JPS6069711A - Numerical controller - Google Patents

Numerical controller

Info

Publication number
JPS6069711A
JPS6069711A JP17752183A JP17752183A JPS6069711A JP S6069711 A JPS6069711 A JP S6069711A JP 17752183 A JP17752183 A JP 17752183A JP 17752183 A JP17752183 A JP 17752183A JP S6069711 A JPS6069711 A JP S6069711A
Authority
JP
Japan
Prior art keywords
output
converter
position error
gain
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17752183A
Other languages
Japanese (ja)
Inventor
Tsugio Kitatsume
北爪 次男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17752183A priority Critical patent/JPS6069711A/en
Publication of JPS6069711A publication Critical patent/JPS6069711A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To improve positioning precision and servo rigidity without providing an integral element by bearing a nonlinear relation between the output of a D-A converter and a position error. CONSTITUTION:A computing element 10 inputs the output of an interpolator 11 and the output of a counter 9 at every unit time to calculate data to be outputted to a D-A converter on the basis of a constant POINT for determining an inflection point and a constant GAIN for determining the gain up to the inflection point. The interpolator 11 outputs the distance of movement in the unit time. An analog-converted position error is inputted to an amplifier 4 to move a motor 5, feed screw 6, and machine moving part 9. Further, the output varies according to the movement of a position detector 7, and the output of a counter 9 varies to reduce the position error. The output of a D-A converter 3 is increased almost where the position error is zero to form an accurate servo system without providing the amplifier 4 with an integral element.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、工作機械等の数値制御装置に関し、特にサ
ーボ系の位置制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a numerical control device for a machine tool or the like, and particularly to position control of a servo system.

〔従来技術〕[Prior art]

一般に、数値制御装置における位置決め機構は第1図の
ごと(、指令パルス発生器1の出力Pと機械に取り付け
らねた位置検出器Iの出力Bとt比較器2で比較し、そ
の差IP−BlがD−A変換器3でアナログ電圧に変換
されて増幅器4に入り、それが送りモータ5.送りネジ
62機械可動部8を移動させる。さらに、位置検出器T
が移動することにより出力Bが変化し、その結果、IP
−Blが常時零に近付き、最終的に零になるよう系全体
を制御する。
In general, the positioning mechanism in a numerical control device is as shown in Figure 1 (the output P of the command pulse generator 1 is compared with the output B of the position detector I, which is not attached to the machine, by a t comparator 2, and the difference IP -Bl is converted into an analog voltage by the DA converter 3 and enters the amplifier 4, which moves the feed motor 5, feed screw 62 and mechanical movable part 8. Furthermore, the position detector T
The output B changes due to the movement of IP, and as a result, IP
- The entire system is controlled so that Bl always approaches zero and eventually becomes zero.

この系の中でIP−BlとD−A変換器3の出力は、一
般には第2図に示すごとく比例関係にあり、IP−Bl
の最大を214(=16384)、D−A変換器3の出
力の最大をIOVとすると、最少単位は約0.6mVと
微少電圧となるので、位置決め精度、サーボ剛性ケ向上
させる目的で増幅器4に積分要素を持たせる方法がとら
ねる。
In this system, the output of IP-Bl and the D-A converter 3 generally have a proportional relationship as shown in Figure 2, and the output of IP-Bl
If the maximum output of the D-A converter 3 is 214 (=16384) and the maximum output of the D-A converter 3 is IOV, the minimum unit is approximately 0.6 mV, which is a very small voltage. The solution is to have an integral element in .

しかし、第1@に示すような機械の終端を検出する閉ル
ープ方式の場合、モータ軸と位置検出器7間にバックラ
ッシュが存在するため積分要素ン持たせるとリミントサ
イクル現象が発生し、正確な位置決めを行うことが不可
能となる。そのため、秋分要素を持たせることができな
い。
However, in the case of the closed-loop method that detects the end of the machine as shown in Part 1, there is backlash between the motor shaft and the position detector 7, so if an integral element is provided, a rimming cycle phenomenon will occur, resulting in accurate It becomes impossible to perform accurate positioning. Therefore, it cannot have an autumnal equinox element.

〔発明の概要〕[Summary of the invention]

この発明は、IP−BlとD−A変換器の出力の関係を
非線形にすることにより積分要素を持たせることな(、
位置決め精度、サーボ剛性の向上を図るものである。
This invention eliminates the need for an integral element by making the relationship between IP-Bl and the output of the D-A converter non-linear.
This aims to improve positioning accuracy and servo rigidity.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の一実施例を示すブロック図である。 FIG. 3 is a block diagram showing one embodiment of the present invention.

この図で、9はカウンタ、10は演算器、11は補間器
であり、その他3〜8は第1図と同じものを示す。カウ
ンタ9は機械に取り付けらねた位置検出器Tの出力BY
カウントするものである。演算器10は単位時間ΔTご
とに補間器11の出力ΔFとカウンタ9の出力ΔP’Y
人カデータとし、それに変曲点を決める定数POIN’
l変曲点までのゲインを決める定数GAINとからD−
A変換器3に出力するデータを計算するものである。補
間器11は微小な単位時開ΔT時に移動すべき距離を示
す出力ΔFを出力するものである。
In this figure, 9 is a counter, 10 is an arithmetic unit, 11 is an interpolator, and the others 3 to 8 are the same as in FIG. 1. Counter 9 is the output BY of position detector T attached to the machine.
It's something to count. The arithmetic unit 10 calculates the output ΔF of the interpolator 11 and the output ΔP'Y of the counter 9 every unit time ΔT.
A constant POIN' that determines the point of inflection as the human data
The constant GAIN that determines the gain up to l inflection point and D-
It calculates the data to be output to the A converter 3. The interpolator 11 outputs an output ΔF indicating the distance to be moved at a minute unit time opening ΔT.

計算式は 1ΣΔF−ΣΔPI>POINTなら 1ΣΔF−ΣΔPl+POINTX (GAIN−1)
YD−A変換器3に出力する。
The calculation formula is 1ΣΔF-ΣΔPI>POINT, then 1ΣΔF-ΣΔPl+POINTX (GAIN-1)
Output to YD-A converter 3.

1ΣΔF−ΣΔP1≦pOINTなら 1ΣΔF−ΣΔPIXGAIN 乞D−A変換器3に出力する。If 1ΣΔF−ΣΔP1≦pOINT 1ΣΔF−ΣΔPIXGAIN It is output to the D-A converter 3.

アナログ電圧に変換された位置誤差は増幅器4に入り、
それが送すモータ5.送りネジ62機械可動部In−移
動させる。さらに、位置検出器7が移動することにより
出力Bが変化し、カウンタ9の出力ΔPが変化する。そ
の結果、1ΣΔF−ΣΔP1が常時塔に近付き、最終的
に零になるように系全体を制御する。
The position error converted to an analog voltage enters the amplifier 4,
The motor it sends 5. Feed screw 62 mechanical movable part In--move. Further, as the position detector 7 moves, the output B changes, and the output ΔP of the counter 9 changes. As a result, the entire system is controlled so that 1ΣΔF-ΣΔP1 always approaches the tower and eventually becomes zero.

第4図はこの発明産おける位置誤差とD−A変換器3の
出力の関係を嚢わすものであり、この図は変曲点の定数
POINT=3.ゲインを決める定数GAIN=3の場
合の例である。
FIG. 4 covers the relationship between the position error and the output of the DA converter 3 in this invention, and this figure shows the inflection point constant POINT=3. This is an example where the constant GAIN that determines the gain is 3.

この図で明らかなよプに、零近傍でのD−A変換器3の
出力はGAIN倍となり、増幅器4に積分要素を持たせ
ることなく、零近傍での位置ループゲインを大きくする
ことにより、位置決め精度。
As is clear from this figure, the output of the D-A converter 3 near zero is multiplied by GAIN, and by increasing the position loop gain near zero without providing an integral element in the amplifier 4, Positioning accuracy.

サーボ剛件の向上か可能である。It is possible to improve the servo rigidity.

また、上記実施例では、変曲点およびゲインを1組とし
たが、これを複数組設けることも可能である。
Further, in the above embodiment, one set of inflection point and gain is provided, but it is also possible to provide a plurality of sets.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、D−A変換器の出力
と位置誤差との関係を非線形にしたので、従来の積分要
素を必要とすることなく、正確なザーポ系が構成できる
利点がある。
As explained above, this invention has the advantage of making the relationship between the output of the D-A converter and the position error non-linear, so that an accurate zap system can be constructed without the need for a conventional integral element. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の一般的な位置決め機構を説明するための
ズpンク図、第2図は従来の位置誤差とD−A変換器出
力との関係を示す図、第3図はこの発明の一実施例を示
すブロック図、第4図はこの発明による位置誤差とD−
A変換器出力との関係7示す図である。 図中、3はD−A変換器、4は増幅器、5は送りモータ
、6は送りネジ、7は位置検出器、8は機械可動部、9
はカウンタ、10は演算器、11は補間器である。 なお、図中の同一符号は同一または相当部分を示す。 代理人 大岩増雄 (外2名) 第1図 7 ′ら 2 図 第3図 第4図
FIG. 1 is a Zunk diagram for explaining a conventional general positioning mechanism, FIG. 2 is a diagram showing the relationship between the conventional position error and the output of a D-A converter, and FIG. 3 is a diagram of the present invention. A block diagram showing one embodiment, FIG. 4 shows the position error and D-
FIG. 7 is a diagram showing the relationship with the A converter output. In the figure, 3 is a D-A converter, 4 is an amplifier, 5 is a feed motor, 6 is a feed screw, 7 is a position detector, 8 is a mechanical movable part, 9
is a counter, 10 is an arithmetic unit, and 11 is an interpolator. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 7' et al. 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 単位時間ΔTごとの移動量を示す出力ΔFを出力する補
間器と機械に取り付けられた位置検出器からの出力パル
ス乞カウントするカウンタと、位置ループゲインの変曲
点およびゲインの倍率を記憶する手段と、位置誤差を演
算する演算器と、位置誤差を7すpグミ圧に変換するD
−A変換器とを備え、前記補間器の出力ΔFとカウンタ
の出力より単位時間Δτごとの出力ΔPをめ、1ΣΔF
−ΣΔPlx演算し、前記変曲点までの位置ループゲイ
ンを前記ゲインの倍率にする非線型サーボ系を具備せし
めたことを特徴とする数値制御装置。
An interpolator that outputs an output ΔF indicating the amount of movement per unit time ΔT, a counter that counts output pulses from a position detector attached to the machine, and a means for storing the inflection point of the position loop gain and the magnification of the gain. , a calculator that calculates the position error, and a D that converts the position error into 7p gummy pressure.
-A converter, and calculates the output ΔP for each unit time Δτ from the output ΔF of the interpolator and the output of the counter, and calculates 1ΣΔF.
-ΣΔPlx, and a nonlinear servo system that makes a position loop gain up to the inflection point a multiplier of the gain.
JP17752183A 1983-09-26 1983-09-26 Numerical controller Pending JPS6069711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17752183A JPS6069711A (en) 1983-09-26 1983-09-26 Numerical controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17752183A JPS6069711A (en) 1983-09-26 1983-09-26 Numerical controller

Publications (1)

Publication Number Publication Date
JPS6069711A true JPS6069711A (en) 1985-04-20

Family

ID=16032365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17752183A Pending JPS6069711A (en) 1983-09-26 1983-09-26 Numerical controller

Country Status (1)

Country Link
JP (1) JPS6069711A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264576A (en) * 1975-11-21 1977-05-28 Fanuc Ltd Positioning controller
JPS52143385A (en) * 1976-05-24 1977-11-29 Toshiba Corp Piston control apparatus
JPS5487365A (en) * 1977-12-23 1979-07-11 Sony Corp Servo-method
JPS58144202A (en) * 1982-02-22 1983-08-27 Hitachi Ltd Dc servo circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5264576A (en) * 1975-11-21 1977-05-28 Fanuc Ltd Positioning controller
JPS52143385A (en) * 1976-05-24 1977-11-29 Toshiba Corp Piston control apparatus
JPS5487365A (en) * 1977-12-23 1979-07-11 Sony Corp Servo-method
JPS58144202A (en) * 1982-02-22 1983-08-27 Hitachi Ltd Dc servo circuit

Similar Documents

Publication Publication Date Title
JP3215067B2 (en) Position correction method when moving direction is reversed
KR100207816B1 (en) Dynamic error correction means in cnc machine tool
JPH08179831A (en) Quadrant projection correcting method for full-closed loop system
CN100441374C (en) Position control device and position control method for machine tools
KR950007104B1 (en) Servo motor control device
Mei et al. Study on the compensation of error by stick-slip for high-precision table
KR910006499B1 (en) Numerical controller
US4553078A (en) Servo control booster system for minimizing following error
JPS6314363B2 (en)
JPH0722873B2 (en) Position control device for feed axis
JPS61214002A (en) Control system for follow-up error
JPS6069711A (en) Numerical controller
KR960007510B1 (en) Tracking control method between two servo systems
JP3497991B2 (en) Drive system total rigidity measuring device
Zhang et al. Precision motion control methodology for complex contours
JP3201758B2 (en) Backlash correction method
JPH07113855B2 (en) Positioning control method
JPS62150409A (en) Speed control method in digital servo control
JPS61114304A (en) Digital controller
JP2761427B2 (en) Pitch error correction method
JPS6299054A (en) Fine positioning
JP2816045B2 (en) Positioning control device
JP2001222302A (en) Numerical controller
JPH04282710A (en) Speed control system
JPH0336976A (en) Finite rotation motor