JPS61177167A - Reactive power compensation type polyphase cycloconverter - Google Patents

Reactive power compensation type polyphase cycloconverter

Info

Publication number
JPS61177167A
JPS61177167A JP1446585A JP1446585A JPS61177167A JP S61177167 A JPS61177167 A JP S61177167A JP 1446585 A JP1446585 A JP 1446585A JP 1446585 A JP1446585 A JP 1446585A JP S61177167 A JPS61177167 A JP S61177167A
Authority
JP
Japan
Prior art keywords
excited
self
converters
converter
cycloconverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1446585A
Other languages
Japanese (ja)
Other versions
JPH0472468B2 (en
Inventor
Hiroshi Osawa
博 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1446585A priority Critical patent/JPS61177167A/en
Publication of JPS61177167A publication Critical patent/JPS61177167A/en
Publication of JPH0472468B2 publication Critical patent/JPH0472468B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/25Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/27Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means for conversion of frequency

Abstract

PURPOSE:To reduce a reactive power by connecting a plurality of sets of unit cycloconverters connected in anti-parallel with separately-excited converters and self-excited converters, and cancelling the delay current of the separately- excited converter with the leading phase current flowed to the self-excited converter. CONSTITUTION:Unit cycloconverters in which separately-excited converters 11-13 and self-excited converters 41-43 are connected in anti-parallel are connected with transformers 51-53 of the respective phases to form a polyphase cycloconverter. A control angle is regulated to flow currents of leading phase to the converters 41-43. The converters 11-13 are operated in phase for remov ing the delay currents from the power source in principle. The leading phases of the self-excited converters are controlled by a CPU, not shown, to cancel the delay current of the separately-excited converters. Thus, the reactive cur rents of the combined powers can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自励コンバータと他励コンバータとを複数組
み合わせて構成され、電源の無効電流を低減する無効電
力補償形多相出力すイクロコンパータに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a microconverter that is configured by combining a plurality of self-excited converters and separately excited converters, and has a reactive power compensated polyphase output that reduces the reactive current of a power supply. .

〔従来の技術〕[Conventional technology]

11!3図は従来の低無効電力形3相サイクロコンバー
タの一例を示す構成図である。同図において、11〜1
3.21〜23は他励コンバータ、31〜33.41〜
43は自励コンバータ、51〜53は変圧器、6は負荷
である。
FIG. 11!3 is a configuration diagram showing an example of a conventional low reactive power type three-phase cycloconverter. In the same figure, 11 to 1
3.21~23 are separately excited converters, 31~33.41~
43 is a self-excited converter, 51 to 53 are transformers, and 6 is a load.

電源電圧を適当な位相で切り出すことにより所望の可変
電圧、可変周波数を得るサイク四コンバータは、例えば
サイリスタを用いた通常の他励コンバータの逆並列結線
で構成されるが、他励コンバータはその原理上、可変電
圧を得るとき電源から遅れ位相の無効電流(電力)を取
るため、電源力率が低いことが知られている。
A CYC4 converter that obtains a desired variable voltage and variable frequency by cutting out the power supply voltage at an appropriate phase is constructed by connecting ordinary separately excited converters in antiparallel using, for example, thyristors, but the principle behind separately excited converters is First, it is known that the power factor of the power source is low because a delayed phase reactive current (power) is drawn from the power source when obtaining variable voltage.

この欠点を補なうため、第3図の如く、例えばある負荷
状態で運転している他励コンバータで構成される単位サ
イクロコンバータI C11,21,12,22,13
,23)K対し、自己消弧可能な可制御電気弁(GTO
サイリスタ等)または強制転流回路等の補助手段によっ
て消弧される可制御電気弁で単位サイクロコンバータI
[(31、41゜32 、42.33.43)を構成し
、このサイクロコンバータ■で出力電圧と出力電流の基
本波成分に対しては、上記サイクロコンバータIと同一
の負荷条件で運転するとともに、電源に対しては進み位
相の電流が流れる様にその制御角を決め、合成して電源
の無効電流を相殺することが行なわれている。そして、
上記サイクロコンベータI、IIの負荷条件を同一にす
るためには、これらのサイクロコンバータを直列あるい
は並列に接続して、1つの負荷に給電すること罠よって
達成される。
In order to compensate for this drawback, as shown in FIG.
, 23) Self-extinguishing controllable electric valve (GTO)
A unit cycloconverter I is a controllable electric valve whose arc is extinguished by auxiliary means such as a thyristor, etc.) or a forced commutation circuit.
[(31, 41°32, 42.33.43), and this cycloconverter ■ operates under the same load conditions as the above cycloconverter I for the fundamental wave components of the output voltage and output current. The control angle is determined so that a leading phase current flows into the power supply, and the current is combined to cancel out the reactive current of the power supply. and,
In order to make the load conditions of the cycloconverters I and II the same, this can be achieved by connecting these cycloconverters in series or in parallel to supply power to one load.

〔発明が解決しようとする問題点〕 しかし、この様な構成では使用される整流素子数が多く
なり、特に大容量機のみKその適用が限られたり、また
主回路捕成が複雑になり、主回路および制御装置が高価
になるという問題点があった。
[Problems to be solved by the invention] However, in such a configuration, the number of rectifying elements used increases, and its application is limited to large-capacity machines in particular, and the main circuit configuration becomes complicated. There was a problem that the main circuit and control device were expensive.

〔問題点を解決するための手段〕[Means for solving problems]

他励コンバータと自励コンバータとを逆並列結線または
十字結線した単位サイクロコンバータを(!数組み合わ
せて多相サイクロコンバータを構成し、自励コンバータ
には進み位相の無効電流が流れるようにその制御角を調
整する。
A polyphase cycloconverter is constructed by combining several unit cycloconverters in which a separately excited converter and a self-excited converter are connected in antiparallel or cross-wired. Adjust.

〔作用〕[Effect]

サイクロコンバータは1例えば2組の整流器を逆並列結
線し、負荷電流の極性に応じて上記の整流器を切換え、
負荷に所望の交流電力を供給する。
A cycloconverter is a system in which, for example, two sets of rectifiers are connected in antiparallel, and the rectifiers are switched according to the polarity of the load current.
Supply the desired AC power to the load.

以後の説明では、負荷電流の成る方向を正極性とし、こ
のとき通流する整流器を石側コンバータ、上記と逆の負
荷電流の方向を逆極性とし、このとき通流する整流器を
逆側コンバータと呼ぶことにする。
In the following explanation, the direction in which the load current flows is assumed to be positive polarity, the rectifier that conducts current at this time is referred to as a stone-side converter, and the direction in which the load current flows opposite to the above is assumed to be reverse polarity, and the rectifier that conducts current at this time is referred to as a reverse side converter. I'll call you.

いま、多相出力サイクロコンバータ、例えば3相出力サ
イクロコンバータにおいて、例えば石側コンパータヲ他
励コンバータ、逆側コンバータを自励コンバータでそれ
ぞれ構成し、他励コンバータの制御角はその原理上電源
から遅れ電流を取る位相で運転し、自励コンバータは電
源から進み電流を取る位相で運転する。このとき、負荷
のある相から負荷へ流れ込んだ電流は、負荷のある相か
ら流れ出なければならないという条件から、全ての時点
においてM@フンパータが通流しているコンバータ群と
、逆側コンバータが通流しているコンバータ群が存在し
、従って、石側すなわち他励コンバータの遅れ位相の無
効電流成分と逆側すなわち自励コンバータの進み位相の
無効電流成分とが相殺され、電源の無効電流を著しく低
減することができる。見方を変えれば、各コンパ1夕に
流れる無効電流は、各相のコンバータ間でその授受が行
なわれることKなる。
Now, in a multi-phase output cycloconverter, for example, a three-phase output cycloconverter, for example, the stone side converter is configured with a separately excited converter, and the reverse side converter is configured with a self-excited converter, and the control angle of the separately excited converter is, in principle, based on the lagging current from the power supply. The self-excited converter operates in a phase that takes the current leading from the power supply. At this time, since the current that flows into the load from the phase with the load must flow out from the phase with the load, the converter group in which M@humperter is conducting at all times and the converter on the opposite side are conducting Therefore, the reactive current component of the lagging phase of the isolated side, that is, the separately excited converter, and the reactive current component of the leading phase of the opposite side, that is, the self-excited converter, cancel each other out, significantly reducing the reactive current of the power supply. be able to. Looking at it from a different perspective, the reactive current flowing through each comparator is exchanged between the converters of each phase.

次に他励コンバータと自励コンバータの望ましい制御角
の関係について述べる。いま、交流電圧を出力すること
に基づく、時々刻々変化する制御角の目標値を、他励コ
ンバータと自励コンバータについてそれぞれαP、αN
とする。両者のコンバータのいずれが通流しているにか
かわらずその出力電圧を同一値にすること、両者のコン
バータはその接続方向が互いに逆であること、出力電圧
は転流型なり角が小さな範囲では制御角の余弦(ω3)
に比例すること等を考え合せると、制御角αPとαNと
は次の関係が成立つ様に制御されるのが望ましい。
Next, we will discuss the desirable control angle relationship between separately excited converters and self-excited converters. Now, the target values of the control angle that change from moment to moment based on the output of AC voltage are expressed as αP and αN for separately excited converters and self-excited converters, respectively.
shall be. The output voltage should be the same regardless of which of the two converters is conducting, the connection directions of both converters should be opposite to each other, and the output voltage should be commutated within a small range. Cosine of angle (ω3)
Considering that the control angles αP and αN are proportional to , it is desirable that the control angles αP and αN be controlled so that the following relationship holds true.

cos ap −−cos aH−”  (1)したが
って、αPとαNの関係は、 αN!αP−π          00″′。′″ 
(2)または αN−π−αP       ・・・・
・・ (3)となる。こ−にαPは零からπの範囲であ
り、αNは電源から進み電流を取ることから−πから零
の範囲で運転されなければならず、したがって、(3)
式は本発明の目的に一致せず、結局は第(2)式の関係
式が成り立つ様に制御される。
cos ap --cos aH-'' (1) Therefore, the relationship between αP and αN is αN!αP−π 00″′. ′″
(2) or αN-π-αP...
... (3) becomes. In this case, αP is in the range from zero to π, and αN must be operated in the range from -π to zero because it takes current from the power supply, so (3)
The equation does not match the purpose of the present invention, and in the end, the control is performed so that the relational equation (2) holds true.

〔実施例〕〔Example〕

#!1図は本発明の実施例を示す3相出力サイクロコン
バータ王回路構成図である。同図において、11〜13
は他励コンバータ、41〜43は自励コンバータ、51
〜53は変圧器、6は負荷である0 すなわち、他励コンバータ11〜13と自励コンバータ
41〜43とが互いに逆並列接続され、これを単位とし
て相の数だけ設けられる。なお、同図は3相の例であり
、自励コンバータは、こ\では自己消弧可能なGTOサ
イリスタから構成されている。また、他励コンバータと
自励コンバータとを逆並列接続するかわりに、十字結線
とすることもできる。
#! FIG. 1 is a circuit diagram of a three-phase output cycloconverter according to an embodiment of the present invention. In the same figure, 11 to 13
is a separately excited converter, 41 to 43 are self-excited converters, 51
53 is a transformer, and 6 is a load. In other words, the separately excited converters 11 to 13 and the self-excited converters 41 to 43 are connected in antiparallel to each other, and the number of units is equal to the number of phases. Note that the figure shows a three-phase example, and the self-excited converter is composed of a GTO thyristor that can self-extinguish. Further, instead of connecting the separately excited converter and the self-excited converter in antiparallel, a cross connection can be used.

第1A図は第1図の如き3相サイクロコンバ一タ1相分
の制御装置を示すブロック図である。同図において、1
は電?ItH節器(AC几)、2,4は演算器、3は比
較器、71は他励フンパーク11用の点弧角調整器、7
2は自励コンバータ41用の点弧角調整器である。
FIG. 1A is a block diagram showing a control device for one phase of the three-phase cycloconverter shown in FIG. In the same figure, 1
Is it electric? ItH moderator (AC switch), 2 and 4 are arithmetic units, 3 is a comparator, 71 is a firing angle adjuster for the separately excited fan park 11, 7
2 is a firing angle adjuster for the self-excited converter 41.

第1A図の動作について説明する。The operation of FIG. 1A will be explained.

電流目標値l と電流実際値iは電流調節器IK大入力
れ、電流調節器1は指令値lと実際値iの偏差がなくな
る様に動作する。電流調節器1の出力は、所望の電流を
流すための電圧の目標値として用いられる。電圧目標値
Vは、演算器2に導びかれ、その出力は例えば層側コン
バータ(他励コンバータ)110制御角の目標値αPと
なる。
The current target value l and the current actual value i are input to the current regulator IK, and the current regulator 1 operates so that there is no deviation between the command value l and the actual value i. The output of the current regulator 1 is used as a target voltage value for flowing a desired current. The voltage target value V is led to the arithmetic unit 2, and its output becomes, for example, a target value αP of the control angle of the layer side converter (separately excited converter) 110.

この目標値αPは点弧角調整器31に導びかれる〇点弧
角調節器31は電源電圧に同期してαpK比例した角度
だけ、コンバータ11のパルス発生時点を調整する位相
器であり、所望した制御角αP1で他励コンバータ11
に点弧パルスを発生する。
This target value αP is guided to the firing angle regulator 31. The firing angle regulator 31 is a phase shifter that adjusts the pulse generation point of the converter 11 by an angle proportional to αpK in synchronization with the power supply voltage. The separately excited converter 11 at the control angle αP1
generates an ignition pulse.

演算器4では、αPより(2)弐に従がって逆側コンバ
ータ(自励コンバータ)の制御角目標値αN4″が求め
られ、所望の制御角で自励コンバータ41に点弧パルス
が与えられる。点弧角調整器71゜72はその動作原理
は同一であるが、調整器71は制御角が零から180度
の範囲で動作するOK対し、72は一180度から零の
範囲で動作する。
In the calculator 4, a control angle target value αN4'' of the reverse side converter (self-excited converter) is determined according to (2) 2 from αP, and an ignition pulse is given to the self-excited converter 41 at the desired control angle. The firing angle adjusters 71 and 72 have the same operating principle, but the adjuster 71 operates within a control angle range of 0 to 180 degrees, while the ignition angle adjuster 72 operates within a range of -180 degrees to zero. do.

比較器3は、調整器71または72の少なくとも一方の
みの出力を可能とする信号であり、電流指令値の極性に
応じて調整器71,72のいずれかが選択される。
The comparator 3 is a signal that enables output from at least one of the regulators 71 and 72, and one of the regulators 71 and 72 is selected depending on the polarity of the current command value.

なお、第1図において、他励コンバータと自励コンバー
タの接続位置を互いに置きかえることは当然可能である
し、また逆並列結線に限らず十字結線にしても、本発明
の作用、効果は変わらない。
Note that in FIG. 1, it is naturally possible to replace the connection positions of the separately excited converter and the self-excited converter, and the operation and effect of the present invention will not change even if they are not limited to anti-parallel connection but also cross connection. .

また、同一の負荷を有する複数台の直流電動機、例えば
特に2台の直流電動機が機械的に直結されている様な場
合、1台の直流電動機に給電するコンバータ群の例えば
層側コンバータを他励コンバータで、逆側コンバータを
自励コンバータで構成し、他の1台の直流電動機に給電
するコンバータ群の層側コンバータを自励コンバータで
、逆側コンバータを他励コンバータで構成し、本発明に
示した様に各コンバータの制御角を調節することKよっ
て、電源力率をほぼ1”にすることができる0 第2B図は従来の他励コンバータのみで構成した3相出
力サイクロコンパータにおいて、三相対称な正弦波電圧
、正弦波電流を出力した場合の各コンバータのある一つ
の相の入力IIcIc形1Is12e13と、合成され
た電源のある一つの相の入力電流波形i4の一例を示す
。第2A図は本発明によるところの、第2B図と同一の
負荷条件における同一箇所の電流波形を示す。両図より
明らかな様に、本発明によって各コンバータ間の無効電
流が相殺され、その結果電源基本波力率はほぼ11”が
達成される。なおixa iz e is e i4a
例えば第1図に示される各部分の電流波形である。
In addition, when multiple DC motors with the same load, for example two DC motors in particular, are mechanically directly connected, for example, a layer-side converter of a converter group that supplies power to one DC motor may be externally excited. In the converter, the reverse side converter is configured with a self-excited converter, the layer side converter of the converter group that supplies power to one other DC motor is configured with the self-excited converter, and the reverse side converter is configured with the separately excited converter, and the present invention By adjusting the control angle of each converter as shown, the power factor of the power source can be made approximately 1''. Figure 2B shows a three-phase output cycloconverter configured only with a conventional separately excited converter. An example of the input IIcIc type 1Is12e13 of one phase of each converter and the input current waveform i4 of one phase of the combined power supply when three-phase symmetrical sine wave voltage and sine wave current are output. Figure 2A shows the current waveform at the same location under the same load conditions as Figure 2B according to the present invention.As is clear from both figures, the present invention cancels out the reactive currents between each converter, and as a result, the power supply A fundamental wave power factor of approximately 11'' is achieved. Furthermore, ixa iz e is e i4a
For example, it is the current waveform of each part shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多相出力サイクロコンバータにおいて
、他励コンバータと自励コンバータとを逆並列結線ある
いは十字結線して一相当りのサイクロコンバータを構成
し、互いの制御角を基本的に(2)式の関係式が保たれ
る様に調整することKより、基本的な整流素子数を増す
ことなく合成した電源の無効電流を低減することができ
る利点がもたらされる。
According to the present invention, in a multi-phase output cycloconverter, a separately excited converter and a self-excited converter are connected in anti-parallel or cross-connected to form one cycloconverter, and the mutual control angle is basically (2 By adjusting K so that the relational expression ( ) is maintained, an advantage is brought about that the reactive current of the combined power source can be reduced without increasing the number of basic rectifying elements.

【図面の簡単な説明】[Brief explanation of drawings]

第111Aは本発明による多相出力サイク四コンパ−ク
キ回路を示す構成IN、第1AImは本発明による多相
出力サイクロコンバータ制御装置を示すブロック図、I
@2A図は本発明による電源電流波形を示す波形図、#
!2B図は従来例による電源電流波形を示す波形図、第
3図は3相出力サイクロコンバ一タ主回路の従来例を示
す構成図である。 符号説明 11〜13.21〜23・・・・・・他励コンバータ、
31〜33 t 41〜43・・・・・・自励コンバー
タ、51〜53・・・・・・変圧器、6・・・・・・負
荷、1・・・・・・電流調節器(ACR)、2.4・・
・・・・演算器、3・・・・・・比較器、71.72・
・・・・・点弧角調整器。 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎    清 第1図
No. 111A is a configuration IN showing a multi-phase output cycloconverter control device according to the present invention, and No. 1 AIm is a block diagram showing a multi-phase output cycloconverter control device according to the present invention.
Figure @2A is a waveform diagram showing the power supply current waveform according to the present invention, #
! FIG. 2B is a waveform diagram showing a power supply current waveform according to a conventional example, and FIG. 3 is a configuration diagram showing a conventional example of a three-phase output cycloconverter main circuit. Code explanation 11-13. 21-23...Separately excited converter,
31-33t 41-43...Self-excited converter, 51-53...Transformer, 6...Load, 1...Current regulator (ACR) ), 2.4...
... Arithmetic unit, 3... Comparator, 71.72.
...Ignition angle adjuster. Agent Patent Attorney Akio Namiki Agent Patent Attorney Kiyoshi Matsuzaki Figure 1

Claims (1)

【特許請求の範囲】 1)他励コンバータと自励コンバータとを逆並列結線ま
たは十字結線してなる単位サイクロコンバータを複数組
み合わせて多相サイクロコンバータを構成し、自励コン
バータには進み位相の無効電流が流れるようにその制御
角を調整し、他の相の他励コンバータに流れる遅れ位相
の無効電流を相殺することにより、電源の無効電流(無
効電力)を低減することを特徴とする無効電力補償形多
相サイクロコンバータ。 2)特許請求の範囲第1項に記載の無効電力補償形多相
サイクロコンバータにおいて、前記他励コンバータおよ
び自励コンバータの制御角の時間的推移をそれぞれα_
P、α_Nとするとき、α_N=α_P−180度 (たゞし、0≦α_P<180度) なる関係が成立するようにそれぞれの制御角を調整する
ことを特徴とする無効電力補償形サイクロコンバータ。
[Claims] 1) A multi-phase cycloconverter is constructed by combining a plurality of unit cycloconverters formed by antiparallel connection or cross connection of separately excited converters and self-excited converters, and the self-excited converter has an ineffective leading phase. Reactive power that is characterized by reducing the reactive current (reactive power) of the power supply by adjusting its control angle so that current flows and canceling out the reactive current of the delayed phase that flows to the separately excited converter of other phases. Compensated polyphase cycloconverter. 2) In the reactive power compensating polyphase cycloconverter according to claim 1, the time course of the control angles of the separately excited converter and the self-excited converter are each expressed as α_
A reactive power compensation type cycloconverter characterized in that each control angle is adjusted so that the following relationship holds, where P and α_N, α_N = α_P - 180 degrees (0≦α_P<180 degrees). .
JP1446585A 1985-01-30 1985-01-30 Reactive power compensation type polyphase cycloconverter Granted JPS61177167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1446585A JPS61177167A (en) 1985-01-30 1985-01-30 Reactive power compensation type polyphase cycloconverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1446585A JPS61177167A (en) 1985-01-30 1985-01-30 Reactive power compensation type polyphase cycloconverter

Publications (2)

Publication Number Publication Date
JPS61177167A true JPS61177167A (en) 1986-08-08
JPH0472468B2 JPH0472468B2 (en) 1992-11-18

Family

ID=11861802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1446585A Granted JPS61177167A (en) 1985-01-30 1985-01-30 Reactive power compensation type polyphase cycloconverter

Country Status (1)

Country Link
JP (1) JPS61177167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450763A (en) * 1987-08-21 1989-02-27 Fuji Electric Co Ltd Two-multiplex polyphase cycloconverter
US7102331B2 (en) 2003-01-17 2006-09-05 Black & Decker Inc. Generator with dual cycloconverter for 120/240 VAC operation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450763A (en) * 1987-08-21 1989-02-27 Fuji Electric Co Ltd Two-multiplex polyphase cycloconverter
US7102331B2 (en) 2003-01-17 2006-09-05 Black & Decker Inc. Generator with dual cycloconverter for 120/240 VAC operation
US7170261B2 (en) 2003-01-17 2007-01-30 Black & Decker Inc. Generator with dual cycloconverter for 120/240 VAC operation

Also Published As

Publication number Publication date
JPH0472468B2 (en) 1992-11-18

Similar Documents

Publication Publication Date Title
JPS6137864B2 (en)
JPH0561879B2 (en)
Nonaka et al. A PWM GTO current source converter-inverter system with sinusoidal inputs and outputs
JPH04229025A (en) Method of controlling power converter
Borst et al. Voltage control by means of power thyristors
US5764499A (en) Direct a.c. converter
JPS61177167A (en) Reactive power compensation type polyphase cycloconverter
RU2709186C1 (en) Three-phase sinusoidal voltage stabilizer with increased frequency link
JPS62272870A (en) Converter equipment
US4303972A (en) Controlling the circulating current in naturally commutated static power converters
JP3070314B2 (en) Inverter output voltage compensation circuit
JPS59194697A (en) Drive device for motor
JPH09163751A (en) Pwm controlled self-excited rectifier
JPS61177169A (en) Reactive power compensation type power converter
JPS607919B2 (en) Power supply method for polyphase AC motor
JPS6242472B2 (en)
JPH05153780A (en) Power converter equipment
RU2159004C1 (en) Voltage stabilization device for transformer plant
CA1145395A (en) Direct current power supply for supplying constant real power
SU714620A1 (en) Method and device for control of direct frequency converter
JPH04319717A (en) Power compensating device
Sharma et al. A Survey on Single Phase to Three Phase Cyclo-Converter Fed Induction Motor
JPH0446080B2 (en)
JPS59117466A (en) Output voltage control system for variable frequency power converter
JPS58148668A (en) Output voltage control system for polyphase cycloconverter