この誘導渦電流とバイアス磁界23との相互作用により
被検査材B中にローレンツ力26a、26bが発生する
。このローレンツ力26a、26bは、被検査材Bの表
面に平行で、かつ互いに逆位相となる。この結果、被検
査材B中に生起される超音波27は横波で、かつ被検査
材Bの表面に対して斜めに伝搬するモードとなる。
The interaction between this induced eddy current and the bias magnetic field 23 generates Lorentz forces 26a and 26b in the material B to be inspected. These Lorentz forces 26a and 26b are parallel to the surface of the material to be inspected B and have opposite phases to each other. As a result, the ultrasonic wave 27 generated in the material B to be inspected is a transverse wave and has a mode that propagates obliquely to the surface of the material B to be inspected.

この場合、被検査材Bの表面と直交するように描かれる
線28と超音波27の伝搬方向とのなす角度をθとする
と、θは次の式で与えられる。
In this case, if θ is the angle between the line 28 drawn perpendicularly to the surface of the inspected material B and the propagation direction of the ultrasonic wave 27, θ is given by the following equation.

θ=sin’(Vs/Pf)   ・(1)ただし、(
1)式において、Vsは被検査材Bの構成材料によって
決まる横波速度(m/sec ) 、Pは枝導電体部2
2相互の間隔(m)、fは高周波電流路20に供給され
た電流の周波数(H2)である。
θ=sin'(Vs/Pf) ・(1) However, (
In equation 1), Vs is the transverse wave velocity (m/sec) determined by the constituent material of the inspected material B, and P is the branch conductor portion 2.
2 mutual spacing (m), f is the frequency (H2) of the current supplied to the high frequency current path 20.

この(1)式から分るように、供給する高周波電流の周
波数を変えることによって超音波27の伝搬方向を自由
に制御することができ、走査型のトランスジューサとな
る。。
As can be seen from equation (1), the propagation direction of the ultrasonic waves 27 can be freely controlled by changing the frequency of the supplied high-frequency current, resulting in a scanning transducer. .

したがって、この実施例に係る電磁超音波トランスジュ
ーサArは、被検査材Bに対して完全非接触で、かつ走
査の伴なう斜角探傷法を実現できることになる。このた
め、従来のものに比べて大幅に使い易さが向上し、検査
に要する時間の短縮化を図ることができる。−例として
、原子カプラントの検査等に用いると検査員の放射線被
曝を低減できるばかりか完全非接触で検査できるのでロ
ボットを使用しての検査の実現にも寄与することができ
る。
Therefore, the electromagnetic ultrasonic transducer Ar according to this embodiment can realize an oblique flaw detection method that is completely non-contact with the material B to be inspected and that involves scanning. Therefore, the ease of use is greatly improved compared to conventional ones, and the time required for inspection can be shortened. - For example, when used in the inspection of atomic couplants, it not only reduces the radiation exposure of inspectors, but also allows inspection to be carried out in a completely non-contact manner, thus contributing to the realization of inspections using robots.

第4図は本発明の別の実施例に係る電磁超音波トランス
ジューサA2を局部的に取出し切断して示す図である。
FIG. 4 is a partially cut-away view of an electromagnetic ultrasonic transducer A2 according to another embodiment of the present invention.

この図においても第1図と同一部分は同一符号で示しで
ある。したがって、重複する部分の説明は省略する。
In this figure, the same parts as in FIG. 1 are designated by the same reference numerals. Therefore, the explanation of the overlapping parts will be omitted.

この実施例が第1図に示した実施例と異なる点は、高周
波電流路20とは別に、もの1つの高周波電流路40を
併設したことにある。
This embodiment differs from the embodiment shown in FIG. 1 in that, in addition to the high-frequency current path 20, a unique high-frequency current path 40 is provided.

すなわち、高周波電流路20の外面に薄い電気絶縁材3
0を固定し、この電気絶縁材3oの外面に永久磁石11
a、11b、11C1・・・・・・の配設ピッチと等し
いピッチで永久磁石の積層方向と直交する方向に屈曲し
ながら永久磁石の積層方向に延びる第6図に示したもの
と同様なジグザグ構成の高周波電流路40を固定したも
のとなっている。
That is, a thin electrical insulating material 3 is placed on the outer surface of the high frequency current path 20.
0 is fixed, and a permanent magnet 11 is attached to the outer surface of this electrical insulating material 3o.
a, 11b, 11C1, . . . zigzags similar to those shown in FIG. The high frequency current path 40 of the configuration is fixed.

なお、高周波電流路40は、その前記永久磁石の積層方
向に対して直交している部分40aが電気絶縁材30を
挟んで前記高周波電流路20の枝導電体部22と重合す
る関係に固定されている。
The high-frequency current path 40 is fixed in such a manner that a portion 40a perpendicular to the stacking direction of the permanent magnets overlaps the branch conductor portion 22 of the high-frequency current path 20 with the electrical insulating material 30 in between. ing.

このような構成であると、第1図に示した実施例と同様
の効果が得られることは勿論のこと、必要に応じて高周
波電流路40に高周波電流を流すことによって被検査材
の表面に対して垂直な超音波を発生させることができる
。したがって、1つのトランスジューサで斜角用と垂直
用とを併用させることができるので、なお一層使い易さ
を向上させることができる。
With such a configuration, not only can the same effects as the embodiment shown in FIG. It is possible to generate ultrasonic waves perpendicular to the object. Therefore, since one transducer can be used for both oblique and vertical transducers, ease of use can be further improved.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば、使い易く、検査
時間を大幅に短縮することができる電磁超音波トランス
ジューサを提供できる。
As described in detail above, according to the present invention, it is possible to provide an electromagnetic ultrasonic transducer that is easy to use and can significantly shorten inspection time.

また、本発明によれば、使用自由度をさらに拡大できる
電磁超音波トランスジューサを提供できる。
Further, according to the present invention, it is possible to provide an electromagnetic ultrasonic transducer that can further expand the degree of freedom of use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る電磁超音波トランスジ
ューサを局部的に取り出して切断して示す側面図、第2
図は同トランスジューサに組み込まれた高周波電流路だ
けを取りだして示す平面図、第3図は同トランスジュー
サの超音波発生原理を説明するための図、第4図は本発
明の他の実施例に係る電磁超音波トランスジューサを局
部的に取りだして切断して示す側面図、第5因は従来の
電F!1超音波トランスジューサを局部的に取りだして
切断して示す側面図、第6図は同トランスジューサに組
み込まれた高周波電流路だけを取りだして示す平面図、
第7図は同トランスジューサの超音波発生原理を説明す
るための図、第8図は同トランスジューIすの問題点を
説明するための図である。 A+ 、A2・・・電磁超音波トランスジューサ、1・
・・磁性ブロック、2.30・・・電気絶縁材、11a
、11b、11 c 、−・・−永久18石、12a、
12b、12C1・・・ ・・・ヨーク、20.40・
・・高周波電流路。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 21t) 第3図 第4図 第5図 第6図 第7日 第8図
FIG. 1 is a side view partially taken out and cut away to show an electromagnetic ultrasonic transducer according to an embodiment of the present invention;
The figure is a plan view showing only the high-frequency current path incorporated in the transducer, FIG. 3 is a diagram for explaining the principle of ultrasonic generation of the transducer, and FIG. 4 is a diagram showing another embodiment of the present invention. A side view showing an electromagnetic ultrasonic transducer partially taken out and cut away. The fifth cause is the conventional electric F! 1 is a side view partially taken out and shown by cutting the ultrasonic transducer; FIG. 6 is a plan view taken out and showing only the high-frequency current path built into the transducer;
FIG. 7 is a diagram for explaining the principle of ultrasonic generation of the same transducer, and FIG. 8 is a diagram for explaining problems with the same transducer I. A+, A2... Electromagnetic ultrasonic transducer, 1.
...Magnetic block, 2.30...Electric insulation material, 11a
, 11b, 11c, ---permanent 18 stones, 12a,
12b, 12C1... Yoke, 20.40.
...High frequency current path. Applicant's representative Patent attorney Takehiko Suzue (Figure 1, Figure 2, 21t) Figure 3, Figure 4, Figure 5, Figure 6, Day 7, Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)互いの間にヨークをそれぞれ介在させ、かつ上記
ヨークを挟んで隣接するもの同志の着磁方向が相異なる
ように同一形状の複数の永久磁石を積層して形成された
磁性ブロックと、この磁性ブロックの一側面に電気絶縁
層を介して配設された前記永久磁石の積層方向に互いに
平行に延びる一対の主導電体部およびこれら主導電体部
間を上記永久磁石の配設ピッチと等しいピッチで接続す
る複数の枝導電体部からなる梯子状の高周波電流路とを
具備してなることを特徴とする電磁超音波トランスジュ
ーサ。
(1) A magnetic block formed by stacking a plurality of permanent magnets of the same shape, with a yoke interposed between each other, and adjacent permanent magnets having different magnetization directions across the yoke; A pair of main current body portions extending parallel to each other in the stacking direction of the permanent magnets are disposed on one side of the magnetic block via an electrical insulating layer, and a pitch between the main current body portions is defined as the arrangement pitch of the permanent magnets. An electromagnetic ultrasonic transducer comprising a ladder-like high-frequency current path made up of a plurality of branch conductor parts connected at equal pitches.
(2)前記高周波電流路の前記枝導電体部は、前記電気
絶縁層を挟んで前記各ヨークに対向する位置に設けられ
てなることを特徴とする特許請求の範囲第1項記載の電
磁超音波トランスジューサ。
(2) The electromagnetic superconductor according to claim 1, wherein the branch conductor portion of the high-frequency current path is provided at a position facing each of the yokes with the electrical insulating layer in between. Sonic transducer.
(3)互いの間にヨークをそれぞれ介在させ、かつ上記
ヨークを挟んで隣接するもの同志の着磁方向が相異なる
ように同一形状の複数の永久磁石を積層して形成された
磁性ブロックと、この磁性ブロックの一側面に電気絶縁
層を介して配設された前記永久磁石の積層方向に互いに
平行に延びる一対の主導電体部およびこれら主導電体部
間を上記永久磁石の配設ピッチと等しいピッチで接続す
る複数の枝導電体部からなる梯子状の第1の高周波電流
路と、前記磁性ブロックの前記一側面に前記第1の高周
波電流路とは電気絶縁されて配設され前記永久磁石の積
層方向とは直交する方向に屈曲しながら上記永久磁石の
積層方向に延びるジグザグ状の導電体片で形成された第
2の高周波電流路とを具備してなることを特徴とする電
磁超音波トランスジューサ。
(3) a magnetic block formed by stacking a plurality of permanent magnets of the same shape, with a yoke interposed between each other, and adjacent permanent magnets having different magnetization directions across the yoke; A pair of main current body portions extending parallel to each other in the stacking direction of the permanent magnets are disposed on one side of the magnetic block via an electrical insulating layer, and a pitch between the main current body portions is defined as the arrangement pitch of the permanent magnets. A ladder-shaped first high-frequency current path consisting of a plurality of branch conductor portions connected at equal pitches and the first high-frequency current path are arranged on the one side of the magnetic block so as to be electrically insulated from each other, and the first high-frequency current path is electrically insulated from the permanent A second high-frequency current path formed of a zigzag-shaped conductor piece extending in the lamination direction of the permanent magnets while being bent in a direction perpendicular to the lamination direction of the magnets. Sonic transducer.
(4)前記第1の高周波電流路の前記枝導電体部および
前記第2の高周波電流路の前記永久磁石の積層方向に対
して直交する部分は、それぞれ前記ヨークに対向する位
置に配置されてなることを特徴とする特許請求の範囲第
3項記載の電磁超音波トランスジューサ。
(4) The branch conductor portion of the first high-frequency current path and the portion of the second high-frequency current path perpendicular to the stacking direction of the permanent magnets are arranged at positions facing the yoke, respectively. An electromagnetic ultrasonic transducer according to claim 3, characterized in that:
JP59196207A 1984-09-19 1984-09-19 Electromagnetic ultrasonic transducer Pending JPS6175259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59196207A JPS6175259A (en) 1984-09-19 1984-09-19 Electromagnetic ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59196207A JPS6175259A (en) 1984-09-19 1984-09-19 Electromagnetic ultrasonic transducer

Publications (1)

Publication Number Publication Date
JPS6175259A true JPS6175259A (en) 1986-04-17

Family

ID=16353978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59196207A Pending JPS6175259A (en) 1984-09-19 1984-09-19 Electromagnetic ultrasonic transducer

Country Status (1)

Country Link
JP (1) JPS6175259A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451375A2 (en) * 1990-04-06 1991-10-16 MANNESMANN Aktiengesellschaft Electrodynamic ultrasound-transducer
EP0486119A2 (en) * 1990-11-06 1992-05-20 MANNESMANN Aktiengesellschaft Electrodynamic ultrasound transducer
JPH04136767U (en) * 1991-02-04 1992-12-18 凸版印刷株式会社 information recording medium
GB2531835A (en) * 2014-10-29 2016-05-04 Imp Innovations Ltd Electromagnetic accoustic transducer
FR3113947A1 (en) * 2020-09-09 2022-03-11 SteeLEMAT S.à r.l EMAT system for the detection of surface and internal discontinuities in conductive structures at high temperature
EP4166246A1 (en) * 2021-10-14 2023-04-19 SteeLEMAT S.à r.l Emat system for detecting surface and internal discontinuities in high-temperature conductive structures

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451375A2 (en) * 1990-04-06 1991-10-16 MANNESMANN Aktiengesellschaft Electrodynamic ultrasound-transducer
EP0486119A2 (en) * 1990-11-06 1992-05-20 MANNESMANN Aktiengesellschaft Electrodynamic ultrasound transducer
JPH04136767U (en) * 1991-02-04 1992-12-18 凸版印刷株式会社 information recording medium
GB2531835A (en) * 2014-10-29 2016-05-04 Imp Innovations Ltd Electromagnetic accoustic transducer
US10537916B2 (en) 2014-10-29 2020-01-21 Permasense Limited Electromagnetic acoustic transducer
FR3113947A1 (en) * 2020-09-09 2022-03-11 SteeLEMAT S.à r.l EMAT system for the detection of surface and internal discontinuities in conductive structures at high temperature
WO2022054036A3 (en) * 2020-09-09 2022-05-05 SteeLEMAT S.à r.l Emat system for detecting surface and internal discontinuities in conductive structures at high temperatures
EP4166246A1 (en) * 2021-10-14 2023-04-19 SteeLEMAT S.à r.l Emat system for detecting surface and internal discontinuities in high-temperature conductive structures

Similar Documents

Publication Publication Date Title
CA2573029C (en) Flexible electromagnetic acoustic transducer sensor
KR101061590B1 (en) Magnetostrictive transducers, structural diagnostic devices and structural diagnostic methods using the same
US5503020A (en) Electromagnetic acoustic transducer
US6038925A (en) Focal type electromagnetic acoustic transducer and flaw detection system and method
KR20130065925A (en) Magnetostrictive phased array transducer for the transduction of shear horizontal bulkwave
JPS6175259A (en) Electromagnetic ultrasonic transducer
US7434467B2 (en) Electromagnetic ultrasound converter
JPS61107154A (en) Ultrasonic transducer
JPS6225259A (en) Electromagnetic ultrasonic tranceducer
CN219830966U (en) Space three-dimensional surrounding type electromagnetic ultrasonic longitudinal wave linear phased array probe
JP4734522B2 (en) Electromagnetic ultrasonic probe
JP2538596B2 (en) Electromagnetic ultrasonic transducer
JPS6038214Y2 (en) electromagnetic ultrasonic transducer
JP3504430B2 (en) Beveled electromagnetic ultrasonic transducer
CN219830967U (en) Space three-dimensional surrounding type electromagnetic ultrasonic transverse wave linear phased array probe
JPH07294494A (en) Electromagnetic ultrasonic transducer
JPS5995454A (en) Electromagnetic ultrasonic transducer
JPS6333440Y2 (en)
Menana et al. Short notes on electromagnetic acoustic transducers (EMATs) design and modeling [J]
JPS5995453A (en) Electromagnetic ultrasonic transducer
JPH0239252Y2 (en)
JPH0338698Y2 (en)
JPS6214057A (en) Electromagnetic ultrasonic transducer
JPH0142378B2 (en)
JPH0142379B2 (en)