JPS6066628A - Reactive power compensator - Google Patents

Reactive power compensator

Info

Publication number
JPS6066628A
JPS6066628A JP58173914A JP17391483A JPS6066628A JP S6066628 A JPS6066628 A JP S6066628A JP 58173914 A JP58173914 A JP 58173914A JP 17391483 A JP17391483 A JP 17391483A JP S6066628 A JPS6066628 A JP S6066628A
Authority
JP
Japan
Prior art keywords
star
reactive power
phase
transformer
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58173914A
Other languages
Japanese (ja)
Inventor
信 東
石浦 政弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP58173914A priority Critical patent/JPS6066628A/en
Publication of JPS6066628A publication Critical patent/JPS6066628A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は不平衡な電圧変動を抑制することができる無効
電力補償装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a reactive power compensator capable of suppressing unbalanced voltage fluctuations.

〔背景技術と問題点〕[Background technology and problems]

第1図に従来の無効電力補償装置の一例を示す。 FIG. 1 shows an example of a conventional reactive power compensator.

図において1は無限大母線、2は電源インピーダンスを
示し、3は母線である。
In the figure, 1 is an infinite bus, 2 is a power supply impedance, and 3 is a bus.

6は例えば三相アーク炉のような母線3に接続された三
相不平衡負荷を示す。なお図では一札分のみしか示して
いない。4は不平衡負荷に結合されたCTであり、5は
母線3に結合されたPTである。
6 indicates a three-phase unbalanced load connected to the bus bar 3, such as a three-phase arc furnace. Note that the figure only shows one bill. 4 is a CT coupled to an unbalanced load, and 5 is a PT coupled to bus 3.

7は直列リアクトルであり、IOは逆並列接続されたサ
イリスクスイッチであり、直列リアクトル7とサイリス
クスイッチlOとの直列接続によりサイリスク制御リア
クトル(以下TCRと略称する)を構成する。このTC
Rは母線3に接続されるデルタ、スター結線変圧器II
の2次側相線とデンサ8が接続される。
7 is a series reactor, IO is a thyrisk switch connected in antiparallel, and a thyrisk control reactor (hereinafter abbreviated as TCR) is constituted by the series connection of the series reactor 7 and the thyrisk switch IO. This TC
R is delta, star connected transformer II connected to bus 3
The secondary side phase line of and the capacitor 8 are connected.

点線で囲む9は制御回路を示す。91はQ検出回路であ
り、CT4およびPT5より入力を受ける。
9 surrounded by a dotted line indicates a control circuit. 91 is a Q detection circuit, which receives input from CT4 and PT5.

92は検出無効電力変換回路であり、93はパルス発生
器である。
92 is a detection reactive power conversion circuit, and 93 is a pulse generator.

前記検出無効電力変換回路92は第3図に示すような構
成となっている。
The detected reactive power conversion circuit 92 has a configuration as shown in FIG.

図に示すように、各相のQ検出回路91で各相ごとに無
効電力Qu、 Qv、 Qwを検出し、検出無効電力変
換回路92で、線間の無効電力Quv+ Qvw。
As shown in the figure, a Q detection circuit 91 for each phase detects reactive power Qu, Qv, Qw for each phase, and a detected reactive power conversion circuit 92 detects reactive power Quv+Qvw between lines.

QWuに変換し、各相のりアクドルを制御して無効電力
を補償するようにしている。
The reactive power is compensated for by converting it into QWu and controlling the steering wheel of each phase.

ところで、不平衡負荷を他の相から影響なしに相別に制
御しょうとする場合、TCR用変圧器の1次側の結線は
デルタ結線であった。このためTCRによる通電が平衡
している場合には、第3高調波が環流することによって
、第3高調波の流出がない。TCRが不平衡な電圧変動
を抑制している場合、当然不平衡運転となり、第3高調
波が流出してしまうが、完全な逆相変動のみの場合はす
くなく、いくらか正相変動を含むことが多い。従ってい
くらかは第3高調波の流出が抑えられる。
By the way, when trying to control an unbalanced load on a phase-by-phase basis without being influenced by other phases, the connection on the primary side of the TCR transformer is a delta connection. Therefore, when the energization by the TCR is balanced, the third harmonic circulates and there is no outflow of the third harmonic. If the TCR suppresses unbalanced voltage fluctuations, it will naturally lead to unbalanced operation and the third harmonic will flow out, but it is rare for there to be only completely negative phase fluctuations, and there may be some positive sequence fluctuations. many. Therefore, the outflow of the third harmonic can be suppressed to some extent.

しかしながら、第5.第7高調波については、平衡、不
平衡にかかわらず流出してしまうという欠点をもってい
る。従来、第3.5.7高調波の抑制には、TCR用変
圧器をデルタ、中性線伺スター結線のものと、スター、
中性線((ヌク−。デルタ結線のものを平衡運転させれ
ばよいことが知られている。デルタ、中性線付スター結
線変圧器でTCRを不平衡運転させることはできるが、
もしスター、中性線付スター、デルタ結線の変圧器でT
 CRを不平衡運転させられれば、今の場合でも第5,
7の高調波発生がTCRの平衡運転中だけ抑制できるが
、スター、中性線付スター、デルタ結線の変圧器ではT
CRの不平衡’ii!制御はできなかった。その理由は
各相Qが検出できても、得られたQu、Qv、Qwをど
のように処理すれば、スター。
However, the fifth. The seventh harmonic has the disadvantage that it flows out regardless of whether it is balanced or unbalanced. Conventionally, in order to suppress the 3rd, 5th, and 7th harmonics, TCR transformers are connected in delta, neutral line to star connection, star,
It is known that it is possible to operate the TCR unbalanced with a star-connected transformer with a delta or neutral wire.
If the transformer is star, star with neutral wire, or delta connection,
If the CR can be operated unbalanced, even in the present case, the 5th,
7 harmonic generation can be suppressed only during TCR balanced operation, but in star, star with neutral wire, and delta connected transformers, T
CR imbalance'ii! I couldn't control it. The reason is that even if each phase Q can be detected, how to process the obtained Qu, Qv, and Qw will result in a star.

中性綴付スター。デルタ結線の2次側TCRの制御量に
なるのか判明していなかったため、制御回路の組みよう
がなかったことによる。
Neutral bound star. This was because it was not known whether the control amount would be the control amount of the secondary side TCR of the delta connection, so there was no way to assemble a control circuit.

〔発明の開示〕[Disclosure of the invention]

本発明は変動負荷の各相無効電力を検出し、これに対応
して補償する無効電力補償装置であって、逆並列サイリ
スクスイッチとりアクドルとの直列回路よりなるサイリ
スク制御リアクトルを、スター、中性線伺スター、デル
タ結線変圧器の2次に、三相四線で結線したものと、デ
ルクー、中性線付スター結線変圧器の2次に同じく三相
四線で結線したもの2つを、アーク炉等不平衡かつ急峻
な負荷に感応させる装置において、スター、中性線付ス
ター、デルタ結線変圧器側サイリスクスイッチには、負
荷無効電力検出値のうちで、対応する相の値の5倍より
、他の2相の和を差し引き、さらしこその結果を%倍す
ることにより、当該相のサイリスク制御リアクトルの制
御量とすることを特徴を有するものである。
The present invention is a reactive power compensator that detects the reactive power of each phase of a fluctuating load and compensates accordingly. The secondary of a star- and delta-connected transformer with a neutral wire is connected with three-phase, four-wire, and the secondary of a star-connected transformer with a neutral wire is also connected with three-phase, four-wire. In equipment that is sensitive to unbalanced and steep loads, such as arc furnaces, the sirisk switch on the side of star, star with neutral wire, and delta connected transformers is equipped with the value of the corresponding phase among the load reactive power detection values. The feature is that the sum of the other two phases is subtracted from 5 times, and the result of the exposure is multiplied by % to obtain the control amount of the cyrisk control reactor of the relevant phase.

以下実施例について説明する。Examples will be described below.

第5図は本発明の一実施例である。FIG. 5 shows an embodiment of the present invention.

+1はデルタ、中性線付スター結線変圧器であり、性腺
との間に直列リアクトル(図示していない)と逆並列サ
イリスタスイッチ10とが直列に接続され、また+1’
はスター、中性線付スター、デルタ結線変圧器であり、
この変圧器11’の2次側各相と中性線との間に直列リ
アクトル(図示していない)と逆並列サイリスクスイッ
チIOとが直列に接続されて無効電力補償回路を形成す
る。8はこれら無効電力補償回路と共働する並列コンデ
ンサである。また91は変動負荷6に結合されたCT4
および母線3に結合されたPT5よりの入力を受けて演
算するQ検出回路であり、92はすでに説明した第3図
に示す検出無効電力変換回路であり、92′は後述する
ような検出無効電力変換回路であり、これら変換回路9
2.92’の出力に応じ、パルス発生器93よりサイリ
スタスイッチ10の制御パルスを発生させ、前記無効電
力補償回路を通電制御する。
+1 is a star connected transformer with delta and neutral wires, and a series reactor (not shown) and an anti-parallel thyristor switch 10 are connected in series between the gonads, and +1'
is a star, star with neutral, delta connected transformer,
A series reactor (not shown) and an anti-parallel thyrisk switch IO are connected in series between each phase on the secondary side of the transformer 11' and a neutral line to form a reactive power compensation circuit. 8 is a parallel capacitor that cooperates with these reactive power compensation circuits. 91 is a CT 4 connected to the variable load 6.
92 is the detected reactive power conversion circuit shown in FIG. 3, which has already been explained, and 92' is the detected reactive power These conversion circuits 9
2.92', the pulse generator 93 generates a control pulse for the thyristor switch 10 to control energization of the reactive power compensation circuit.

(りここでまず、変圧器11’の1次電流と2次電流の
関係を分析する。
(Here, first, we will analyze the relationship between the primary current and secondary current of the transformer 11'.

第2図に示す1うに各部雷:/Nふ・1び方向を常める
〜図において■は1次側、■は2次側を示す。
In the figure shown in Figure 2, 1 indicates the primary side and 2 indicates the secondary side.

ただし、変圧器11′の1次、2次電圧比はI:lと考
える。一方変圧器1次側電流の正相分、逆相分をそれぞ
れII、I2とおくと、次式(2)が成立つ。
However, the primary and secondary voltage ratio of the transformer 11' is considered to be I:l. On the other hand, if the positive-phase and negative-phase components of the transformer primary current are set as II and I2, respectively, the following equation (2) holds true.

また変圧器2次電流は次式(3)のように表わせる。Further, the transformer secondary current can be expressed as shown in the following equation (3).

次に、(1)、 (2)、 (3)式より変圧器1次側
電流Iu。
Next, from equations (1), (2), and (3), transformer primary current Iu.

1v11.を消去して次式(4)が得られる。1v11. By eliminating , the following equation (4) is obtained.

ここでII、12 を次式(5)のように分解する。Here, II, 12 is decomposed as shown in the following equation (5).

このとき、(4)、 (5)式より次式(6)が得られ
る。
At this time, the following equation (6) is obtained from equations (4) and (5).

さて、母線電圧の大きさをVsとし、次式でおかれる変
数を考える。
Now, let the magnitude of the bus voltage be Vs, and consider the variables set in the following equation.

(6)、 (7)式から(8ン式が成り立つ。From equations (6) and (7), equation (8) holds true.

以上により、変圧器1次側のQ1+ p2. Q22次
が2次側Qu、Qv、Qw 成分で表現される。
As described above, Q1+ p2. on the primary side of the transformer. The Q22nd order is expressed by the secondary side Qu, Qv, and Qw components.

(2)次にQ検出回路910出方信号の分析をする。(2) Next, analyze the output signal from the Q detection circuit 910.

電源41」電圧は次式(9)でおくことができる。The voltage of the power source 41 can be expressed by the following equation (9).

負荷のライン電流を次式(10)でおく。The line current of the load is expressed by the following equation (10).

(10) 次に(9)式を90度遅相させ(0式を得る。(10) Next, equation (9) is delayed by 90 degrees (to obtain equation 0.

Q検出回路91では(10)と00式から、まず次の0
2)式の計算をする。 ヤ で表わされるが、そのリップル分を何らかの手段で除去
し、次式(+a)で表わされる信号がめる出力となる。
The Q detection circuit 91 first calculates the following 0 from (10) and formula 00.
2) Calculate the formula. However, by removing the ripple component by some means, the output becomes a signal expressed by the following equation (+a).

一方(5)式で表わしたIp++ ■p2+ lQl+
 IQ2は次式(+4)で表わせる。
On the other hand, Ip++ expressed by equation (5) ■p2+ lQl+
IQ2 can be expressed by the following formula (+4).

(18)、 (+4)式より(15)式が得られる。Equation (15) is obtained from Equations (18) and (+4).

以上によりQ検出器9Iの出力QU、Qv、QWが負荷
のQl、 p2. Q2 J成分で表現される。
As described above, the outputs QU, Qv, QW of the Q detector 9I are the loads Ql, p2. Q2 Expressed by J component.

(3)次に変圧器2次側制御量とQ検出器91の出力以
上で得られた(8)、(15)式よりQ+ 、P21 
Q2ft消去すると次式〇6)が得られる。
(3) Next, from equations (8) and (15) obtained above the transformer secondary side control amount and the output of Q detector 91, Q+, P21
When Q2ft is eliminated, the following equation 〇6) is obtained.

θ6)式を次式(r7)にまとめる。The equation θ6) can be summarized as the following equation (r7).

(7)式はQ検出W+91の出力から変圧器2次側制御
量をめる計算式であり、第4図に示すような回路からめ
ることができる。
Equation (7) is a calculation equation that calculates the transformer secondary side control amount from the output of Q detection W+91, and can be obtained from a circuit as shown in FIG.

図に示すように、各Q検出器91よりの負荷無効電力検
知値のうちで、対応する相のQの値が5倍され、これよ
り他の2相の和を差引いて、さらにその結果を%倍する
演算が行われる。
As shown in the figure, among the load reactive power detection values from each Q detector 91, the Q value of the corresponding phase is multiplied by 5, the sum of the other two phases is subtracted from this, and the result is further calculated. An operation of multiplying by % is performed.

〔効 果〕〔effect〕

第5図に示す本考案の装置において、TCR−Aは従来
より使用されている方式であるが、この回路に前述によ
るTCR−Bを並列に運転させ、TCR−A、Bを同一
負荷に感応させる。
In the device of the present invention shown in Fig. 5, TCR-A is of the conventional type, but TCR-B as described above is operated in parallel with this circuit, and TCR-A and B are sensitive to the same load. let

TCR−A、 B が平衡運転時にはもちろん、第3゜
5.7調波電流は打ち消されるが、アーク炉等不平衡負
荷に対しても、不平衡分のみ電源に流出するにとどまる
Of course, when TCR-A and TCR-B are in balanced operation, the 3rd degree 5.7th harmonic current is canceled out, but even for an unbalanced load such as an arc furnace, only the unbalanced amount flows out to the power source.

本方式は、補償装置が大きくなるほどその経済的効果も
大きい。つまり、大容量になれば、装置を複数群に分け
ることになるが、従来ならば第514に示すようなTC
R−Aのタイプばかり並列運転するが、その複数群のう
ち半分程度をTCR−Bのタイプにすることが可能であ
るからである。
In this method, the larger the compensation device, the greater the economic effect. In other words, if the capacity becomes large, the devices will be divided into multiple groups, but conventionally the TC as shown in No. 514
This is because although only R-A types are operated in parallel, it is possible to make about half of the multiple groups TCR-B types.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の無効電力補償装置を示す。 第2図は本発明装置に使用される変圧器回路電流計算の
ための説明図である。 第3図は第1図装置に適用される検出無効電力変換回路
を示す。 ′ 第4図は本発明においてスター、中性線付スター。 デルタ結線変圧器に接続されるサイリスクスイッチに対
する検出無効電力変換回路を示す。 第5図は本発明の実施例を示す。 l・・無限大母線、2・・電源インピーダンス、3 ・
b’+ti、4・・CT、5・・・PT、6・・不平衡
負荷、7・・・直列リアクトル、8・・並列コンデンサ
、9・・・制御回路、lO・サイリスクスイッチ、11
.11’・・・変圧器、91・・・Q検出回路、92.
92’ ・・・検出無効電力変換回路、93・・・パル
ス発生器。 b・イ二−− 代理人弁理士 青 木 秀 實砿ト 賃1図 大2関 箸3図 ″に4目
FIG. 1 shows a conventional reactive power compensator. FIG. 2 is an explanatory diagram for calculating the transformer circuit current used in the device of the present invention. FIG. 3 shows a detection reactive power conversion circuit applied to the device shown in FIG. ' Figure 4 shows a star in the present invention, a star with a neutral wire. 1 shows a detection reactive power conversion circuit for a si-risk switch connected to a delta-connected transformer. FIG. 5 shows an embodiment of the invention. l...Infinite bus bar, 2...Power supply impedance, 3.
b'+ti, 4...CT, 5...PT, 6...Unbalanced load, 7...Series reactor, 8...Parallel capacitor, 9...Control circuit, lO/Sirisk switch, 11
.. 11'...Transformer, 91...Q detection circuit, 92.
92'...Detection reactive power conversion circuit, 93...Pulse generator. B. Ini - Attorney Patent Attorney Hide Aoki 4 eyes on 1 figure 2 Sekicho chopsticks 3 figures

Claims (1)

【特許請求の範囲】 (り変動負荷の各相無効電力を検出し、これに対応して
補償する無効電力補償装置であって、逆並列サイリスク
スイッチとりアクドルとの直列回路よりなるサイリスク
制御リアクトルをスター・中性線付スター、デルタ結線
変圧器の2次に三相四線で結線したものと、デルタ・中
性線付スター結線変圧器の2次に同じく三相四線で結線
したもの2つを、アーク炉等不平衡かつ急峻な負荷に感
応させろ装置において、スター、中性線付スター。 デルタ結線変圧器側サイリスクスイッチには、負荷無効
電力検出値のうちで、対応する相の値の5御リアクトル
の制御量とすることを特徴とする無
[Scope of Claims] (A reactive power compensator that detects reactive power of each phase of a fluctuating load and compensates accordingly. The secondary of a star/delta connected transformer with star/neutral wire is connected with three-phase, four-wire, and the secondary of a star-connected transformer with delta/neutral wire is also connected with three-phase, four-wire. In devices that are sensitive to unbalanced and steep loads such as arc furnaces, the star and the star with a neutral wire are used. The control amount of the five-stage reactor is the value of
JP58173914A 1983-09-19 1983-09-19 Reactive power compensator Pending JPS6066628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173914A JPS6066628A (en) 1983-09-19 1983-09-19 Reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173914A JPS6066628A (en) 1983-09-19 1983-09-19 Reactive power compensator

Publications (1)

Publication Number Publication Date
JPS6066628A true JPS6066628A (en) 1985-04-16

Family

ID=15969414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173914A Pending JPS6066628A (en) 1983-09-19 1983-09-19 Reactive power compensator

Country Status (1)

Country Link
JP (1) JPS6066628A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138035A (en) * 1977-05-06 1978-12-02 Fuji Electric Co Ltd Static reactive power compensator
JPS5479443A (en) * 1977-12-08 1979-06-25 Mitsubishi Electric Corp Power controlling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138035A (en) * 1977-05-06 1978-12-02 Fuji Electric Co Ltd Static reactive power compensator
JPS5479443A (en) * 1977-12-08 1979-06-25 Mitsubishi Electric Corp Power controlling device

Similar Documents

Publication Publication Date Title
JP6815496B2 (en) Power converter
Mesbahi et al. Direct power control of shunt active filter using high selectivity filter (HSF) under distorted or unbalanced conditions
JPH0834669B2 (en) Harmonic suppressor
US5656924A (en) System and method for providing harmonic currents to a harmonic generating load connected to a power system
Verma et al. Power conditioner for variable-frequency drives in offshore oil fields
JPH03183324A (en) Voltage variation and harmonic wave suppressor
Prabhu et al. A three phase shunt active power filter based on instantaneous reactive power theory
JP5115730B2 (en) PWM converter device
JP5904883B2 (en) Transformer multiple power converter
JPH07123722A (en) Pwm converter
JPS6066628A (en) Reactive power compensator
Bezzub et al. Unified Power Quality Conditioner Electrical Complex for Compensation Influence of Sharply Variable Loading
JenoPaul et al. Power quality improvement for matrix converter using unified power quality conditioner
Naftahi et al. Three-Phase Four-Wire Shunt Active Power Filter Based on the Hybrid Automaton Control with Instantaneous Reactive Power Theory
Koushki et al. A model predictive control for a four-leg inverter in a stand-alone microgrid under unbalanced condition
Marei et al. A novel current regulated PWM technique for multi-converter active power line conditioner
Ruminot et al. A New Compensation Method for High Current Non-Linear Loads
JP2607337Y2 (en) Output limiter circuit of power conversion circuit
JP3318348B2 (en) Control circuit of active filter with passive
Rahmani et al. Reduced switch number single-phase shunt active power filter using an indirect current control technique
JP3191055B2 (en) Control circuit of active filter with passive
JPH04334930A (en) Series-type active filter
Xiao et al. A novel seven-level shunt active filter for high-power drive systems
Soni et al. Reactive Power Compensation using DSTATCOM with Balanced/Unbalanced Linear and Non-linear Load
Manisha et al. Power Quality Improvement by using Dynamic Voltage Restorer