JP3318348B2 - Control circuit of active filter with passive - Google Patents

Control circuit of active filter with passive

Info

Publication number
JP3318348B2
JP3318348B2 JP13682792A JP13682792A JP3318348B2 JP 3318348 B2 JP3318348 B2 JP 3318348B2 JP 13682792 A JP13682792 A JP 13682792A JP 13682792 A JP13682792 A JP 13682792A JP 3318348 B2 JP3318348 B2 JP 3318348B2
Authority
JP
Japan
Prior art keywords
filter
harmonic
current
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13682792A
Other languages
Japanese (ja)
Other versions
JPH05336662A (en
Inventor
剛 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP13682792A priority Critical patent/JP3318348B2/en
Publication of JPH05336662A publication Critical patent/JPH05336662A/en
Application granted granted Critical
Publication of JP3318348B2 publication Critical patent/JP3318348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電源系統に負荷に並列
接続されるリアクトルとコンデンサとを直列に接続した
パッシブフィルタと、スイッチング素子により構成され
る電力変換器とを直列接続したパッシブ併用アクティブ
フィルタの制御回路の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a passive filter in which a reactor and a capacitor connected in parallel to a load are connected in series to a power supply system, and a passive combined active in which a power converter constituted by a switching element is connected in series. The present invention relates to an improvement in a filter control circuit.

【0002】[0002]

【従来の技術】リアクトル及びコンデンサの直列回路よ
りなるパッシブフィルタと、スイッチング素子により構
成される電力変換器とを直列接続してなる、パッシブ併
用アクティブフィルタは、平成元年電気学会全国大会 5
89「新しい原理に基づく高調波抑制装置−PWM変換器
とLCフィルタの直列接続システム」等でも解説されて
いる通り公知である。
2. Description of the Related Art A passive combined active filter, in which a passive filter formed of a series circuit of a reactor and a capacitor and a power converter formed of a switching element are connected in series, is known as the National Institute of Electrical Engineers of Japan in 1989.
89 is well known as described in "Harmonic Suppression Device Based on New Principle-Series Connection System of PWM Converter and LC Filter".

【0003】図3はパッシブ併用アクティブフィルタの
主回路構成図、図4はその制御回路のブロック線図であ
る。図3において、三相交流系統電源1よりサイリスタ
レオナード装置等の負荷2に電力を供給しているライン
で、負荷2に並列にLCフィルタ3が接続され、そのL
Cフィルタ3はコンデンサ31及びリアクトル32の直列回
路からなる第5調波同調フィルタと、コンデンサ33及び
リアクトル34の直列回路からなる第7調波同調フィルタ
と、抵抗35及びリアクトル36の並列回路とコンデンサ37
との直列回路からなる高次フィルタとで構成されてい
る。
FIG. 3 is a block diagram of a main circuit of a passive active filter, and FIG. 4 is a block diagram of a control circuit thereof. In FIG. 3, an LC filter 3 is connected in parallel with the load 2 on a line that supplies power from a three-phase AC system power supply 1 to a load 2 such as a thyristor Leonard device.
The C filter 3 includes a fifth harmonic tuning filter including a series circuit of a capacitor 31 and a reactor 32, a seventh harmonic tuning filter including a series circuit of a capacitor 33 and a reactor 34, a parallel circuit of a resistor 35 and a reactor 36, and a capacitor. 37
And a higher-order filter composed of a series circuit.

【0004】LCフィルタ3の各相の他端は(Y−Y)
変圧器7の一次側に接続し、その変圧器7の一次側の他
端はスター接続され、二次側の一方の端もスター結線に
なっていると共に、他端は各相に交流リアクトル4が直
列接続され、また、変圧器7の二次側と交流リアクトル
4との各相接続点には、コンデンサ8が接続されてい
る。
The other end of each phase of the LC filter 3 is (YY)
The transformer 7 is connected to the primary side, the other end of the primary side of the transformer 7 is star-connected, one end of the secondary side is also star-connected, and the other end is connected to the AC reactor 4 in each phase. Are connected in series, and a capacitor 8 is connected to each phase connection point between the secondary side of the transformer 7 and the AC reactor 4.

【0005】交流リアクトル4の反変圧器側にはPWM
変換器5が接続され、このPWM変換器5の直流端子側
には直流コンデンサ6が接続され、その直流コンデンサ
6には並列に単相ダイオード整流回路9を接続してい
る。PWM変換器5はオンオフ可能なスイッチング素子
S1〜S6にそれぞれダイオードD1〜D6を並列接続した三相
ブリッジ回路を形成し、これは図4に示す制御回路で生
成されるトリガ信号VGによりスイッチング素子S1〜S6
がオンオフして高調波抑制を行うものである。交流リア
クトル4及びコンデンサ8はスイッチングリップル抑制
用のLCフィルタであり、PWM変換器5のスイッチン
グ周波数が高いときには無くてもよい。
[0005] On the anti-transformer side of the AC reactor 4, PWM is provided.
A converter 5 is connected, and a DC capacitor 6 is connected to a DC terminal side of the PWM converter 5, and a single-phase diode rectifier circuit 9 is connected to the DC capacitor 6 in parallel. The PWM converter 5 is a switching element that can be turned on and off.
Each form a three-phase bridge circuit connected in parallel to diode D1~D6 in S1 to S6, which is the switching element S1 to S6 by the trigger signal V G generated by the control circuit shown in FIG. 4
Are turned on and off to perform harmonic suppression. The AC reactor 4 and the capacitor 8 are LC filters for suppressing switching ripple, and may not be provided when the switching frequency of the PWM converter 5 is high.

【0006】かような高調波抑制回路はLCフィルタ3
の部分、変圧器7、交流リアクトル4、コンデンサ8、
PWM変換器5、直流コンデンサ6、単相ダイオード整
流回路9と、図4に示す制御回路とを主構成部とするも
のである。
[0006] Such a harmonic suppression circuit is an LC filter 3
Part, transformer 7, AC reactor 4, capacitor 8,
The main components are a PWM converter 5, a DC capacitor 6, a single-phase diode rectifier circuit 9, and a control circuit shown in FIG.

【0007】基本波に対して、LCフィルタ3は進相コ
ンデンサとして動作させ、PWM変換器5は零インピー
ダンスとして動作させると、PWM変換器5には基本波
電圧が印加されない。
When the LC filter 3 is operated as a phase-advancing capacitor and the PWM converter 5 is operated as zero impedance with respect to the fundamental wave, no fundamental wave voltage is applied to the PWM converter 5.

【0008】また、高調波に対しては、PWM変換器5
は電源電流の高調波成分を阻止するように高調波電圧を
発生させるものであり、LCフィルタ3の問題点である
反共振や、上位系統からの高調波電流の流入を抑制する
ことができる。
[0008] For harmonics, the PWM converter 5
Is to generate a harmonic voltage so as to block the harmonic component of the power supply current, and can suppress the anti-resonance which is a problem of the LC filter 3 and the inflow of the harmonic current from the upper system.

【0009】そのため、ここでは三相〜二相変換を行い
実電力及び虚電力なる概念を導入して、これを以下数式
を用いて詳述する。
For this reason, the concept of real power and imaginary power is introduced by performing three-phase to two-phase conversion, and this will be described in detail below using mathematical expressions.

【0010】まず、次の式(1)〜(3)で三相の電源
電流ISU,ISV,ISWと電源電圧V,V,V
を二相の電圧Vα,Vβ,電流Isα,Isβに変
換する。
First, three-phase power supply currents I SU , IS SV , I SW and power supply voltages V U , V V , V are expressed by the following equations (1) to (3).
W is converted into two-phase voltages Vα and Vβ and currents Isα and Isβ.

【数1】 ここで[C]は三相〜二相変換行列である。(Equation 1) Here, [C] is a three-phase to two-phase conversion matrix.

【0011】この式(1)〜(3)により求めた二相の
電圧及び電流から、次の式(4)によって瞬時実電力P
及び虚電力Qが求められる。
From the two-phase voltage and current obtained by the equations (1) to (3), the instantaneous real power P is calculated by the following equation (4).
And the imaginary power Q are obtained.

【数2】 (Equation 2)

【0012】この電力P、Qがそれぞれ従来の有効電
力、無効電力に対応するもので、これら瞬時実電力P及
び虚電力Qは、次の式(5) 〜(6) のように直流分PDC
DC及び交流分PACとQACに分解される。
The powers P and Q correspond to the conventional active power and reactive power, respectively. The instantaneous real power P and the imaginary power Q are expressed by the DC component P as shown in the following equations (5) to (6). It is decomposed into DC and Q DC and AC components P AC and Q AC .

【数3】 P=PDC+PAC (5) Q=QDC+QAC (6) ここで、二相電源電流Isα,Isβの基本波分は直流分P
DC,QDCに、高調波分は交流分PAC,QACに変換され
る。実際には、これら直流分,交流分の分離はハイパス
フィルタにより行われる。
P = P DC + P AC (5) Q = Q DC + Q AC (6) Here, the fundamental wave component of the two-phase power supply current Isα, Isβ is a DC component P
DC and Q DC , and the harmonic components are converted into AC components P AC and Q AC . Actually, the separation of the DC component and the AC component is performed by a high-pass filter.

【0013】図4において、101 は電力演算回路、102
はハイパスフィルタ、103 は電流指令値演算回路、104
は増幅回路、105 は三角波発生回路、106 は電圧抑制回
路である。
In FIG. 4, reference numeral 101 denotes a power calculation circuit;
Is a high-pass filter, 103 is a current command value calculation circuit, 104
Is an amplifier circuit, 105 is a triangular wave generation circuit, and 106 is a voltage suppression circuit.

【0014】電力演算回路101 は:系統電圧VU
V ,VW と電源電流ISU,ISV,ISWの検出値から式
(1) 〜(4) に従って瞬時実電力P及び瞬時虚電力Qを演
算し、ハイパスフィルタ102 へ出力する。ハイパスフィ
ルタ102 は直流分を除去し、瞬時実電力Pの交流分PAC
及び瞬時虚電力Qの交流分QACをそれぞれ実電力指令信
号P* 及び虚電力指令信号Q* として電流指令値演算回
路103 に送出する。
The power calculation circuit 101 includes: a system voltage V U ,
From the detected values of V V , V W and the power supply currents I SU , I SV , I SW ,
The instantaneous real power P and the instantaneous imaginary power Q are calculated according to (1) to (4) and output to the high-pass filter 102. The high-pass filter 102 removes the DC component, and the AC component P AC of the instantaneous real power P
And the AC component Q AC of the instantaneous imaginary power Q is sent to the current command value calculation circuit 103 as the real power command signal P * and the imaginary power command signal Q * , respectively.

【数4】 P* =PAC (7) Q* =QAC (8) P * = P AC (7) Q * = Q AC (8)

【0015】電流指令値演算回路103は実電力指令信
号P及び虚電力指令信号Qと系統電圧V,V
とを受け、式(1)及び次の式(9)〜(11)に
従い二相電流指令信号を得て、更に式(10)に従って
二相〜三相変換を行い、三相の電流指令信号I ,I
,I を生成し増幅回路104へ送出する。
The current command value calculation circuit 103 calculates the actual power command signal P * and the imaginary power command signal Q * and the system voltages V U , V V ,
It receives the V W, to obtain a two-phase current command signal in accordance with equation (1) and the following equation (9) to (11), further subjected to two-phase-three phase conversion in accordance with Equation (10), three-phase current Command signal IU * , I
V * and IW * are generated and sent to the amplifier circuit 104.

【数5】 (Equation 5)

【0016】増幅回路104 は電流指令信号IU * ,IV
* ,IW * を入力し、ゲインK倍して電圧指令信号VU
* ,VV * ,VW * を生成して、電圧抑制回路106 へ出
力する。
The amplifying circuit 104 includes current command signals I U * , I V
* , I W *, and multiply the gain by K to obtain the voltage command signal V U
* , V V * , V W * are generated and output to the voltage suppression circuit 106.

【0017】電圧抑制回路106 は三角波発生回路105 よ
り出力される三角波キャリア電圧Sと、電圧指令信号V
U * ,VV * ,VW * とを入力し、電圧指令信号VU *
≧三角波キャリア電圧Sならば、スイッチング素子S1を
オンしてスイッチング素子S6をオフし、電圧指令信号V
U * <三角波キャリア電圧Sならば、スイッチング素子
S1をオフしてスイッチング素子S6をオンする。
The voltage suppression circuit 106 includes a triangular wave carrier voltage S output from the triangular wave generation circuit 105 and a voltage command signal V
U *, V V *, enter and V W *, voltage command signal V U *
If ≧ triangle wave carrier voltage S, switching element S1 is turned on and switching element S6 is turned off, and voltage command signal V
U * <If triangular wave carrier voltage S, switching element
S1 is turned off and switching element S6 is turned on.

【0018】また、電圧指令信号VV * ≧三角波キャリ
ア電圧Sならば、スイッチング素子S3をオンしてスイッ
チング素子S2をオフするようなトリガ信号VG を生成す
るものである。このトリガ信号VG により、スイッチン
グ素子S1〜S6がオン、オフされ、PWM変換器5の各相
の電圧瞬時値が制御される。
Further, if the voltage command signals V V * ≧ triangular carrier voltage S, and generates a trigger signal V G so as to turn off the switching element S2 turns on the switching element S3. This trigger signal V G, the switching element S1~S6 is turned on, is turned off, the voltage instantaneous value of each phase of the PWM converter 5 is controlled.

【0019】[0019]

【発明が解決しようとする課題】このようなパッシブ併
用アクティブフィルタを、既設のLCフィルタ3に新た
にPWM変換器5を直列接続して構成した場合、負荷2
の高調波電流が増加してLCフィルタ3及びPWM変換
器5に流れる電流が増加した場合に、PWM変換器5は
新たに設計されるために大きな容量の変換器を構成でき
るが、従来より設置されているLCフィルタ3の電流定
格は押さえられているために、負荷2の高調波電流の増
加に対応できないと言う問題点があった。本発明は上述
のような点に鑑みてなされたものである。
When such a passive-use active filter is constructed by newly connecting a PWM converter 5 to an existing LC filter 3, a load 2
When the higher harmonic current increases and the current flowing through the LC filter 3 and the PWM converter 5 increases, the PWM converter 5 can be configured as a large-capacity converter because it is newly designed. Since the current rating of the LC filter 3 is limited, there is a problem that it is impossible to cope with an increase in the harmonic current of the load 2. The present invention has been made in view of the above points.

【0020】[0020]

【課題を解決するための手段】本発明によるパッシブ併
用アクティブフィルタの制御回路は、電源系統に負荷設
備と並列に接続したLCフィルタとPWM変換器とを直
列に接続してなるパッシブ併用アクティブフィルタの制
御回路において、該制御回路は、負荷電流とLCフィル
タ電流とをベクトル的に加算した電源電流を検出して高
調波電流指令を演算する手段と、該高調波電流指令をゲ
イン倍して高調波電圧指令を出力する手段と、電源電流
の高調波成分の実効値を算出し、該実効値が一定値以上
になるとLCフィルタの基本波を減少させるごとき基本
波電圧指令を出力する手段と、前記高調波電圧指令と前
記基本波電圧指令とを加算し三角波信号と比較してPW
M変換器のスイッチング指令を出力する手段とを具えた
ことを特徴とする。
SUMMARY OF THE INVENTION A control circuit for a passive-use active filter according to the present invention comprises a passive-use active filter in which an LC filter and a PWM converter connected in parallel to load equipment and a PWM converter are connected in series to a power supply system. In the control circuit, the control circuit detects a power supply current obtained by vectorially adding the load current and the LC filter current to calculate a harmonic current command, and multiplies the harmonic current command by a gain to obtain a harmonic. A means for outputting a voltage command; a means for calculating an effective value of a harmonic component of a power supply current, and outputting a fundamental voltage command such as reducing a fundamental wave of an LC filter when the effective value becomes a certain value or more; The harmonic voltage command and the fundamental wave voltage command are added and compared with a triangular wave signal, and PW
Means for outputting a switching command for the M converter.

【0021】[0021]

【作用】電源電流に含まれる高調波電流がある一定値を
越える場合、すなわちLCフィルタに流れる高調波電流
が増加してLCフィルタに流れる電流が定格値を越える
と、PWM変換器は、電源電流に含まれる高調波電流を
抑制するがごとき高調波電圧と、LCフィルタに流れる
基本波電流を減少させるがごとき基本波電圧とをベクト
ル的に合わせて発生するので、減少した基本波電流分だ
けLCフィルタには高調波電流を多く流すことができ
る。
When the harmonic current included in the power supply current exceeds a certain value, that is, when the harmonic current flowing through the LC filter increases and the current flowing through the LC filter exceeds the rated value, the PWM converter operates with the power supply current. The harmonic current included in the LC filter is suppressed, and the harmonic voltage flowing through the LC filter is reduced, so that the fundamental voltage is generated in a vector manner. A large amount of harmonic current can flow through the filter.

【0022】[0022]

【実施例】図1は本発明を適用したパッシブ併用アクテ
ィブフィルタの制御回路の一実施例を示すブロック線図
で、107 は実効値演算回路、108 は加算回路を示し、そ
の他、図4と同一符号は同一構成部分を示す。
FIG. 1 is a block diagram showing an embodiment of a control circuit for a passive-use active filter to which the present invention is applied. Reference numeral 107 denotes an effective value calculation circuit, reference numeral 108 denotes an addition circuit, and the same as FIG. Reference numerals indicate the same components.

【0023】図1において、電力演算回路101 及びハイ
パスフィルタ102 は、各相電源電流ISU,ISV,ISW
各相電源電圧VU ,VV ,VW とを入力して、式(1) 〜
(8)に従って、瞬時虚電力Qの交流分QACを瞬時虚電力
指令信号Q* として、電流指令値演算回路103 と実効値
演算回路107 とへ送出し、瞬時実電力Pの交流分PAC
加算回路108 と実効値演算回路107 とへ送出する。
In FIG. 1, the power calculation circuit 101 and the high-pass filter 102 receive the power supply currents I SU , I SV , and I SW of each phase and the power supply voltages V U , V V , and V W of each phase, and obtain an equation ( 1) ~
According to (8), the AC component Q AC of the instantaneous imaginary power Q is sent out as an instantaneous imaginary power command signal Q * to the current command value calculation circuit 103 and the effective value calculation circuit 107, and the AC component P AC of the instantaneous real power P is transmitted. Is sent to the addition circuit 108 and the effective value calculation circuit 107.

【0024】実効値演算回路107 は瞬時虚電力Qの交流
分QACと瞬時実電力Pの交流分PACとから実効値PR
式(12)により演算し、
The effective value calculating circuit 107 the effective value P R calculated by Equation (12) from the AC component P AC of the AC component Q AC and instantaneous real power P of the instantaneous imaginary power Q,

【数6】 PR =(PAC 2 +QAC 2 1/2 (12) その実効値PR がある一定値を越えると、図2に示した
ような値を有する基本波電力指令PF を加算回路108 に
送出する。
[6] P R = the (P AC 2 + Q AC 2 ) 1/2 (12) exceeds a certain value the effective value P R, the fundamental wave power command P F having values as shown in FIG. 2 Is sent to the adding circuit 108.

【0025】加算回路108 は、前記瞬時実電力Pの交流
分PACと、前記基本波電力指令PFとを加算して、実電
力指令信号P* を電流指令値演算回路103 へ送出する。
The adder circuit 108, the AC component and P AC of the instantaneous real power P, the by adding the fundamental wave power command P F, sends a real power command signal P * to the current command value calculating circuit 103.

【0026】電流指令値演算回路103 は、前記瞬時虚電
力指令信号Q* 、前記実電力指令信号P* 及び三相電源
電圧VU ,VV ,VW から、式(9) 〜(11)に従い三相の
電流指令信号IU * ,IV * ,IW * を生成して増幅回
路104 に送出する。
From the instantaneous imaginary power command signal Q * , the actual power command signal P *, and the three-phase power supply voltages V U , V V , V W , the current command value calculation circuit 103 calculates the equations (9) to (11). , The three-phase current command signals IU * , IV * , and IW * are generated and sent to the amplifier circuit 104.

【0027】増幅回路104 は、電流指令信号IU * ,I
V * ,IW * をゲインK倍して電圧指令信号VU * ,V
V * ,VW * を生成し、電圧制御回路106 へ送出する。
The amplifying circuit 104 includes current command signals I U * , I U *
V * and IW * are multiplied by a gain K and voltage command signals VU * and VU *
V * and VW * are generated and sent to the voltage control circuit 106.

【0028】電圧制御回路106 は、三角波発生回路105
より出力される三角波キャリア電圧Sと電圧指令信号V
U * ,VV * ,VW * とを入力として、例えば、電圧指
令信号VU * ≧三角波キャリア電圧Sならば、スイッチ
ング素子S1をオンしてスイッチング素子S6をオフし、電
圧指令信号VU * <三角波キャリア電圧Sならば、スイ
ッチング素子S1をオフしてスイッチング素子S6をオンす
るような、トリガ信号VG を生成する。
The voltage control circuit 106 includes a triangular wave generation circuit 105
Output carrier voltage S and voltage command signal V
U *, V V *, as inputs and V W *, for example, if the voltage command signal V U * ≧ triangular carrier voltage S, turns off the switching element (S6) by turning on the switching element S1, the voltage command signal V U * <If the triangular wave carrier voltage S, so as to turn on the switching element (S6) and turns off the switching element S1, and generates a trigger signal V G.

【0029】トリガ信号VG によりスイッチング素子S1
〜S6が交互にオン、オフされ、PWM変換キャリア5の
各相の瞬時電圧が制御される。
The switching element S1 by the trigger signal V G
S6 are alternately turned on and off, and the instantaneous voltage of each phase of the PWM conversion carrier 5 is controlled.

【0030】このように制御されるPWM変換器5は、
電源電流に含まれる高調波電流が少ない時、すなわちL
Cフィルタ3に流れる高調波電流が少ない時は、電源に
流れる高調波電流を抑制する高調波電圧を発生し、電源
電流に含まれる高調波電流がある一定値以上になると、
LCフィルタに流れる基本波電流を減少させるがごとき
基本波電圧と、電源に流れる高調波電流を抑制する高調
波電圧とをベクトル的に合わせて発生し、LCフィルタ
3にLCフィルタ3の定格電流以上の基本波電流と高調
波電流とをベクトル的に加算した電流が流れないように
することができる。かくして、既設のLCフィルタ3に
より、より多くの高調波電流を抑制できる。
The PWM converter 5 controlled in this way is:
When the harmonic current included in the power supply current is small, that is, L
When the harmonic current flowing through the C filter 3 is small, a harmonic voltage that suppresses the harmonic current flowing through the power supply is generated. When the harmonic current included in the power supply current exceeds a certain value,
A fundamental voltage such as reducing the fundamental current flowing in the LC filter and a harmonic voltage that suppresses the harmonic current flowing in the power supply are generated in a vector manner, and are generated in the LC filter 3 in excess of the rated current of the LC filter 3. A current obtained by adding the fundamental current and the harmonic current in a vector manner can be prevented from flowing. Thus, more harmonic currents can be suppressed by the existing LC filter 3.

【0031】以上は、電源電流に含まれる高調波電流よ
り間接的にLCフィルタに流れる高調波電流を換算した
が、直接LCフィルタに流れる電流IFU,IFV,IFW
は負荷電流ILU,ILV,ILWから高調波電流を検出し
て、同様にPWM変換器5により基本波電圧を発生して
LCフィルタ3に流れる基本波電流を減少させ、LCフ
ィルタ3に流れる高調波電流を増加させるように制御す
ることも可能である。
In the above description, the harmonic current flowing in the LC filter is indirectly converted from the harmonic current included in the power supply current. However, the currents I FU , IF V, I FW flowing directly in the LC filter or the load currents I LU , I LU , A harmonic current is detected from I LV and I LW , a fundamental wave voltage is similarly generated by the PWM converter 5, a fundamental wave current flowing through the LC filter 3 is reduced, and a harmonic current flowing through the LC filter 3 is increased. It is also possible to control so that

【0032】[0032]

【発明の効果】以上の動作説明から明らかなように、本
発明によれば、電源電流の高調波成分がある一定値以上
になると、LCフィルタに流れる高調波電流が増加した
のと同等になるので、LCフィルタに流れる基本波電流
を減少させて、その減少させた分だけLCフィルタに流
れる高調波電流を増加させることができるので、LCフ
ィルタに定格電流以上の電流を流すことなく、大きい高
調波補償を行えるパッシブ併用アクティブフィルタを提
供できる。
As is apparent from the above description of the operation, according to the present invention, when the harmonic component of the power supply current exceeds a certain value, it becomes equivalent to an increase in the harmonic current flowing through the LC filter. Therefore, the fundamental current flowing in the LC filter can be reduced, and the harmonic current flowing in the LC filter can be increased by the reduced amount. It is possible to provide a passive combined active filter capable of performing wave compensation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したパッシブ併用アクティブフィ
ルタの制御回路の一実施例のブロック線図である。
FIG. 1 is a block diagram of an embodiment of a control circuit for a passive-use active filter to which the present invention is applied.

【図2】本発明において使用する瞬時高調波実効電力に
対して発生すべき基本波電力指令を示すグラフである。
FIG. 2 is a graph showing a fundamental power command to be generated for an instantaneous harmonic effective power used in the present invention.

【図3】パッシブ併用アクティブフィルタを説明するた
めの主回路構成図である。
FIG. 3 is a main circuit configuration diagram for explaining a passive-use active filter.

【図4】パターン併用アクティブフィルタの従来の制御
回路の一例のブロック線図である。
FIG. 4 is a block diagram of an example of a conventional control circuit of an active filter with a pattern.

【符号の説明】[Explanation of symbols]

1 三相交流系統電源 2 サイリスタレオナード装置等の負荷 3 LCフィルタ 4 交流リアクトル 5 PWM変換器 6 直流コンデンサ 7 (Y−Y)変圧器 8 コンデンサ 9 単相ダイオード整流回路 31,33,37 コンデンサ 32,34,36 リアクトル 35 抵抗 101 電力演算回路 102 ハイパスフィルタ 103 電流指令値演算回路 104 増幅回路 105 三角波発生回路 106 電圧抑制回路 107 実効値演算回路 108 加算回路 DESCRIPTION OF SYMBOLS 1 Three-phase alternating current system power supply 2 Load such as thyristor leonard device 3 LC filter 4 AC reactor 5 PWM converter 6 DC capacitor 7 (Y-Y) transformer 8 Capacitor 9 Single-phase diode rectifier circuit 31, 33, 37 Capacitor 32, 34, 36 Reactor 35 Resistance 101 Power calculation circuit 102 High-pass filter 103 Current command value calculation circuit 104 Amplification circuit 105 Triangular wave generation circuit 106 Voltage suppression circuit 107 Effective value calculation circuit 108 Addition circuit

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電源系統に負荷設備と並列に接続したLC
フィルタとPWM変換器とを直列に接続してなるパッシ
ブ併用アクティブフィルタの制御回路において、 該制御回路は電源電流を検出して高調波電流指令を演算
する手段と、該高調波電流指令をゲイン倍して高調波電
圧指令を出力する手段と、電源電流の高調波成分の実効
値を算出し、該実効値が一定値以上になるとLCフィル
タの基本波を減少させるごとき基本波電圧指令を出力す
る手段と、前記高調波電圧指令と前記基本波電圧指令と
を加算し三角波信号と比較してPWM変換器のスイッチ
ング指令を出力する手段とを具えたことを特徴とするパ
ッシブ併用アクティブフィルタの制御回路。
An LC connected to a power system in parallel with a load facility.
A control circuit for a passive-use active filter comprising a filter and a PWM converter connected in series, wherein the control circuit detects a power supply current and calculates a harmonic current command, and multiplies the harmonic current command by a gain. Means for outputting a harmonic voltage command, and calculating the effective value of the harmonic component of the power supply current, and outputting a fundamental wave voltage command such as reducing the fundamental wave of the LC filter when the effective value exceeds a certain value. And a means for adding the harmonic voltage command and the fundamental voltage command, comparing the result with a triangular signal, and outputting a switching command for a PWM converter. .
JP13682792A 1992-05-28 1992-05-28 Control circuit of active filter with passive Expired - Fee Related JP3318348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13682792A JP3318348B2 (en) 1992-05-28 1992-05-28 Control circuit of active filter with passive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13682792A JP3318348B2 (en) 1992-05-28 1992-05-28 Control circuit of active filter with passive

Publications (2)

Publication Number Publication Date
JPH05336662A JPH05336662A (en) 1993-12-17
JP3318348B2 true JP3318348B2 (en) 2002-08-26

Family

ID=15184434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13682792A Expired - Fee Related JP3318348B2 (en) 1992-05-28 1992-05-28 Control circuit of active filter with passive

Country Status (1)

Country Link
JP (1) JP3318348B2 (en)

Also Published As

Publication number Publication date
JPH05336662A (en) 1993-12-17

Similar Documents

Publication Publication Date Title
JPH0834669B2 (en) Harmonic suppressor
JP3386295B2 (en) Interconnected power converter
US5656924A (en) System and method for providing harmonic currents to a harmonic generating load connected to a power system
JP2527911B2 (en) PWM converter
JP3318348B2 (en) Control circuit of active filter with passive
JP3191055B2 (en) Control circuit of active filter with passive
JPH074051B2 (en) Active filter with combined use of passive
JPH0783599B2 (en) Control method of circulating current type cycloconverter
JP3247252B2 (en) Control device for power converter
JPH0685622B2 (en) Harmonic compensator
Yacoubi et al. Input/output feedback linearization control of a three-phase three-level neutral point clamped boost rectifier
JP2663385B2 (en) Harmonic suppression device with AC filter and pulse width modulation type power converter connected in series
JP2878779B2 (en) Active filter with passive
JPH04319717A (en) Power compensating device
Yacoubi et al. DSP based implementation of an input/output feedback linearization control technique applied to a three-phase three-level neutral point clamped boost rectifier
JPH02241328A (en) Harmonic suppressor using both ac filter and power active filter
JP2877388B2 (en) Harmonic suppression device with voltage compensation function
JP2607337Y2 (en) Output limiter circuit of power conversion circuit
Satya Sr New Hybrid Active Filter Topology Wit Harmonic D
JPS61125628A (en) Method and device for compensating reactive electric power
JP6747756B2 (en) Power conversion system
JPH0649075Y2 (en) Control device for active filter
Acordi et al. Five level ANPC converter applied as a single-phase shunt active power filter with features to limit and optimize the converter power rating
JPH03174611A (en) Compensator for instantaneous reactive power
JP3447847B2 (en) DC power supply with active filter function

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees