JPS607025B2 - Heat treatment method for Ni-based alloy containing Cr - Google Patents
Heat treatment method for Ni-based alloy containing CrInfo
- Publication number
- JPS607025B2 JPS607025B2 JP54002026A JP202679A JPS607025B2 JP S607025 B2 JPS607025 B2 JP S607025B2 JP 54002026 A JP54002026 A JP 54002026A JP 202679 A JP202679 A JP 202679A JP S607025 B2 JPS607025 B2 JP S607025B2
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- temperature
- stage heat
- time
- based alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Description
【発明の詳細な説明】
この発明は、Crを含有するNi基合金の耐応力腐食割
れ性を向上させる熱処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat treatment method for improving the stress corrosion cracking resistance of a Ni-based alloy containing Cr.
Ni基合金は、元来耐応力腐食割れ性にすぐれた材料で
あり、たとえば加圧水型原子炉の蒸気発生器管のように
「応力腐食割れを極度に警戒しなければならない部品に
は、インコネル600(商品名、75%Ni−15%C
r−8%Fe)の如きNi基合金が使用されている。応
力腐食割れは、引張応力の存在と、使用環境及び材料自
体の特性の三要素の共存によって発生するものであるが
、前二者は、材料の使用条件に関するもので、これを完
全に取り除くことは不可能なことが多い。Ni-based alloys are originally materials with excellent stress corrosion cracking resistance. (Product name, 75%Ni-15%C
Ni-based alloys such as r-8% Fe) are used. Stress corrosion cracking occurs due to the coexistence of three factors: the presence of tensile stress, the environment in which it is used, and the characteristics of the material itself.The first two are related to the conditions in which the material is used, and they cannot be completely eliminated. is often impossible.
たとえば、前記原子炉の蒸気発生器管においては、曲げ
加工による残留応力の外、運転時の熱応力等による引張
応力が必然的に存在し、又、極めて厳格な水管理が行な
われているが、それでも応力腐食割れが決して生じない
使用環境であるとはいえない。結局、応力腐食割れの防
止は、材料自体の特性を改良し、応力腐食割れ感受性を
できるだけ下げることが最も基本的でしかつ実効のある
対策である。さて、Ni基合金は、もともと応力腐食割
れ感受性の低い材料として好んで用いられることは前述
のとおりである。For example, in the steam generator tubes of the above-mentioned nuclear reactors, in addition to residual stress due to bending, tensile stress is inevitably present due to thermal stress during operation, and extremely strict water management is carried out. However, it cannot be said that this is a usage environment in which stress corrosion cracking will never occur. In the end, the most basic and effective measure to prevent stress corrosion cracking is to improve the properties of the material itself and reduce the susceptibility to stress corrosion cracking as much as possible. As described above, Ni-based alloys are preferably used as materials with low stress corrosion cracking susceptibility.
しかし、Crを含有する前記インコネル600の如き材
料では、その使用条件いかんでは粒界割れが発生するこ
とがある。However, in a material such as Inconel 600, which contains Cr, intergranular cracking may occur depending on the usage conditions.
すなわち、Crを含む高Ni合金では、Cの固溶量が小
さいため、精錬過程でC含有量を可能なかぎり低下させ
ても、後の製品熱処理工程でCrの炭化物が析出する。That is, in a high-Ni alloy containing Cr, the solid solution amount of C is small, so even if the C content is reduced as much as possible during the refining process, Cr carbides will precipitate during the subsequent product heat treatment process.
このCr炭化物は主として結晶粒界に析出するから、結
晶粒界にはCrの欠乏層が形成され、その部分の耐食性
が劣化する。粒界型応力腐食割れの原因は、上記Cr欠
乏層の形成にあるものと考えられるところから、その防
止策としては、Cr炭化物の析出を防止するか、あるい
は一旦生成したCr欠乏層を消去するかの2つの方法が
考えられる。.蒸気発生器管のごとき製品においては、
900℃以上の温度での軟化熱処理が施されるのが普通
である。Since this Cr carbide mainly precipitates at grain boundaries, a Cr-depleted layer is formed at the grain boundaries, and the corrosion resistance of that portion deteriorates. The cause of intergranular stress corrosion cracking is thought to be the formation of the above-mentioned Cr-depleted layer, so the preventive measures are to prevent the precipitation of Cr carbides or to erase the Cr-depleted layer once formed. There are two possible methods. .. In products such as steam generator tubes,
A softening heat treatment at a temperature of 900° C. or higher is usually performed.
かかる温度域からの冷却途上でのCr炭化物の析出を防
止するには、冷却速度を大きくする以外に方法がないが
、工業的に達成しうる冷却速度でCr炭化物の析出を完
全に防止することは困難である。一方、すでにCr炭化
物が析出した材料を所定温度で長時間加熱することによ
って、一旦生成したCr欠乏層にその周辺からのCrの
拡散を促し、Cr欠乏層を修復する方法は、Ni基合金
の耐応力腐食割れ性の向上に有力な方法であるが、たと
えば70000で15時間以上を要するというように処
理時間が長大となり生産性が悪いという難点がある。The only way to prevent the precipitation of Cr carbides during cooling from such a temperature range is to increase the cooling rate, but it is necessary to completely prevent the precipitation of Cr carbides at an industrially achievable cooling rate. It is difficult. On the other hand, the method of repairing the Cr-depleted layer by heating the material in which Cr carbide has already precipitated at a predetermined temperature for a long time to promote the diffusion of Cr from the surrounding area into the Cr-depleted layer that has been formed is a method for repairing the Cr-depleted layer. Although this is an effective method for improving stress corrosion cracking resistance, it has the drawback that it requires a long processing time, such as requiring 15 hours or more at 70,000, resulting in poor productivity.
この発明は、基本的には前記第2の方法、すなわち、一
旦生成したCr欠乏層を修復して、耐応力腐食割れ性を
向上させる方法であって処理時間を大中に短縮し、生産
能率の著しい向上を可能にする方法を提案するものであ
る。This invention is basically a method of improving the stress corrosion cracking resistance by restoring the Cr-depleted layer once formed, which significantly shortens the processing time and improves production efficiency. This paper proposes a method that enables a significant improvement in performance.
この発明方法の特徴は、Crを含有するNi基合金を8
0000〜875COの温度城で加熱し、次いで600
℃〜7500Cの温度城で所定時間の加熱を行なうこと
にある。The feature of this invention method is that the Ni-based alloy containing Cr is
Heating at a temperature of 0,000 to 875 CO, then 600
The purpose is to perform heating for a predetermined period of time at a temperature of ℃ to 7500℃.
ここでNi基合金とは、Njをおよそ60%以上含有す
るもので、含有元素のひとつとしてCrを含有するもの
である。Here, the Ni-based alloy is one that contains about 60% or more of Nj, and contains Cr as one of the contained elements.
すなわち、前述のごとき粒界型の応力腐食割れが問題に
なるのは、C固熔度の小さい高Ni合金でしかもCrを
含有するものであるから、この発明の対象も当然かかる
合金となる。かかる合金の代表例は、現在、原子炉の蒸
気発生器等に広く使用されているインコネル600であ
るから、以下にこれを例にとって説明するが、同じよう
な応力腐食割れが問題となるすべてのNi基合金に対し
て、この発明方法が適用できることはいうまでもない。That is, since the above-mentioned grain boundary type stress corrosion cracking becomes a problem in high-Ni alloys having a low C hardness and also containing Cr, it is natural that such alloys are the object of the present invention. A typical example of such an alloy is Inconel 600, which is currently widely used in nuclear reactor steam generators, etc., and will be explained below using Inconel 600 as an example. It goes without saying that the method of this invention can be applied to Ni-based alloys.
この発明の熱処理は、通常インコネル60蛤等のNi基
合金の製品に施される900oo以上での軟化熱処理後
に行なわれる。The heat treatment of the present invention is carried out after the softening heat treatment at 900 oo or more, which is normally applied to products made of Ni-based alloys such as Inconel 60 clams.
すなわち、通常Ni基合金の製品は、溶解−熱間加工−
軟化熱処理−袷間加工−軟化熱処理の工程を経て製造さ
れる。熱間加工後の軟化熱処理及び冷間加工後の軟化熱
処理条件は、通常前者は1100qoで約30分保持「
後者は900oo以上で2分以上保持である。冷間加
工後の軟化燐鈍は製品の目標強度により上記加熱温度及
び時間は適当に選択して実施される。この発明における
方法は、上記工程の冷間加工後の軟化熱処理までは通常
の方法と同じであるので特に各条件は限定しない。0
この冷間加工後の熱処理後、引き続いて800℃〜87
5qoでの熱処理(以下、第1段熱処理という)及び6
0000〜75000での熱処理(以下、第2段熱処理
という)を行なってもよいし、又、軟化熱処理後任意の
冷却速度で、一旦冷却された合金をタ再加熱して前記第
1段及び第2段の熱処理を行なってもよい。In other words, normally Ni-based alloy products are melted, hot worked,
Manufactured through the steps of softening heat treatment - lining processing - softening heat treatment. The conditions for softening heat treatment after hot working and softening heat treatment after cold working are usually 1100 qo and held for about 30 minutes for the former.
The latter is maintained at 900oo or more for more than 2 minutes. The softening phosphorus dulling after cold working is carried out by appropriately selecting the above heating temperature and time depending on the target strength of the product. The method in this invention is the same as a conventional method up to the softening heat treatment after the cold working in the above steps, so the conditions are not particularly limited. 0
After the heat treatment after this cold working, the
Heat treatment at 5qo (hereinafter referred to as first stage heat treatment) and 6
0,000 to 75,000° C. (hereinafter referred to as second stage heat treatment) may be performed, or the once cooled alloy may be reheated at an arbitrary cooling rate after the softening heat treatment to perform the first stage and the second stage heat treatment. Two-stage heat treatment may be performed.
軟化熱処理に引き続いて処理する場合には、冷却途中、
80000〜875午0の温度域での冷却時間が10分
以上となるように徐袷することによっても第lo段熱処
理と同じ効果が蓮せられる。When processing following softening heat treatment, during cooling,
The same effect as the Lo stage heat treatment can be obtained by slowing down the cooling time in the temperature range of 80,000 to 875 pm for 10 minutes or more.
第2段熱処理の時間は加熱温度に大きく依存する。The time of the second stage heat treatment largely depends on the heating temperature.
すなわち高温側では短時間、低温側では長時間を要する
。第1図は、この第2段熱処理の温度と時間との関係を
示す図表である。タ 点A(2.別r、75000)、
B(160hr、600qo)、C(1曲r、600o
o)、D(0.2則r、750oo)を結ぶ線で囲まれ
た斜線部が適正な処理条件である。That is, it takes a short time on the high temperature side and a long time on the low temperature side. FIG. 1 is a chart showing the relationship between temperature and time of this second stage heat treatment. ta Point A (2. separate r, 75000),
B (160hr, 600qo), C (1 song r, 600o
The shaded area surrounded by the line connecting D (0.2 rule r, 750oo) is the appropriate processing condition.
この発明方法における第1段熱処理は、第2段熱処理で
行なわれるCr欠乏層の修復速度を向上0させるのが主
目的である。The main purpose of the first stage heat treatment in the method of this invention is to improve the rate of repair of the Cr-depleted layer carried out in the second stage heat treatment.
第2図及び第3図は、この第1段熱処理の効果を示す例
である。Cr欠乏層の量は、粒界腐食試験によって判定
できるが、ここでは、沸騰40%HN03に24時間浸
潰した後の試験片の重量減(夕/力hr)によって腐食
度を測定し、Cr欠乏層の量を判定した。試験片は75
.05%Ni一15.86%Cr−8.10%Fe一0
.024%のインコネル600である。第2図は、第1
段熱処理(850ooで15分間等温加熱)を施した試
験片と施さないものを700ooで第2段熱処理を行な
った場合の上記試験による腐食度を示すグラフである。FIGS. 2 and 3 are examples showing the effects of this first stage heat treatment. The amount of Cr-depleted layer can be determined by an intergranular corrosion test, but here, the degree of corrosion is measured by the weight loss (hours/hour) of the specimen after immersion in boiling 40% HN03 for 24 hours. The amount of deficient layer was determined. The test piece is 75
.. 05%Ni-15.86%Cr-8.10%Fe-0
.. 024% Inconel 600. Figure 2 shows the first
It is a graph showing the degree of corrosion according to the above test when a test piece was subjected to step heat treatment (isothermal heating at 850 oo for 15 minutes) and a test piece which was not subjected to second step heat treatment at 700 oo.
これから明らかなように、第1段熱処理を施さないもの
は、1加時間に及ぶ第2段熱処理を施しても腐食度の低
下すなわちCr欠乏層の完全な修復は生じなかった。As is clear from this, in the case where the first stage heat treatment was not performed, the degree of corrosion did not decrease, that is, the Cr-depleted layer did not completely repair even if the second stage heat treatment was performed for one heating time.
それに対して第1段鼻熱処理を施したものはわずか1時
間の第2段熱処理によってCr欠乏層の完全な修復が認
められた。さらに同様に第1段熱処理(85000で1
5分の等温加熱)を適用したものとしないものを650
q0で加熱する第2段熱処理を施した場合における、そ
れぞれの腐食度を第3図に示す。On the other hand, in the case where the first stage nose heat treatment was performed, complete restoration of the Cr-deficient layer was observed after only one hour of the second stage heat treatment. Furthermore, in the same way, the first stage heat treatment (1 at 85,000
650 with and without isothermal heating (5 minutes of isothermal heating)
FIG. 3 shows the respective degrees of corrosion when the second stage heat treatment of heating at q0 was performed.
ここで第1段熱処理を施したものでも、650o0での
加熱の初期には、腐食量の増大がみられるがこれはCr
炭化物の析出とそれにともなって生じるCr欠乏層の生
成を示すものである。しかし、650℃で1時間以上の
加熱処理になれば、Cr欠乏層の修復が進み、腐食量は
急速に減少する。すなわち、第1段熱処理を施したもの
は、第2段熱処理を4時間行なうことによって完全な修
復が認められる。Even with the first stage heat treatment, an increase in the amount of corrosion is observed at the initial stage of heating at 650o0, but this is due to Cr.
This figure shows the precipitation of carbides and the formation of a Cr-depleted layer that occurs along with the precipitation. However, if the heat treatment is carried out at 650° C. for one hour or more, the Cr-depleted layer will be repaired and the amount of corrosion will rapidly decrease. That is, complete repair of the specimens subjected to the first stage heat treatment was observed by performing the second stage heat treatment for 4 hours.
これに反し、第1段熱処理を施さないものは3餌時間加
熱の第2段熱処理を行なってもCr欠乏層の修復は生じ
ない。第2段熱処理は、第1段熱処理後引き続いて行な
うのが熱効率の点からは望ましい。On the other hand, in those that were not subjected to the first stage heat treatment, the Cr-deficient layer did not recover even if the second stage heat treatment of 3 feeding hours was performed. From the viewpoint of thermal efficiency, it is desirable that the second stage heat treatment is performed successively after the first stage heat treatment.
しかし、第1段熱処理後一旦冷却されたものを上記温度
域に再加熱して、第2段舞熱処理を行なっても効果にか
わりはない。第1段熱処理を800qo〜875o0と
するのは、875℃以上では上記に示すような第2段熱
処理時におけるCr欠乏層の回復時間の単縮の効果が少
ないためであり、80000以下であると、同様の効果
を得るために長時間の第188熱処理を必要とし不経済
となるからである。However, even if the material that has been cooled after the first stage heat treatment is reheated to the above temperature range and then subjected to the second stage heat treatment, the effect will not change. The reason why the first stage heat treatment is set to 800qo to 875o0 is because at 875°C or higher, the effect of shortening the recovery time of the Cr-depleted layer during the second stage heat treatment as shown above is small; This is because, in order to obtain the same effect, a long heat treatment is required, which is uneconomical.
第18差熱処理の時間は、10分以上1時間未満とする
。The time of the 18th differential heat treatment is 10 minutes or more and less than 1 hour.
1時間以上の加熱処理を行なっても長時間加熱による効
果が認められず経済的にも不利である。Even if the heat treatment is carried out for one hour or more, the effect of long-time heating is not observed and it is economically disadvantageous.
又10分未満では、粒界の炭化物の析出量が少ないため
、次の第2段熱処理が長時間になる。この第1段熱処理
は900℃以上からの軟化処理後の冷却速度を調整する
ことによって代替することができる。すなわち、冷却途
上で800oo〜875ooの温度城で10分以上1時
間未満の時間をかければ上記と同じ効果が達せられる。
次に、第2段熱処理の温度時間を添付図面第1図に示す
ような点A,B,C,Dに囲まれた条件内で熱処理を施
す理由は以下の通りである。If the heating time is less than 10 minutes, the amount of carbide precipitated at the grain boundaries is small, so that the next second stage heat treatment will take a long time. This first stage heat treatment can be replaced by adjusting the cooling rate after the softening treatment from 900° C. or higher. That is, the same effect as described above can be achieved by spending 10 minutes or more but less than 1 hour at a temperature of 800 to 875 degrees during cooling.
Next, the reason why the second stage heat treatment is performed at a temperature within the conditions surrounded by points A, B, C, and D as shown in FIG. 1 of the attached drawings is as follows.
すなわち、75000以上で加熱処理すると熱処理後の
冷却時に再びCr欠乏層が形成し耐食性の劣化が生じる
危険性が高いので、750qC以下とするもので、60
0oo以下で熱処理してもCr欠乏層の修復の効果は得
られるが生産効率の著しい低下をもたらし不経済なので
600oo以上の温度城とする。さらに点C(1靴r、
60000)と点D(0.2則r、7500C)とを結
ぶ直線より短時間域では、Cr欠乏層の修復を生ぜしめ
ることができない。点A(2.球r、75000)と点
B(160hr、60000)とを結ぶ直線よりも長時
間城では、長時間熱処理による効果がなく経済的にも好
ましくない。従って、これらの理由により第1図のグラ
フにおける点A,B,C,Dとによって囲まれる温度、
時間域内に限定して第288熱処理を施すものとする。In other words, if heat treatment is performed at a temperature of 75,000 qC or higher, there is a high risk that a Cr-depleted layer will form again during cooling after the heat treatment, resulting in deterioration of corrosion resistance.
Even if the heat treatment is carried out at a temperature of 0000 or less, the effect of restoring the Cr-deficient layer can be obtained, but the production efficiency is significantly reduced and it is uneconomical, so the temperature is set at 600000 or more. Furthermore, point C (1 shoe r,
60000) and point D (0.2 law r, 7500C), the Cr-depleted layer cannot be repaired in a shorter time range. If the time is longer than the straight line connecting point A (2. ball r, 75000) and point B (160 hr, 60000), there will be no effect of long-term heat treatment and it is not economically preferable. Therefore, for these reasons, the temperature surrounded by points A, B, C, and D in the graph of FIG.
The 288th heat treatment shall be performed within a limited time range.
次に、この発明による実施例について説明する。Next, embodiments according to the present invention will be described.
Ni基合金の代表例としてインコネル600くその組成
は、第2,3図の例と同じ)を選び、真空溶解にて17
k9鋼塊を溶製し、120000で鍛造、熱延を行なっ
た後、110000で3粉ご保持の軟化熱処理後、圧下
率30%の冷間圧延を施し、次いで950℃で30分保
持す,る軟化熱処理を行なった後、この発明による熱処
理方法を施したもの「比較のためにこの発明による条件
以外の条件による熱処理したもの、及び軟化熱処理のま
まのもの(従来方法)の熱処理によって得たもののそれ
ぞれに粒界腐食性と応力腐食割れ性の試験を行なった。
各試験材の第1段熱処理、第2段熱処理の温度時間は第
1表、第2表に示す通りであり、第1表には第1段熱処
理において、等温加熱処理とした場合を、第2表には第
1段熱処理にかえて徐冷処理とした場合を示す。第1表
における従釆法による試験材は、95000で軟化熱処
理後、50000までの冷却速度を、材料番号16は1
50oC′minで、材料番号17は400℃/min
で冷却を行なった。Inconel 600 (the composition of which is the same as the examples in Figures 2 and 3) was selected as a representative example of a Ni-based alloy, and was melted by vacuum melting to 17
After melting K9 steel ingot, forging and hot rolling at 120,000, after softening heat treatment at 110,000 and holding 3 powder, cold rolling at 30% reduction, and then holding at 950℃ for 30 minutes. After the softening heat treatment, the heat treatment method according to the present invention was applied.For comparison, the heat treatment was performed under conditions other than the conditions according to the present invention, and the heat treatment was performed as it was after the softening heat treatment (conventional method). Each of these materials was tested for intergranular corrosion and stress corrosion cracking.
The temperature and time of the first-stage heat treatment and second-stage heat treatment of each test material are shown in Tables 1 and 2. Table 2 shows the case where slow cooling treatment was used instead of the first stage heat treatment. The test materials according to the subordinate method in Table 1 were softened at a temperature of 95,000, then the cooling rate was reduced to 50,000, and material number 16 was
50oC'min, material number 17 is 400℃/min
Cooling was performed.
なお、粒界腐食性の試験は前述の方法を用いて評価した
。Note that the intergranular corrosion test was evaluated using the method described above.
応力腐食割れ性試験では、1の血の塩素イオンを含む脱
気しない30000の水溶液に試験片を1000時間浸
潰して評価した。In the stress corrosion cracking test, test pieces were immersed in a non-degassed 30,000 aqueous solution containing blood chloride ions of 1,000 for 1,000 hours.
試験片は形状が幅10肋、長さ75肋、厚み2柳の2枚
重ねのものを半径8脚でU字型に曲げ、さらにボルトナ
ットで5柳拘束したいわゆる2重U字曲げ試験片を用い
た。The test piece is a so-called double U-shaped bending test piece in which two layers of willow, 10 ribs wide, 75 ribs long, and 2 layers thick, are bent into a U-shape with a radius of 8 legs and further restrained with 5 willow nuts and bolts. was used.
この場合、2枚のうち内側の試験片の曲げの外側に引張
応力が掛り、しかも隙間があるため最も応力腐食割れを
生じやすい条件である。100脚時間の該水溶液中の浸
債後に、この内側試験片の板中中央部の最大割れ深さを
顕微鏡を用いて測定した。In this case, tensile stress is applied to the outer side of the bend of the inner test piece among the two pieces, and there is a gap, which is the condition where stress corrosion cracking is most likely to occur. After immersion in the aqueous solution for 100 hours, the maximum crack depth at the center of the inner test piece was measured using a microscope.
従って最大割れ深さが小さいほど耐応力腐食割れ性が高
いと判断できる。これらの各試験結果も第1表、第2表
に示す。Therefore, it can be determined that the smaller the maximum crack depth, the higher the stress corrosion cracking resistance. The results of each of these tests are also shown in Tables 1 and 2.
第 1 表第 2 表
第1表及び第2表の試験結果から明らかなように、この
発明による熱処理を施した本発明材はいずれも、粒界腐
食性試験における腐食度が従来材、比較材に比べ著しく
低く、かつ応力腐食割れ試験における割れの発生が少な
く、発生があった場合も最大割れ深さが他に比してわず
かである。Table 1 Table 2 As is clear from the test results in Tables 1 and 2, all of the materials of the present invention that have been heat treated according to the present invention have a corrosion degree in the intergranular corrosion test that is lower than that of the conventional material and the comparative material. It is significantly lower than that of other types, and fewer cracks occur in stress corrosion cracking tests, and even when cracks do occur, the maximum crack depth is smaller than other types.
この発明は、上記の如く、Cr含有Ni基合金の耐応力
腐食割れ性を著しく向上させることができる工業的価値
の高い発明である。As described above, this invention is an invention of high industrial value that can significantly improve the stress corrosion cracking resistance of Cr-containing Ni-based alloys.
第1図はこの発明の第28髪熱処理の温度と時間の限定
範囲を示す図表、第2図は第1段熱処理(8500ox
l粉ふ)を施したものと施さないものの第2段熱処理(
70000)の加熱時間と腐食度を示す図表、第3図は
第2図の条件において第2礎熱処理を650qoとした
場合の加熱時間と腐食度を示す図表である。
第1図
第2図
第3図Fig. 1 is a chart showing the limited range of temperature and time of the 28th hair heat treatment of this invention, and Fig. 2 is a chart showing the limited range of the temperature and time of the hair heat treatment of this invention.
Second stage heat treatment (with and without powder)
70000), and FIG. 3 is a chart showing the heating time and corrosion degree when the second foundation heat treatment is 650 qo under the conditions of FIG. 2. Figure 1 Figure 2 Figure 3
Claims (1)
、冷間加工を施した後軟化熱処理を行ない、次いで80
0℃〜875℃の温度範囲で10分以上1時間未満の間
加熱処理し、次いで第1図の横軸を時間、縦軸を温度と
する図表における、A(2.5hr、750℃)、B(
160hr、600℃)、C(16hr、600℃)、
D(0.25hr、750℃)に囲まれる温度と時間域
内の任意の条件で加熱処理を施すことを特徴とするCr
を含有するNi基合金の熱処理方法。 2 800℃〜875℃での加熱処理が、900℃以上
での熱処理らの冷却途上におけるこの温度域内の冷却時
間を10分以上1時間未満とする徐冷処理であることを
特徴とする特許請求の範囲第1項記載の熱処理方法。[Claims] 1. A Ni-based alloy containing Cr is subjected to hot working, softening heat treatment, and cold working, followed by softening heat treatment, and then
A (2.5 hr, 750° C.) in the chart in which the horizontal axis in FIG. B(
160hr, 600℃), C (16hr, 600℃),
Cr characterized in that heat treatment is performed under arbitrary conditions within the temperature and time range surrounded by D (0.25 hr, 750 ° C.)
A method for heat treating a Ni-based alloy containing. 2. A patent claim characterized in that the heat treatment at 800°C to 875°C is a slow cooling process in which the cooling time within this temperature range during cooling after the heat treatment at 900°C or higher is 10 minutes or more and less than 1 hour. The heat treatment method according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54002026A JPS607025B2 (en) | 1979-01-10 | 1979-01-10 | Heat treatment method for Ni-based alloy containing Cr |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54002026A JPS607025B2 (en) | 1979-01-10 | 1979-01-10 | Heat treatment method for Ni-based alloy containing Cr |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5594467A JPS5594467A (en) | 1980-07-17 |
JPS607025B2 true JPS607025B2 (en) | 1985-02-21 |
Family
ID=11517811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54002026A Expired JPS607025B2 (en) | 1979-01-10 | 1979-01-10 | Heat treatment method for Ni-based alloy containing Cr |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS607025B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5531130A (en) * | 1978-08-25 | 1980-03-05 | Hitachi Metals Ltd | Heat treating method for ni alloy used in warm water |
-
1979
- 1979-01-10 JP JP54002026A patent/JPS607025B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5531130A (en) * | 1978-08-25 | 1980-03-05 | Hitachi Metals Ltd | Heat treating method for ni alloy used in warm water |
Also Published As
Publication number | Publication date |
---|---|
JPS5594467A (en) | 1980-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5146576B1 (en) | Ni-base heat-resistant alloy | |
US3046108A (en) | Age-hardenable nickel alloy | |
JP4536119B2 (en) | Elements for use in nuclear reactors, comprising a zirconium-based alloy having creep resistance and corrosion resistance to water and water vapor, and a method for producing the same | |
EP2226406B1 (en) | Stainless austenitic low Ni alloy | |
US20200377987A1 (en) | Method for manufacturing super-refractory nickel-based alloy and super-refractory nickel-based alloy | |
JPWO2018151222A1 (en) | Ni-base heat-resistant alloy and method for producing the same | |
CN107438675B (en) | Zirconium alloy having excellent corrosion resistance and creep resistance and method for preparing the same | |
US4002510A (en) | Stainless steel immune to stress-corrosion cracking | |
JP2004218076A (en) | Nickel base alloy and its producing method | |
JPWO2012121390A1 (en) | Materials for nuclear equipment, heat transfer tubes for steam generators, steam generators and nuclear power plants | |
JPH06322489A (en) | Steel tube for boiler excellent in steam oxidation resistance | |
US2766156A (en) | Heat-treatment of nickel-chromiumcobalt alloys | |
KR940010230B1 (en) | Improvement in structural parts of austenitic nichel-chromium-iron alloy | |
JPS58177445A (en) | Heat treatment of ni-cr alloy | |
US4408709A (en) | Method of making titanium-stabilized ferritic stainless steel for preheater and reheater equipment applications | |
JPS607025B2 (en) | Heat treatment method for Ni-based alloy containing Cr | |
JPS6050869B2 (en) | Method for manufacturing zirconium alloy structural members for boiling water reactors | |
JP7332258B2 (en) | High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability | |
JPS60131958A (en) | Production of precipitation strengthening type ni-base alloy | |
JPS60211053A (en) | High strength alloy for industrial container | |
US3649376A (en) | Process for preparing and treating austenitic stainless steels | |
JPH03134144A (en) | Nickel-base alloy member and its manufacture | |
JPH0867954A (en) | Production of high corrosion resistant zirconium alloy | |
NO129534B (en) | ||
JPS5817823B2 (en) | Heat treatment method for Ni-based alloy containing Cr |