JPS6069534A - Observing device for reaction process - Google Patents
Observing device for reaction processInfo
- Publication number
- JPS6069534A JPS6069534A JP17763283A JP17763283A JPS6069534A JP S6069534 A JPS6069534 A JP S6069534A JP 17763283 A JP17763283 A JP 17763283A JP 17763283 A JP17763283 A JP 17763283A JP S6069534 A JPS6069534 A JP S6069534A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- reaction
- visible laser
- laser
- reaction process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/51—Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は反応用セル内の気体又は液体の反応過程を観測
する装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for observing the reaction process of gas or liquid within a reaction cell.
近年、光CVD法又はレーザーCVD法などの開発研究
が盛んにす\められている。すなわち、一種又は数種の
気体あるいは液体の入った反応用セル中に、強いレーザ
ー光又は水銀ランプやケミカルランプ等の光を直接又は
レンズや鏡を用いて集光したり広げたシして入射すると
、シングルフォトン又はマルチフォトン吸収によって反
応性気体や液体が分解したり結合したシして核が成長し
て反応生成物が得られる。In recent years, development research on optical CVD methods, laser CVD methods, etc. has been actively conducted. In other words, strong laser light or light from a mercury lamp, chemical lamp, etc. is incident directly or by focusing or spreading it using a lens or mirror into a reaction cell containing one or more types of gas or liquid. Then, the reactive gas or liquid is decomposed or combined by single photon or multi-photon absorption, and a nucleus grows to obtain a reaction product.
このような光CVD法やレーザーCVD法などでは、反
応用セル内での気体又は液体の反応過程を観測すること
が重要であるが、これまでこれらの反応過程を一次元的
な広がりの面として観測し得る適当な装置がなかった。In such optical CVD methods, laser CVD methods, etc., it is important to observe the reaction process of gas or liquid within the reaction cell, but until now, these reaction processes have been viewed as a one-dimensional spread surface. There was no suitable equipment available for observation.
本発明は上記に鑑みなされたものであって、可視レーザ
ービームな用いて、反応用セル内の気体や液体の反応過
報を極めて容易に2次元的な広がりの面として観測する
ことのできる装置を提供することを目的とする。The present invention has been made in view of the above, and is an apparatus that uses a visible laser beam to extremely easily observe the overreaction of gas or liquid in a reaction cell as a two-dimensional spread surface. The purpose is to provide
この目的は、前記の特許請求の範囲に記載された本発明
の構成によって達成されるが、以下実施例により本発明
の構成及び効果を詳しく説明する。This object is achieved by the configuration of the present invention as described in the claims above, and the configuration and effects of the present invention will be explained in detail below using Examples.
図は本発明の反応過程観測装置の一例である。The figure shows an example of the reaction process observation device of the present invention.
可視レーザー!1からの可視レーザービーム2畝ガルバ
ノ2ミラーなどのビーム掃引手段3−シリンドリカルレ
ンズ4一平面鏡などのビーム移動手段5−シリンドリカ
ルレンズ6を介して、反応用セルフの一つの軸に沿って
(矢印8の方向に)掃引する。この掃引はガル/ぐノミ
ラー3をスキャナー9によって例えば/ 00 Hz程
度の周波数、で振動させて行われる。反応用セルフは可
視レーザービーム入射用窓10、励起レーデ−入射用窓
11及び観測用窓12を有し、窓11を介して励起レー
ザー13としてノぐルス紫外し−ザー光などにより反応
用セル内の気体又は液体を励起する。Visible laser! Visible laser beam from 1 to 2 along one axis of the reaction self (arrow 8 direction). This sweeping is performed by vibrating the gal/guno mirror 3 with a scanner 9 at a frequency of, for example, about /00 Hz. The reaction cell has a visible laser beam incidence window 10, an excitation radar incidence window 11, and an observation window 12. Through the window 11, the reaction cell is illuminated by Noggles ultraviolet laser light as an excitation laser 13. excites the gas or liquid within.
いま、He−N@レーザーなどの可視域で発振する低出
力の細いレーデ−ビームで、反応用セル内を掃引すると
、励起レーザーによる光化学反応によって生成された反
応生成物の微粒子にレーザービームが当って散乱され、
レーザービームの掃引方向とはy垂直方向の窓12から
肉眼、写真又はTVカメラなどを介して観測する場合、
残像効果により反応用セル内での反応過程を一次元的な
広 ′がシの面として観測することができる。又、ビー
ム移動手段5の傾きを変化させることによシ、ビームの
掃引方向(矢印8)に対し所定の角度の方向に可視レー
ザービームな移動できるので、同期作動手段14を用い
てビーム掃引手段3とビーム移動手段5とを適宜同期作
動させることによシ、ビームの掃引方向に沿って広がる
面を反応用セル内の所望位置に設定できる。そのため、
反応用セル内の気体又は液体の反応過程の断面情報を3
次元的に観測す企ことができる。Now, when a low-power narrow radar beam emitted in the visible range, such as a He-N@ laser, is swept through the reaction cell, the laser beam hits the fine particles of reaction products produced by the photochemical reaction caused by the excitation laser. scattered,
The sweeping direction of the laser beam is y when observed through the vertical window 12 with the naked eye, a photograph, a TV camera, etc.
Due to the afterimage effect, the reaction process inside the reaction cell can be observed as a one-dimensional wide-angle surface. Furthermore, by changing the inclination of the beam moving means 5, the visible laser beam can be moved in a direction at a predetermined angle with respect to the beam sweeping direction (arrow 8). 3 and the beam moving means 5 in synchronization, the surface extending along the beam sweeping direction can be set at a desired position within the reaction cell. Therefore,
Cross-sectional information on the reaction process of gas or liquid in the reaction cell
It can be observed dimensionally.
実施例
反応用セル内に反応性ガスとして/〜λチ内外のジシラ
ンガス又はモノシランガスを満たし、励起用レーザーと
してArFエキシマレーザ−(/ 93 nm)、Kr
Fエキシマレーザ−(コ19nm) を用いて励起した
。そして可視レーザーとしてコmwのHe−Ne レー
ザービームな/θθHzで掃引した結果、ジシランガス
の場合前者ではシングルフォトンによる反応過程が、後
者ではユフオトンによる反応過程が、又モノシランガス
の場合はいずれもコフオトンによる反応過程が(いわゆ
るレーザース) −(Laser Snow) として
極めて明瞭に観測することができた。特に本発明は反応
過程を面の広がりとして観測できるので、励起レーザー
によって反応性ガスが分解して核ができ、後からできた
核が前にできた核を押すような状態で対流が起シ、反応
用セルの内壁面に付着していく状態を詳細に観察するこ
とができた。Example A reaction cell was filled with disilane gas or monosilane gas within /~λ as a reactive gas, and an ArF excimer laser (/93 nm), Kr as an excitation laser.
Excitation was performed using an F excimer laser (19 nm). As a result of sweeping with a He-Ne laser beam of cmw as a visible laser at /θθHz, we found that in the case of disilane gas, the reaction process was caused by a single photon, in the latter case, the reaction process was caused by euphotons, and in the case of monosilane gas, the reaction process was caused by cofotons. The process could be observed very clearly as (so-called laser) - (Laser Snow). In particular, with the present invention, the reaction process can be observed as the spread of a surface, so the excitation laser decomposes the reactive gas to form nuclei, and convection occurs as the later nuclei push the earlier nuclei. It was possible to observe in detail the state in which the particles adhered to the inner wall surface of the reaction cell.
図は本発明の反応過程観測装置の一例を示す光学系。
図中の符号:
1・・・・・・・・・可視レーザー源、2・・・・・・
・・・可視レーザービーム、3・・・・・・・・・ ビ
ーム掃引手段(ガルノ々/ ミラ)、5・・・・・・・
・・ビーム移動手段(平面鏡)、7・・・・・・・・・
反応用セル、
8・・・・・・・・・ ビーム掃引方向、13・・・・
・・・・・励起用レーザー、14・・・・・・・・・同
期作動手段。
特許出願人 理化学研究所The figure shows an optical system showing an example of the reaction process observation device of the present invention. Codes in the diagram: 1...Visible laser source, 2...
...Visible laser beam, 3... Beam sweeping means (Garno/Mira), 5...
...Beam moving means (plane mirror), 7...
Reaction cell, 8... Beam sweeping direction, 13...
. . . Excitation laser, 14 . . . Synchronous actuation means. Patent applicant RIKEN
Claims (2)
ーム源からの可視レーザービームを反応用セルの一つの
軸に沿って掃引する手段とを備え、それにより前記の軸
に沿って広がる面内で反応用セル内の気体又は液体の反
応過程を観測するようにしたことを特徴とする反応過程
観測装置。(1) comprising a visible laser beam source and means for sweeping the visible laser beam from the visible laser beam source along one axis of the reaction cell, thereby producing a reaction in a plane extending along said axis; 1. A reaction process observation device, characterized in that the reaction process of gas or liquid in a cell is observed.
ーム源からの可視レーザービームな掃引するビーム掃引
手段と、ビームの掃引方向に対し所定の角度の方向に可
視レーザービームな移動するビーム移動手段と、前記の
ビーム掃引手段と前記のビー、人移動手段とに接続され
ている同期作動手段とを備え、それにより掃引方向に沿
って広がる面を反応用セル内の所定位置に設定して、そ
の面内で反応用セル内の気体又は液体の反応過程を観測
するようにしたこ七を特徴とする反応過程観測装置。(2) a visible laser beam source, a beam sweeping means for sweeping the visible laser beam from the visible laser beam source, and a beam moving means for moving the visible laser beam in a direction at a predetermined angle with respect to the beam sweeping direction; synchronous actuation means connected to the beam sweeping means and the beam and person moving means, thereby setting a surface extending along the sweeping direction at a predetermined position within the reaction cell; A reaction process observation device characterized by a device for observing the reaction process of gas or liquid in a reaction cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17763283A JPS6069534A (en) | 1983-09-26 | 1983-09-26 | Observing device for reaction process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17763283A JPS6069534A (en) | 1983-09-26 | 1983-09-26 | Observing device for reaction process |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6069534A true JPS6069534A (en) | 1985-04-20 |
JPH0564292B2 JPH0564292B2 (en) | 1993-09-14 |
Family
ID=16034391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17763283A Granted JPS6069534A (en) | 1983-09-26 | 1983-09-26 | Observing device for reaction process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6069534A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62180241A (en) * | 1986-02-04 | 1987-08-07 | Hamamatsu Photonics Kk | Tomographic image observing device |
JP2005283527A (en) * | 2004-03-31 | 2005-10-13 | Hitachi High-Technologies Corp | Apparatus for detecting foreign substance |
JP2007147499A (en) * | 2005-11-29 | 2007-06-14 | Hoshizaki Electric Co Ltd | Method of confirming silver component in electrolytic generated water, and dispenser for electrolytic generated water provided therewith |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54109488A (en) * | 1978-02-08 | 1979-08-28 | Fuji Photo Optical Co Ltd | Analyzing method and device of optically scattered image information |
JPS56120553A (en) * | 1980-02-21 | 1981-09-21 | Sekisui Chemical Co Ltd | Magnesia cement composition |
-
1983
- 1983-09-26 JP JP17763283A patent/JPS6069534A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54109488A (en) * | 1978-02-08 | 1979-08-28 | Fuji Photo Optical Co Ltd | Analyzing method and device of optically scattered image information |
JPS56120553A (en) * | 1980-02-21 | 1981-09-21 | Sekisui Chemical Co Ltd | Magnesia cement composition |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62180241A (en) * | 1986-02-04 | 1987-08-07 | Hamamatsu Photonics Kk | Tomographic image observing device |
JP2005283527A (en) * | 2004-03-31 | 2005-10-13 | Hitachi High-Technologies Corp | Apparatus for detecting foreign substance |
JP2007147499A (en) * | 2005-11-29 | 2007-06-14 | Hoshizaki Electric Co Ltd | Method of confirming silver component in electrolytic generated water, and dispenser for electrolytic generated water provided therewith |
Also Published As
Publication number | Publication date |
---|---|
JPH0564292B2 (en) | 1993-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
De Yoreo et al. | Developing KH2PO4 and KD2PO4 crystals for the world's most power laser | |
Walton et al. | Sonoluminescence | |
Prebus et al. | Electron microscope investigation of glass | |
JPH09328329A (en) | Optical element, production thereof and device using the same | |
JPS6069534A (en) | Observing device for reaction process | |
Kesavamoorthy et al. | Self-assembly and ordering of electrostatically stabilized silica suspensions | |
JPH06174628A (en) | Method and device for measuring distribution of grain size of flowing solid granular substance | |
JP2003194727A (en) | Very-small-air-bubble analyzer for high-purity glass tube using laser beam scattering | |
Siano et al. | Imaging and analysis of photomechanical effects induced in water by high-power laser-target interaction | |
Stafford et al. | Time-gated resonance schlieren studies of analyte distribution in a graphite furnace atomiser | |
Zhang et al. | A spectroscopic tour through the liquid aerosol interface: Implications for atmospheric chemistry | |
Biasiori-Poulanges et al. | Multimodal imaging for intra-droplet gas-cavity observation during droplet fragmentation | |
Müller et al. | Chemical waves and natural convection | |
Hiller | The spectrum of single bubble sonoluminescence | |
JPH0614512B2 (en) | Laser CVD equipment | |
Babenko et al. | Experimental Proof of the Effect of Induced Optical Coalescence of Bubston Clusters at Water Breakdown Induced by Picosecond and Nanosecond Laser Pulses | |
Menzies | LII. The polarization of Raman lines | |
Cai | Several experiments on rare gas clusters and nanoparticles | |
JPS5745921A (en) | Forming method for semiconductor single crystal layer formed with laser irradiation | |
Konovalov et al. | Method and equipment for highly dispersed particles study | |
Smigielski et al. | Holographic cinematography and its applications | |
Gulyaev | Portable holographic camera for manufacturing high-quality volume reflection holograms | |
Merkt | Interactions of nanoparticles and surfaces | |
Bufetov et al. | Laser radiation scattering by the optical breakdown plasma | |
Drake et al. | Experimental development, testing and research work in support of the inertial confinement fusion program |