JPS6069486A - Cooling method of condensate - Google Patents
Cooling method of condensateInfo
- Publication number
- JPS6069486A JPS6069486A JP15709683A JP15709683A JPS6069486A JP S6069486 A JPS6069486 A JP S6069486A JP 15709683 A JP15709683 A JP 15709683A JP 15709683 A JP15709683 A JP 15709683A JP S6069486 A JPS6069486 A JP S6069486A
- Authority
- JP
- Japan
- Prior art keywords
- condensate
- cooling
- steam
- circulating water
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
及び蒸気復水器を有する全てのプラントの休止時におけ
る復水の冷却方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling condensate during shutdown of all plants having steam condensers.
従来のこの種のプラントの休止時における復水の冷却方
法に使用する冷却装置として、第1図に示すように、グ
ランドシール蒸気管1が蒸気タービン2のタービングラ
ンド3に連通し、がっ、該タービングランド3はグラン
ド漏洩蒸気管4を介してグランド蒸気コンデンサ11に
連通して前記蒸気タービン2は一次冷却を行なうように
なっており、また、前記蒸気タービン2は循環水取水溝
(又は管)15及び循環水放出管17が配設されている
復水器5に連通し、該復水器5のボットウェル6から復
水管8が引き出され、該復水管8には復水ポンプ7、エ
ゼクタ蒸気コンデンサ9及びグランド蒸気コンデンサ]
1が設けられ、該エゼクタ蒸気コンデンサ9及びグラン
ド蒸気コンデンサ11からグランド及びエゼクタ蒸気復
水ライン13が前記ホットウェル6に引き戻され、また
、前記復水管8の前記グランド蒸気コンデンサ11下流
部分からは復水ミニマムフローライン12が前記復水器
5に引き戻されるようにしたものがある。As shown in FIG. 1, as a conventional cooling device used in a method for cooling condensate during shutdown of this type of plant, a gland seal steam pipe 1 is connected to a turbine gland 3 of a steam turbine 2, and a The turbine gland 3 communicates with a gland steam condenser 11 via a gland leakage steam pipe 4 to perform primary cooling of the steam turbine 2, and the steam turbine 2 is connected to a circulating water intake groove (or pipe). ) 15 and a circulating water discharge pipe 17, a condensate pipe 8 is drawn out from a botwell 6 of the condenser 5, and a condensate pump 7, Ejector steam condenser 9 and ground steam condenser]
1 is provided, and a ground and ejector steam condensate line 13 is led back to the hot well 6 from the ejector steam condenser 9 and the gland steam condenser 11, and a condensate line 13 is routed from the downstream portion of the gland steam condenser 11 of the condensate pipe 8. There is one in which the water minimum flow line 12 is drawn back to the condenser 5.
同図において、10は前記エゼクタ蒸気コンデンサ9に
連通ずるエゼクタ駆動蒸気管であり,14は前記復水器
5から前記エゼクタ蒸気コンデンサ9に連通ずる不凝縮
性ガス抽出管である。該復水器5には海水を循環させる
循環水取水溝(又は管)15及び循環水放水管17が配
設され、該循環水取水管15には循環水ポンプ16が設
けられている。In the figure, 10 is an ejector driving steam pipe communicating with the ejector steam condenser 9, and 14 is a non-condensable gas extraction pipe communicating from the condenser 5 with the ejector steam condenser 9. The condenser 5 is provided with a circulating water intake groove (or pipe) 15 for circulating seawater and a circulating water discharge pipe 17, and the circulating water intake pipe 15 is provided with a circulating water pump 16.
なお、復水器5の真空を樹てるのにエゼクタの代りに真
空ポンプを使っているプラントでは、エゼクタ蒸気コン
デンサ9及びエゼクタ駆動蒸気管10は除かれ、不凝縮
性ガス抽出管14は図示されていない真空ポンプに連結
される。Note that in a plant that uses a vacuum pump instead of an ejector to create a vacuum in the condenser 5, the ejector steam condenser 9 and the ejector drive steam pipe 10 are removed, and the noncondensable gas extraction pipe 14 is not shown. Not connected to a vacuum pump.
従来、火力発電プラントの休止時においては、復水系統
の保持状態は次の二つの方式に大別される。Conventionally, when a thermal power plant is out of service, the maintenance state of the condensate system can be roughly divided into the following two methods.
■ 復水器の真空を破壊して、大気開放する。■ Break the vacuum of the condenser and release it to the atmosphere.
■ 復水器の真空を保持し、系内に空気を入れないよう
にする。■ Maintain a vacuum in the condenser to prevent air from entering the system.
前者のように真空を破壊した場合には、全ての機器は停
止されるので、保持動力費は節約されるが、復水器及び
タービンは空気で満たされ、且つ、系内のかなりの部分
が水で濡れているため、かなりの発錆が避けられない。In the case of breaking the vacuum as in the former case, all equipment is stopped and maintenance power costs are saved, but the condenser and turbine are filled with air and a significant portion of the system is Since it is wet with water, considerable rusting is inevitable.
他方、後者のように真空を保持する場合には、タービン
のグランドにンール蒸気が送られ、僅に凋れ込んで来る
空気は復水中の図示しないエアク+ リングゾーンに集
められ、不凝性ガス抽出管14からエゼクタ又は真空ポ
ンプによって排出され、系内の空気分圧、すなわち、酸
素分圧は低く保たれ発錆は防止される。On the other hand, in the case of maintaining a vacuum as in the latter case, the steam is sent to the turbine gland, and the slightly reduced air is collected in the air + ring zone (not shown) in the condensate, where it becomes non-condensable gas. It is discharged from the extraction tube 14 by an ejector or a vacuum pump, and the partial pressure of air in the system, that is, the partial pressure of oxygen, is kept low and rusting is prevented.
発錆が防止される一方、グランドシール蒸気によって系
内の温度が上り過ぎるのを防ぐ目的で一般に次の冷却方
法が行なわれている。The following cooling method is generally used to prevent rust from forming and to prevent the temperature in the system from rising too high due to gland seal steam.
復水は、ホントウェル6、復水ポンプ7、復水ミニマム
フローライン12、復水器5の系で循環されエゼクタ蒸
気コンデンサ9及びブランド蒸気コンデンv11におい
てそれぞれエゼクタ駆動蒸気及びグランド漏洩蒸気を冷
却凝縮せしめる。この熱交換によって温度が上昇した復
水は、復水ミニマムンローライン12から復水器5へ送
られ、ここで循環水ポンプ16、循環水取水管15によ
って送られて来た循環水すなわち冷却海水との間接熱交
換によって冷却される。The condensate is circulated through a system of a real well 6, a condensate pump 7, a condensate minimum flow line 12, and a condenser 5, and the ejector drive steam and gland leakage steam are cooled and condensed in the ejector steam condenser 9 and the brand steam condenser v11, respectively. urge The condensate whose temperature has increased due to this heat exchange is sent from the condensate minimum low line 12 to the condenser 5, where the circulating water, that is, the cooling seawater sent by the circulating water pump 16 and the circulating water intake pipe 15. It is cooled by indirect heat exchange with
以上の操作によって、復水系内は海水より少し高い程度
の温度に保たれ、器内圧はその温度の飽和水蒸気圧程度
となり、酸素分圧は低(保たれ、機器の腐食は防がれる
。Through the above operations, the inside of the condensate system is maintained at a temperature slightly higher than seawater, the pressure inside the vessel is approximately the saturated water vapor pressure at that temperature, the oxygen partial pressure is maintained low, and corrosion of equipment is prevented.
なお、前記操作中には、復水ポンプ7、循環水ポンプ1
6ともそれぞれ一台が運転されるのでかなりの動力が必
要である。Note that during the above operation, the condensate pump 7 and the circulating water pump 1
Since each of the 6 vehicles is operated, a considerable amount of power is required.
しかし、前述した第一方式たる復水器の真空を破壊し大
気開放する保持法では、系内にかなりの発錆がある故に
、休止の頻度が多くなったり火力発電プラントでは、起
動の度毎に鉄や銅の1昌食生成物が給水系からボイラに
持込まれるので、給水系やボイラの錆による汚れがひど
く、処理を誤るとボイラ蒸発管の内面に堆積し、たスケ
ールのために蒸発管が過熱され、時として噴破事故が発
電することとなる。However, with the first method mentioned above, which destroys the vacuum in the condenser and opens it to the atmosphere, there is considerable rust formation within the system, which results in frequent shutdowns, and in thermal power plants, every time the plant is started up. Since iron and copper eclipse products are brought into the boiler from the water supply system, the water supply system and boiler are heavily contaminated with rust, and if disposed of incorrectly, they accumulate on the inner surface of the boiler evaporation tube and cause evaporation due to scale. The pipes become overheated and sometimes blowouts generate electricity.
これを防止するために蒸発管の抜管検査の頻度を発停の
少ないプラントより多くシ、汚れの程度を監視して早め
にボイラの化学洗浄を行ない、付着あるいは堆積した鉄
や銅の腐食生成物などの汚れを除去排出せしめるが、こ
の化学洗浄の経費はかなり大きなものであるので、運転
時間に対し、化学洗浄の頻度が多くなることは損失であ
る。To prevent this, we inspect the evaporator pipes more frequently than in plants that have fewer starts and stops, monitor the degree of contamination, and perform early chemical cleaning of the boiler to remove corrosion products from iron and copper that have adhered or accumulated. However, the expense of this chemical cleaning is quite large, so the increased frequency of chemical cleaning compared to the operating time is a loss.
ボイラに持ち込まれる汚れを少(する目的で起動の度毎
に復水系及び給水系の錆などの汚れを水洗により糸外に
排出するいわゆるタリンアップ操作が行なわれているが
、起動操作時間が長くなり、例えば、午前8時に発電プ
ラントを全負荷に持ち込むには起動開始が真夜中になる
なとの欠点かあ′る。In order to reduce the amount of dirt brought into the boiler, a so-called talin-up operation is carried out in which rust and other dirt in the condensate system and water supply system is flushed out of the line each time the boiler is started, but the startup operation takes a long time. For example, if you want to bring the power plant to full load at 8 a.m., there is a drawback that startup may not start until midnight.
他方、前述した第二方式たる復水器の真空度を保持する
休止方式の場合には、系内に発錆は少な(、また、起動
に要する時間も短いが、復水ポンプ7や循環水ポンプ1
6の動力が必要で、特に大型である循環水ポンプの消費
動力が非゛帛に太きい。On the other hand, in the case of the above-mentioned second method, which is a shutdown method that maintains the vacuum level of the condenser, there is little rust in the system (and the time required for startup is short, but the condensate pump 7 and circulating water pump 1
6 of power is required, and the power consumption of the circulating water pump, which is particularly large, is extremely large.
このため夜間・休日に休止することが多くなった発電プ
ラントでは、発電もしない休止中にかなりの電力を消費
し、これが年間を通じると大きな経費増になっている。As a result, power generation plants, which are now often shut down at night and on holidays, consume a considerable amount of electricity while they are not producing electricity, resulting in a large increase in costs throughout the year.
前述した冷却操作をする場合、必要冷却量に対し循環水
ポンプ16が大きすぎるのである。When performing the cooling operation described above, the circulating water pump 16 is too large for the required cooling amount.
本発明は、このような従来技術の問題点に鑑みてこれを
解決するためになされたもので、火力発電プラント等の
休止時において、復水器の真空を破壊せず、復水系内へ
の空気の漏入を低く保って系内の腐食発生を抑制すると
共に真空保持に必要な動力を従来の方法に比して大巾に
削減することのできる復水の冷却方法を提供することを
目的とする。The present invention was made in view of the problems of the prior art and to solve the problems.The present invention was made in order to solve the problems of the prior art. The purpose is to provide a condensate cooling method that can suppress the occurrence of corrosion in the system by keeping air leakage low, and can significantly reduce the power required to maintain vacuum compared to conventional methods. shall be.
この目的を達成するために本発明の復水の冷却方法では
、蒸気タービン及び蒸気復水器を有する火力発電等のプ
ラントにおいて、復水器の真空破壊を生ぜずに該プラン
トを休止する場合に、循環水ポンプを停止し、別途設け
た小型の休止時循環水ポンプ及び休止時海水熱交換器を
用いることにより、循環水ポンプ使用時より少ない循環
水流量でグランド漏洩蒸気やエゼクタ駆動蒸気等の冷却
などプラント休止中に必要な冷却を行なうことを特徴と
する。In order to achieve this object, the condensate cooling method of the present invention is applicable to a thermal power generation plant having a steam turbine and a steam condenser, when the plant is shut down without causing a vacuum breakdown of the condenser. By stopping the circulating water pump and using a separately installed small circulating water pump and seawater heat exchanger when not in use, you can eliminate ground leakage steam, ejector drive steam, etc. with a smaller circulating water flow rate than when using the circulating water pump. It is characterized by performing necessary cooling while the plant is not in operation.
以下、本発明の詳細を図示する一実施例を参照しながら
説明する。なお、従来の復水の冷却方法に使用した冷却
装置(第1図)と共通ずる構成部分については同一符号
を使用するものとする。The details of the invention will now be described with reference to an illustrative embodiment. Note that the same reference numerals are used for the same components as those of the cooling device (FIG. 1) used in the conventional condensate cooling method.
第2図には、プラントの休止時に復水器5の真空を保持
しその復水系統内に空気を入れないで復水な冷却する方
式を採用する蒸気タービン及び蒸気復水器を具備する火
力発電等のプラントにおいて、通常運転時の冷却用の循
環水管とは別に休止時の冷却用の循環水管18を配設し
、この休止時の冷却用の循環水管18には通常運転時循
環水ポンプ16より小型の休止時循環水ポンプ19及び
休止時海水熱交換器20を設け、該休止時海水熱交換器
20は復水を冷却さぜるべく復水ミニマムフローライン
12の途中に位置するよう設け、該復水ミニマムフロー
ライン12には前記休止時Nrj水熱交換器20を使用
しない通常運転[16のための海水熱交バイパスライン
21を迂廻配設したことを特徴とするプラントの休止時
における復水の冷却装置が記載されている。Figure 2 shows a thermal power plant equipped with a steam turbine and a steam condenser that maintains the vacuum of the condenser 5 during plant shutdown and uses condensate cooling without introducing air into the condensate system. In plants such as power generation plants, a circulating water pipe 18 for cooling during downtime is installed separately from the circulating water pipe for cooling during normal operation, and this circulating water pipe 18 for cooling during downtime is equipped with a circulating water pump during normal operation. A circulating water pump 19 at rest, which is smaller than 16, and a seawater heat exchanger 20 at rest, are provided, and the seawater heat exchanger 20 at rest is located in the middle of the condensate minimum flow line 12 to cool the condensate. The condensate minimum flow line 12 is detoured with a seawater heat exchanger bypass line 21 for normal operation [16] in which the Nrj water heat exchanger 20 is not used during shutdown. A condensate cooling system is described.
第2図における符号1乃至17は前述の第1図に示した
従来の冷却装置の構成部分と同じであるが、異るのは符
号18以降である。即ち、第2図において、循環水取水
管15の適所から休止時循環水管18を引き出しこれを
循環水放出管17に接続し、ば休止時循環水管18には
その途中に循環水ポンプ16よりも小型の休止時循環水
ポンプ19及び休止時熱交換器20を設け、該休止時熱
交換器20では復水ミニマムフローライン12の復水を
冷却せしめるようにし、さらに、該復水ミニマムフロー
ライン12には、該休止時海水熱交換器20を使用しな
い通常運転時のための1海水熱交バイパスライン21を
迂廻接続している。Reference numerals 1 to 17 in FIG. 2 are the same as those of the conventional cooling device shown in FIG. 1, but the parts starting from 18 are different. That is, in FIG. 2, the circulating water pipe 18 at rest is pulled out from an appropriate position of the circulating water intake pipe 15 and connected to the circulating water discharge pipe 17. A small circulating water pump 19 at rest and a heat exchanger 20 at rest are provided, and the heat exchanger 20 cools the condensate in the minimum condensate flow line 12. A seawater heat exchanger bypass line 21 is connected in a roundabout manner to the seawater heat exchanger bypass line 21 for normal operation when the seawater heat exchanger 20 is not used when the seawater heat exchanger 20 is not used.
なお、休止時循環管18の取水口は循環水ポンプ16の
下流側でも上流側でもよく、また、直接、海、川、湖な
どから取ってもよい。また、休止時循環水の放出口は循
環水放出管17へでもよ(、その池の適当な海、川、湖
でもよい。但し、一般には、該休止時循環水管18は必
要最小限に短か(設語される。Note that the water intake of the circulation pipe 18 during suspension may be on the downstream side or the upstream side of the circulation water pump 16, or may be taken directly from the sea, river, lake, etc. In addition, the outlet for circulating water when not in use may be connected to the circulating water discharge pipe 17 (or to the appropriate sea, river, or lake in the pond). However, generally, the circulating water pipe 18 is kept as short as possible when not in use. ka (coined)
次に、上述のように構成された冷却装置による冷却方法
を説明する。Next, a cooling method using the cooling device configured as described above will be explained.
復水器5の真空を保持する場合、タービン2のグランド
3にシール蒸気が送られ、僅かに漏れ込んで来る空気は
復水器5中の図示ぜさるエアンーリングゾーンに集めら
れ、不凝性ガス抽出管14からエゼクタ又は真空ポンプ
によって排出され、系内の空気分圧、すなわち、酸素分
圧は低く保たれる。When maintaining the vacuum in the condenser 5, sealing steam is sent to the gland 3 of the turbine 2, and the small amount of air that leaks is collected in the air ring zone shown in the figure in the condenser 5, so that it is not condensed. The gas is discharged from the extraction tube 14 by an ejector or a vacuum pump, and the air partial pressure, that is, the oxygen partial pressure, in the system is kept low.
さらに、復水はホントウェル6、復水ポンプ7、復水ミ
ニマムフローライン12、復水器5の系で循環され、エ
セクク蒸気コンテンザ9及びグランド蒸気コンデンサ]
1においてそれぞれエゼクタ駆動蒸気及びグランド漏洩
蒸気を冷却凝縮せしめる。この点、第1図に示した従来
装置による作用と同じであり、要するに、グランドシ・
−ル蒸気及びエゼクタ又は真空ポンプを用いること、さ
らに、これらの蒸気による系統の3″1.6X清を冷却
により抑制することにより系内は充分J(空に保たれる
。Furthermore, the condensate is circulated through a system of the Hontowell 6, the condensate pump 7, the condensate minimum flow line 12, and the condenser 5, and the condensate is circulated through the system of the Esekku steam condenser 9 and the grand steam condenser]
1, the ejector driving steam and the gland leaking steam are cooled and condensed. In this respect, the operation is the same as that of the conventional device shown in Fig. 1.
The system is kept sufficiently empty by using steam and an ejector or vacuum pump, and by suppressing the 3"1.6X cleaning of the system by these steams by cooling.
この場合の系統内の昇温を抑11]1する方法において
、本発明では、第2図に示すように、循環水ポンプ16
を停止し、休止時循環水ポンプ]9を起動して、休止時
循環水管18がら休止時海水熱交換器20に冷却用水を
流し、エゼクタ蒸気コンデンv9及びグランド蒸気コン
デンサ11で加熱されて復水ミニマムフローライン12
を流れてくる復水を冷却することにより小量の冷却水で
冷却の目的を達成する。In the method of suppressing the temperature rise in the system in this case, the present invention uses a circulating water pump 16 as shown in FIG.
9 is started, cooling water is passed through the rest period circulating water pipe 18 to the rest seawater heat exchanger 20, and is heated by the ejector steam condenser v9 and the grand steam condenser 11 and condensed water. Minimum flow line 12
The purpose of cooling is achieved with a small amount of cooling water by cooling the condensate flowing through.
以上述べたように、本発明によるプラントの休止時にお
ける復水の冷却方法においては、休止時に復水器の真空
を保持し、その復水系統内に空気を入れないで復水を冷
却する方式を採用する蒸気タービン及び蒸気復水器を具
備する火力発電等のプラントにおいて、通常運転時の復
水等の必要な冷却と、休止時の復水等の必要な冷却とを
別々の径路で行なわしめ、かつ、休止時の復水等の必要
な冷却に使用する循環水流量を通常運転時のそれよりも
少ない流量だけ、少ない動力でそれの循環径路に送給せ
しめるよう構成したので、休止時循環水ポンプの動力は
通常運転時の循環水ポンプの動力より大巾に小さいもの
とすることができる、。As described above, in the method for cooling condensate during plant shutdown according to the present invention, the vacuum of the condenser is maintained during shutdown, and the condensate is cooled without introducing air into the condensate system. In thermal power generation plants and other plants equipped with steam turbines and steam condensers that use The system is configured so that the flow rate of circulating water used for necessary cooling such as condensate water during periods of rest is sent to the circulation path at a flow rate lower than that during normal operation and with less power. The power of the circulating water pump can be much smaller than the power of the circulating water pump during normal operation.
その−例を挙げると”/+oo〜〕/SOOの動力とす
ることができるから、発停の頻度の多い発電所において
は、年間の経費節減は非常に太きい。ちなみに、350
MW級発電の循環水量は約1.05T/Hであり、通常
運転時の循環水ポンプを一台のみ運転した場合、その流
量は2.5〜4.5 X I O’ T/IIであるの
に対し、休止時循環水の流量は数百′1″//IIあれ
ばよい。勿論、安全率を見てそれより多口の水量を用い
ても経済性を大きく害しない範囲であれば本発明の目的
を逸脱するものではない。For example, since it can be used as the power source for ``/+oo~]/SOO, the annual cost savings are extremely large for power plants that frequently start and stop.By the way, 350
The amount of circulating water in MW class power generation is approximately 1.05 T/H, and when only one circulating water pump is operated during normal operation, the flow rate is 2.5 to 4.5 X I O' T/II. On the other hand, the flow rate of circulating water during rest may be several hundred'1''//II. Of course, taking into account the safety factor, using a larger amount of water can be used as long as it does not significantly impair economic efficiency. This does not depart from the purpose of the present invention.
第1図は従来のプラントの休止時における復水の冷却方
法に使用されている冷却装置の復水系の系統図、第2図
は本発明のプラントの休止時における復水の冷却方法に
使用される冷却装置の復水系の系統図である。
5・e復水器、1211・復水ミニマムフローライン、
l 5 ・・循fffi水取Zk’1ii11 (i
・・通’+ifl’に時の循環水ポンプ、エフ・・循環
水放出管、18・・休止時の循環水管、19・・休止時
循環水ポンプ、20・・休止時海水熱交換器、21・・
海水熱交バイパスライン。Figure 1 is a system diagram of a condensate system of a cooling device used in a conventional method for cooling condensate during plant shutdown, and Figure 2 is a system diagram of a condensate system used in the present invention's method for cooling condensate during plant shutdown. FIG. 2 is a system diagram of a condensate system of a cooling device. 5・e condenser, 1211・condensate minimum flow line,
l 5... Circulation fffi Mizutori Zk'1ii11 (i
...Circulating water pump when connected to '+ifl', F... Circulating water discharge pipe, 18... Circulating water pipe when not working, 19... Circulating water pump when not working, 20... Seawater heat exchanger when not working, 21・・・
Seawater heat exchange bypass line.
Claims (1)
系統内に空気を入れないで復水を冷却する方式を採用す
る蒸気タービン及び蒸気復水器を具備する火力発電等の
プラントにおいて、通常運転時の復水等に必要な冷却と
、休止時の復水等に必要な冷却とを別々の径路で行なわ
しめ、かつ、休止時の復水等に必要な冷却に使用する循
環水流量を通常運転時のそれよりも少ない流量だけ、少
ない動力でそれの循環径路に送給せしめることを特徴と
する復水の冷却方法。In thermal power generation plants and other plants equipped with steam turbines and steam condensers that maintain a vacuum in the condenser when the plant is shut down and cool the condensate without introducing air into the condensate system. , Cooling required for condensate during normal operation and cooling required for condensate during stoppage are carried out through separate routes, and circulating water is used for cooling necessary for condensate during stoppage. A method for cooling condensate characterized by sending a flow rate smaller than that during normal operation to its circulation path with less power.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15709683A JPS6069486A (en) | 1983-08-30 | 1983-08-30 | Cooling method of condensate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15709683A JPS6069486A (en) | 1983-08-30 | 1983-08-30 | Cooling method of condensate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6069486A true JPS6069486A (en) | 1985-04-20 |
Family
ID=15642156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15709683A Pending JPS6069486A (en) | 1983-08-30 | 1983-08-30 | Cooling method of condensate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6069486A (en) |
-
1983
- 1983-08-30 JP JP15709683A patent/JPS6069486A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4517804A (en) | Condenser vacuum retaining apparatus for steam power plant | |
US6105362A (en) | Combined cycle power plant with gas turbine cooling system | |
KR960705134A (en) | DEVICE FOR COOLING THE GAS-TURBINE COOLANT IN A COMBINED GAS AND STEAM TURBINE INSTALLATION | |
US7827792B2 (en) | Refrigerant cooled main steam condenser binary cycle | |
JPH10196316A (en) | Combined power generating plant and closed air cooling gas turbine system | |
CN113187574B (en) | Ash water true flash negative pressure wet steam turbine waste heat power generation system of coal gasification device | |
JPS6069486A (en) | Cooling method of condensate | |
JP2020046138A (en) | Combined cycle power generation facility and operation method for the combined cycle power generation facility | |
CN212157107U (en) | Take heat supply function's once-through boiler to start hydrophobic waste heat utilization equipment | |
CN219197411U (en) | Steam supply system of steam turbine shaft seal | |
JPS6189486A (en) | Condenser in combined plant | |
CN116498750B (en) | Sealing oil system for steam turbine generator | |
CN110360768B (en) | Waste heat refrigerating system of coal-fired power plant | |
CN220249971U (en) | System for reducing dissolved oxygen in boiler feed water | |
JP3794724B2 (en) | Gasification combined power generation facility | |
JPS5930992B2 (en) | Vacuum holding device for condensers in power plants | |
JP2000240405A (en) | Apparatus for operating reheating power generating plant | |
JPH0791883A (en) | Cleaning device for condenser, cooler and cooling pipe | |
KR950015403A (en) | Nuclear Power Plant Subwater Level Operation Method and Device | |
JPS60101204A (en) | Cleanup method in thermal power plant | |
JPS5842777Y2 (en) | Condensate pressurization equipment for power generation plants | |
JP2637194B2 (en) | Combined plant startup bypass system and its operation method | |
SU836374A1 (en) | Central-heating power unit | |
JPS54113709A (en) | Emergency cooling device | |
JPH11344203A (en) | Method for recovering steam air heater drain |