JPS6066687A - Control system of commutatorless motor - Google Patents

Control system of commutatorless motor

Info

Publication number
JPS6066687A
JPS6066687A JP58172887A JP17288783A JPS6066687A JP S6066687 A JPS6066687 A JP S6066687A JP 58172887 A JP58172887 A JP 58172887A JP 17288783 A JP17288783 A JP 17288783A JP S6066687 A JPS6066687 A JP S6066687A
Authority
JP
Japan
Prior art keywords
magnetic flux
value
current
motor
armature current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58172887A
Other languages
Japanese (ja)
Inventor
Mikio Takeda
幹男 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58172887A priority Critical patent/JPS6066687A/en
Publication of JPS6066687A publication Critical patent/JPS6066687A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Abstract

PURPOSE:To prevent the control performance from decreasing in the basis of the continuation of an armature current at a light load time by forcibly reducing the magnetic flux command value of a magnetic flux control loop smaller than the prescribed value when the armature current becomes the certain level or lower. CONSTITUTION:When an armature current IM becomes a certain value IM1 or larger, it is designed to output the prescribed magnetic flux command phi*, while the certain value or smaller, it is designed to output a value decreasing proportionally to the current IM. Assume that an interrupting point of an armature current when the load becomes light while the magnetic flux command phi* remains as it is P1, the current interrupting point moves to the lower value as P2 if as the magnetic flux command value becomes smaller than phi*. Thus, even if the load becomes light, the interruption of the armature current can be avoided. In this manner, the decrease in the control performance on the basis of the interruption of the armature current can be prevented at the light load time.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、電動機側変換器に電圧モデルにより制御さ
れる他動インバータを使用するとともに、電機子反作用
を補(r(する界磁々束制御ループを備えた無整流子電
動機(サイリスタモータ)の制御方式に閃する。
Detailed Description of the Invention [Technical field to which the invention pertains] This invention uses a passive inverter controlled by a voltage model as a converter on the motor side, and also compensates for armature reaction (r). A control method for a commutatorless motor (thyristor motor) equipped with a control loop inspired me.

〔従来技術とその問題点〕[Prior art and its problems]

第1図はかかるサイリスタモータ制御装置の従来例を示
す借成因、第2図は第1図の定余裕角パルス発生器の構
成を詳細に示すブロック図、第3図は第2図の各部波形
を示す波形図である。第1図において、1は速度調節器
(ASR)、2は電流調節器(ACIL)、3は点弧角
W1を整然、4はサイリスタ変換器、5は速度起電力(
逆起電力)演算器、6は磁束演算器(れ″1分器)、7
は定余裕角パルス発生器、8はパルス分配器、9はサイ
リスタモータ(同期電動a)、tOは速度検出用発電機
、11は磁束調節器(AΦ几)、12は界磁電流調節器
、13は界磁用サイリスタの点弧角調整器、SElは速
度設定器、SF3は磁束設定器、DCLは直流平滑用リ
アクトルである。
FIG. 1 is a diagram illustrating a conventional example of such a thyristor motor control device, FIG. 2 is a block diagram showing the configuration of the constant margin angle pulse generator in FIG. 1 in detail, and FIG. 3 is a waveform of each part in FIG. 2. FIG. In Fig. 1, 1 is the speed regulator (ASR), 2 is the current regulator (ACIL), 3 is the firing angle W1, 4 is the thyristor converter, and 5 is the speed electromotive force (
6 is a magnetic flux calculator (re''1 divider), 7 is a back electromotive force) calculator,
is a constant margin angle pulse generator, 8 is a pulse distributor, 9 is a thyristor motor (synchronous motor a), tO is a speed detection generator, 11 is a magnetic flux regulator (AΦ几), 12 is a field current regulator, 13 is a firing angle adjuster for a field thyristor, SEl is a speed setting device, SF3 is a magnetic flux setting device, and DCL is a DC smoothing reactor.

交泥電源はTlL源側変換器41により直流に変換され
た後、直流リアクトルDCLにて平滑され、電動機側変
換器42により交流に再変換されてサイリスクモータ9
が駆動される。この場合の速度1謬陣は、速度設定器S
E1からの速度設定信号(目標値)r?*と、電動機9
に直結された速度検出用発電機lOからの速度実際値(
検出値)nとを比較して速度H部器1に入力し、次いで
その出方信号、すなわち、電流指令i*と電源側変換器
41の電流検IB信号iとを比較して電波間にテ器2に
入力し、その出力信号で点弧角調M器3を介して電源側
変換器41の位相制御を行なうことにより達成される。
The alternating current power is converted to DC by the TIL source side converter 41, smoothed by the DC reactor DCL, and reconverted to AC by the motor side converter 42 to drive the SIRISK motor 9.
is driven. In this case, the speed setting device S
Speed setting signal (target value) r? from E1? * and electric motor 9
The actual speed value from the speed detection generator lO directly connected to
The detected value) n is compared and inputted to the speed H unit 1, and then the output signal, that is, the current command i* and the current detection IB signal i of the power supply side converter 41 are compared and the signal is input between the radio waves. This is achieved by inputting the signal to the ignition angle adjuster 2 and controlling the phase of the power supply side converter 41 via the firing angle adjuster 3 using the output signal.

一方、電動機側変換器42の位相制御は、検出器を介し
て得られる電動機端子電圧vMおよび電機子電流Imか
ら、電機子抵抗(几)と電俄子洩れリアクタンス(L6
)の電圧降下分を考慮して演n器5により所定の演算を
行なうことにより逆起電力Eを演算し、さらに、積分器
6(電圧モデルともいう。)にて積分することにより電
動機内部磁束Φをめ、この磁束波形を基準鈍して定余裕
角パルス発生器7で所定パルス幅の定余裕角パルスを作
成し、これをパルス分配器8を介して電動機側変換器4
2の点弧制御をすることにより行なわれる。
On the other hand, the phase control of the motor-side converter 42 is performed using the motor terminal voltage vM and armature current Im obtained through a detector, and the armature resistance (几) and electric leakage reactance (L6
) by performing a predetermined calculation using the calculator 5 to calculate the back electromotive force E, which is then integrated by the integrator 6 (also referred to as a voltage model) to calculate the internal magnetic flux of the motor. Φ, this magnetic flux waveform is blunted as a reference, a constant margin angle pulse generator 7 generates a constant margin angle pulse with a predetermined pulse width, and this pulse is sent to the motor side converter 4 via a pulse distributor 8.
This is done by performing the ignition control in step 2.

定余裕角パルス兄生器7は、第2図に卯しく示されるよ
うに、90度だけ位イUを進める位相進め回路71.コ
ンパレータ72、転流型なり力演算器(U演算器)73
、磁束絶対値演算器74およびスイッチ81〜83等よ
り構成される。
The constant margin angle pulse generator 7 includes a phase advance circuit 71. which advances the position U by 90 degrees, as shown in detail in FIG. Comparator 72, commutation type force calculator (U calculator) 73
, a magnetic flux absolute value calculator 74, switches 81 to 83, and the like.

なお、スイッチ81〜83ハ、&i東の各tsnus分
Φuv、Φ6.Φ訃が正のときは’i’@tcあり、負
のときは′m2′側に切り換わるものである〇その動作
について、第2図および第3図を参照して説明する。
In addition, each of the switches 81 to 83c, &i east tsnus Φuv, Φ6. When Φ is positive, 'i'@tc is present, and when it is negative, it is switched to 'm2'. The operation will be explained with reference to FIGS. 2 and 3.

m3図(イ)で示される如き有効磁束の各砿ff[成分
(Φuv、ΦVWeΦwu )は、まず90’eJ(電
気角)位相進め回路71においてそれぞれ90’eJだ
け進められる(Φuv→Φ’LIV*ΦvW+Φ’VW
 eΦwu→Φ’wu)。
Each of the effective magnetic flux ff [components (Φuv, ΦVWeΦwu) as shown in Fig. *ΦvW+Φ'VW
eΦwu→Φ'wu).

なお、この位相進め回路71は、入力信号が3相平衡入
力であれば単純な加減算回路によ?て構成することがで
きる。このようにして得られるΦ’uV FΦ’VWs
Φ’wuはそれぞれ速度起電力”11/ # ”VW 
eEwu (Nえば、Euvはuv同の速度起電力)と
同位相となる。一方、磁束絶対値演算器74の出力を分
圧して得られる余裕角設定電圧■γと、電流指令値(ま
たは検出値)および磁束絶対値からU演算器73により
得られる重なり角演算電圧■。とが加算され、制御進み
角(βン指令電圧Vβが作成される。次いで、制御進み
角指令電圧Vβはスイッチ31””83により各相の入
力磁束波形の正負に応じて極性が切り換えられる。この
ようにして得られた矩形波のβ指令電圧(±Vβ)は第
3図(ロ)の如くそれぞれΦ’LIT tΦ’vw t
Φ’wuと大小比較することにより、電圧/角度の変換
が行なわれ、第3図(ハ)の如き定余裕角パルス(xs
o”ez16)が作り出される。
Incidentally, if the input signal is a three-phase balanced input, this phase advance circuit 71 may be a simple addition/subtraction circuit. It can be configured as follows. Φ'uV FΦ'VWs obtained in this way
Φ'wu is the speed electromotive force "11/#"VW
It has the same phase as eEwu (if N, Euv is the same velocity electromotive force as uv). On the other hand, the margin angle setting voltage ■γ obtained by dividing the output of the magnetic flux absolute value calculator 74 and the overlap angle calculation voltage ■ obtained by the U calculator 73 from the current command value (or detected value) and the magnetic flux absolute value. are added to create a control advance angle command voltage Vβ. Next, the polarity of the control advance angle command voltage Vβ is switched by the switch 31''83 according to the positive or negative sign of the input magnetic flux waveform of each phase. The rectangular wave β command voltage (±Vβ) obtained in this way is Φ'LIT tΦ'vw t, respectively, as shown in Fig. 3 (b).
By comparing the magnitude with Φ'wu, voltage/angle conversion is performed, and a constant margin angle pulse (xs
o”ez16) is produced.

一方、電圧モデル(111分器)6より得られた磁束Φ
(正確には、磁束の絶対値1Φ1)は、磁束調節器(A
Φ几)11に与えられ、ここで、その設定値(指令値)
Φ*と等しくなるように調節演算され、その出力は界磁
電流調節器(FC几)12の電流指令lF*となる。こ
のとき、電流調節器12には界磁電流実際値(検出値)
iFが入力されているので、調節器12では磁束調節器
11の出力iF*と界磁電流実際値ipとの偏差が零と
なるような14m演算が行なわれ、その出力により位相
調整器13を介して所定の信号を界磁用サイリスタへ供
給することにより、電動機内部磁束を全負荷範囲にわた
って一定に保つように制御する。
On the other hand, the magnetic flux Φ obtained from the voltage model (111 divider) 6
(To be exact, the absolute value of magnetic flux 1Φ1) is the magnetic flux regulator (A
Φ几) 11, where its setting value (command value)
An adjustment operation is performed so that it becomes equal to Φ*, and its output becomes the current command IF* of the field current regulator (FC) 12. At this time, the current regulator 12 has an actual field current value (detected value).
Since iF is input, the regulator 12 performs a 14m calculation such that the deviation between the output iF* of the magnetic flux regulator 11 and the actual field current value ip becomes zero, and the output is used to control the phase regulator 13. By supplying a predetermined signal to the field thyristor through the thyristor, the internal magnetic flux of the motor is controlled to be kept constant over the entire load range.

以上の如く、定余裕角、定磁束制御を行なうサイリスタ
モータシステムは、電動機が小型で済み、高力率、高効
率になるという特徴、利点を有しているが、電動側力率
を全負荷範囲にわたって極小にするため、軽負荷時の電
流断続が従来のものに比べて起り易くなるという問題点
がある。なお、電機子電流が断続すると、AC几制御ル
ープの最適調整点が変化して制御特性(設定変更や負荷
変動に対する連応性)が低下し、場合によってはハンチ
ングとなる等の問題を引き起すものである。
As mentioned above, the thyristor motor system that performs constant margin angle and constant magnetic flux control has the characteristics and advantages of a small electric motor, high power factor, and high efficiency. Since the current is minimized over a range, there is a problem in that current interruption during light loads is more likely to occur than in conventional systems. Furthermore, if the armature current is intermittent, the optimal adjustment point of the AC control loop will change, resulting in a decrease in control characteristics (responsiveness to setting changes and load fluctuations), and in some cases may cause problems such as hunting. It is.

〔発明の目的〕[Purpose of the invention]

この発明G:1かかる点に1みてなされたもので、ザイ
リスタモータ軽負荷時の電流断続を起り難くし、かつ電
動機側変換器の定余裕角特性を損なうことのない制御方
式を提供することを目的とするものである。
This invention G:1 has been made in view of the above points, and provides a control method that makes it difficult for the Zyristor motor to cause current interruption during light loads and does not impair the constant margin angle characteristics of the motor side converter. The purpose is to

〔発明の要点〕[Key points of the invention]

その要点は、電動機側変換器として電圧モデルにより制
御される他励インバータを使用するとともに、電機子反
作用を補償すべく電動機内部磁束を略一定に制御する界
磁々束制御ループを備えたサイリスタモータ制御システ
ムにおいて、軽負荷時に電機子電流が断続し、制御特性
が悪化するのを数件ずべく、電機子電流が成るレベル以
下になったら、上記磁束制御ループの磁束指令値を強制
的に一定の値よりも小さくして、その回避を図るように
した点にある。
The key points are that a separately excited inverter controlled by a voltage model is used as a converter on the motor side, and a thyristor motor is equipped with a field flux control loop that controls the internal magnetic flux of the motor to be approximately constant to compensate for armature reaction. In the control system, in order to prevent several cases where the armature current is intermittent during light loads and the control characteristics deteriorate, the magnetic flux command value of the magnetic flux control loop is forcibly kept constant when the armature current drops below the level. This problem can be avoided by making the value smaller than the value of .

〔発明の実施例〕[Embodiments of the invention]

第4図はこの発明の実施例を示す要部構成図、ft5s
図は電機子W、流と磁束指令値との関係を示すグラフで
ある。
Fig. 4 is a main part configuration diagram showing an embodiment of this invention, ft5s
The figure is a graph showing the relationship between armature W, current, and magnetic flux command value.

第4図は、第1図に示される従来例と同様の磁束制御ル
ープのみを取り出して示すもので、磁束指令値演算回路
14が付加されている点が特徴である。この磁束指令値
演算回路14は、例えば関数発生器からなり、第5図の
如き特性、すなわち、電機子電流IMがある値IMI以
上のときは、一定の磁束指令Φ*を出し、それ以下のと
きは、電流IMに比剥して減少する如き値を出力するよ
うに設計されている。なお、この場合の電機子電流とし
ては、第1図に示される速度調節器(As几)1の出力
、すなわち電機子電流指令値または電機子電流実際値を
使用することができる。ここで、磁束指令値がΦ*のま
まで負荷が軽くなったときの電機子電流の断続点がPl
であるとすると、磁束* 指令値がΦ、よりも小さくなれば、例えば22点の如く
電流断続点は低い方へ移動し、このため、負荷が軽くな
っても電機子電流の断続を避けることができる。この電
機子電流の断続点P2は、電流値IMIまでの範囲の磁
束の下げ方、すなわち勾配を加減することにより適宜セ
ットすることができる。
FIG. 4 shows only the magnetic flux control loop similar to the conventional example shown in FIG. 1, and is characterized in that a magnetic flux command value calculation circuit 14 is added. This magnetic flux command value calculation circuit 14 is composed of, for example, a function generator, and has the characteristics as shown in FIG. It is designed to output a value that decreases in proportion to the current IM. Note that as the armature current in this case, the output of the speed regulator (As) 1 shown in FIG. 1, that is, the armature current command value or the armature current actual value can be used. Here, the discontinuation point of the armature current when the load becomes lighter while the magnetic flux command value remains Φ* is Pl
Assuming that, if the magnetic flux* command value becomes smaller than Φ, the current interruption point will move to a lower point, such as point 22, and therefore, even if the load becomes lighter, interruption of the armature current can be avoided. I can do it. The discontinuation point P2 of the armature current can be appropriately set by adjusting the way the magnetic flux is lowered in the range up to the current value IMI, that is, by adjusting the gradient.

また、このようにしても、電動機側変換器の定余裕角制
御に影響を与えないので、電rfIJJ機力率は高力率
に保たれる。なお、磁束指令値が減少することによって
電動機内部磁束が減少し、電機子反作用が増加して内部
相差角Jが増加するが、これは、もともと軽負荷で定余
裕角制御を行なっているためであって、電動機力率、電
動機側変換器の転流に対する影響は無いものである。ま
た、転流型なり角の増加についても、もともと電流が断
続するような領域の議論であるため、全く問題はなく、
電動機力率に与える影響も殆んど無い。なお、磁束指令
値演算回路14は、ROMメモリを用いて実現すること
もできる。
Further, even in this case, the constant margin angle control of the motor-side converter is not affected, so the electric rfIJJ power factor is maintained at a high power factor. Note that as the magnetic flux command value decreases, the motor's internal magnetic flux decreases, the armature reaction increases, and the internal phase difference angle J increases, but this is because constant margin angle control is originally performed at light loads. Therefore, there is no influence on the motor power factor and the commutation of the motor-side converter. In addition, there is no problem with increasing the commutation type turning angle, since this is originally a discussion in the area where the current is intermittent.
There is almost no effect on the electric motor power factor. Note that the magnetic flux command value calculation circuit 14 can also be realized using a ROM memory.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、電機子電流が所定の値以下のときは
、該電流の減少に応じて磁束指令値を減少させるだけの
簡単な手段により、軽負荷時の電機子電流の断続にもと
づく制御性能の低下を防止しうるので、軽負荷の場合で
も安定な運転が可能となる利点をもたらすものである0
According to this invention, when the armature current is less than a predetermined value, control is performed based on intermittent armature current during light loads by simply reducing the magnetic flux command value in accordance with the decrease in the current. Since it can prevent performance deterioration, it has the advantage of enabling stable operation even under light loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサイリスタモータ制御装置の従来例を示す構成
図、第2図は定余裕角パルス発生器の具体例を示すブロ
ック図、第3図は第2図の動作を説明するための各部波
形図、第4図はこの発明の実施例を示す要部構成図、第
5図は電機子電流と磁束指令値との関係を説明するグラ
フである0符号説明 1・・・・・・速度調節器(As几)、2・・・・・・
電流調節器(ACR)、3 、13・・・・・・点弧角
調整器、4(41,42)・・・・・・サイリスタ変換
器、5・・・・・・逆起電力演算器、6・・・・・・磁
束演算器(積分器、電圧モデル)、7・・・・・・定余
裕角パルス発生器、8・・・・・・パルス分配器、9・
・・・・・サイリスタモータ、IO・・・・・・速度検
出用発電機、11・・・・・・磁束調踊j’a(AΦ几
)、12・・・・・・界磁電流w4 M1器(li’c
几)、14・・・・・・磁束指令値演算回路、71・・
・・・・位相進め回路、72・・・・・・コンパレータ
、73・・・・・・転流型なり角波34器、74・・・
・・・磁束絶対値演算器、SEX、SB2・・・・・・
設定器、DCL・・・・・・直流リアクトル、S1〜S
3・・・・・・スイッチ 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎 清 gEl 図 第 2図 Qバー〃 i3 図 Wi 4 図 早 5 図
Fig. 1 is a block diagram showing a conventional example of a thyristor motor control device, Fig. 2 is a block diagram showing a specific example of a constant margin angle pulse generator, and Fig. 3 is a waveform of each part to explain the operation of Fig. 2. Fig. 4 is a main part configuration diagram showing an embodiment of the present invention, and Fig. 5 is a graph explaining the relationship between armature current and magnetic flux command value. 0 Symbol explanation 1 ... speed adjustment Vessel (As几), 2...
Current regulator (ACR), 3, 13... Firing angle regulator, 4 (41, 42)... Thyristor converter, 5... Back electromotive force calculator , 6... Magnetic flux calculator (integrator, voltage model), 7... Constant margin angle pulse generator, 8... Pulse distributor, 9...
... Thyristor motor, IO ... Speed detection generator, 11 ... Magnetic flux adjustment j'a (AΦ几), 12 ... Field current w4 M1 device (li'c
几), 14...Magnetic flux command value calculation circuit, 71...
... Phase advance circuit, 72 ... Comparator, 73 ... Commutation type or 34 square wave devices, 74 ...
...Magnetic flux absolute value calculator, SEX, SB2...
Setting device, DCL...DC reactor, S1~S
3...Switch agent Patent attorney Akio Namiki Agent Patent attorney Kiyoshi Matsuzaki gEl Figure 2 Q bar i3 Figure Wi 4 Figure Haya 5 Figure

Claims (1)

【特許請求の範囲】 少なくとも他励インバータを含む電力変換装置によって
給電される無整流子電動機の端子電圧。 電機子[流の各実際値から所定の演算をしてめられる逆
起電力を積分することによりTIl動機磁束をめ該磁束
波形にもとづいて前記他励インバータの定余裕角制御を
行なう制御ループと、電機子反作用を補償すべく前記電
動a磁束を略一定の値となるように制御する磁束制御ル
ープとを備えてなる無整流子電動機の制御方式において
、電機子電流が所定値以上のときは略一定の磁束指令値
を出力し該電流が所定値以下のときはこれに応じて磁束
指令値を減少させて出力する関数発生器を設け、該関数
発生器からの出力にもとづいて電動機磁束を制御するこ
とを特徴とする無整流子電動機の制御方式。
[Claims] Terminal voltage of a commutatorless motor supplied by a power conversion device including at least a separately excited inverter. A control loop that calculates the TIl motive magnetic flux by integrating the back electromotive force obtained by performing a predetermined calculation from each actual value of the armature [flow] and performs constant margin angle control of the separately excited inverter based on the magnetic flux waveform. , a magnetic flux control loop that controls the electric magnetic flux a to a substantially constant value in order to compensate for armature reaction, when the armature current is above a predetermined value, A function generator is provided that outputs a substantially constant magnetic flux command value, and when the current is below a predetermined value, the magnetic flux command value is decreased and output accordingly, and the motor magnetic flux is adjusted based on the output from the function generator. A control method for a commutatorless motor, which is characterized by:
JP58172887A 1983-09-21 1983-09-21 Control system of commutatorless motor Pending JPS6066687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58172887A JPS6066687A (en) 1983-09-21 1983-09-21 Control system of commutatorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58172887A JPS6066687A (en) 1983-09-21 1983-09-21 Control system of commutatorless motor

Publications (1)

Publication Number Publication Date
JPS6066687A true JPS6066687A (en) 1985-04-16

Family

ID=15950160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58172887A Pending JPS6066687A (en) 1983-09-21 1983-09-21 Control system of commutatorless motor

Country Status (1)

Country Link
JP (1) JPS6066687A (en)

Similar Documents

Publication Publication Date Title
JPS58123394A (en) Controller for ac motor
JPS5920275B2 (en) Electric motor control device
US4654572A (en) Load-commutated inverter for operating synchronous motor
JPS6066687A (en) Control system of commutatorless motor
JP3439150B2 (en) Control device for power converter
JPH09163751A (en) Pwm controlled self-excited rectifier
JP2578200B2 (en) Voltage control device of power generator
JPS6176100A (en) Self-excited automatic voltage regulator
WO2020141569A1 (en) Thyristor starting device
JP3154336B2 (en) Inverter control circuit for photovoltaic power generation
JP2519078Y2 (en) Frequency control device for main shaft drive generator
JPS59209029A (en) Power supply device using primary battery
JP2512414Y2 (en) Control device for main shaft drive generator
JPS6159074B2 (en)
JPS6362984B2 (en)
JPS6318991A (en) Operation of shaft drive generator
JPS61177167A (en) Reactive power compensation type polyphase cycloconverter
JPS6244089A (en) Induction motor driver
JPS61189193A (en) Induction motor drive controller
JPS638709B2 (en)
JPS61177169A (en) Reactive power compensation type power converter
JPH06233461A (en) Reactive power compensation device and its controller
JPS5967870A (en) Operation control system for cycloconverter
JPH0218024B2 (en)
JPH0691760B2 (en) Controller for main shaft drive generator