JPS6066077A - Controller for refrigerator - Google Patents

Controller for refrigerator

Info

Publication number
JPS6066077A
JPS6066077A JP17453783A JP17453783A JPS6066077A JP S6066077 A JPS6066077 A JP S6066077A JP 17453783 A JP17453783 A JP 17453783A JP 17453783 A JP17453783 A JP 17453783A JP S6066077 A JPS6066077 A JP S6066077A
Authority
JP
Japan
Prior art keywords
temperature
units
hot water
time
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17453783A
Other languages
Japanese (ja)
Inventor
覚 鈴木
隆 神山
哲郎 岸本
坂田 泰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP17453783A priority Critical patent/JPS6066077A/en
Publication of JPS6066077A publication Critical patent/JPS6066077A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は運転能力を変更することができる冷凍機に係り
、特にこの運転能力の制御に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigerator whose operating capacity can be changed, and particularly relates to control of this operating capacity.

仲)従来技術 一般に能力可変型の圧縮機もしくは複数台の圧縮機の組
合せで運転能力が変更できる冷凍機の運転能力を制御す
る場合は、冷凍機の被制御温度を検出するセンサを被制
御位置に備え、このセンサの検出温度と設定温度との差
をめこの差に応じイ冷ン宙朧/7’l :Wl仁台仲1
1に中広イ1、ナー 拐11シl、ギ 外1物調和機の
冷房運転時ではセンサの検出温度と設定温度との差が大
きい時に圧縮機の運転能力を大きくするかもしくは圧縮
機の運転台数を増加させ、センサの検出温度と設定温度
との差が小さい時に圧縮機の運転能力を小さくするかも
しくは圧縮機の運転台数を減少さするものがあった。こ
のように空気調和機の運転能力を制御した場合には、セ
ンサの検出温度に基づいて制御していたため、瞬時の温
度変動が生じるとこの変動で運転能力が変わり、かつ制
御装置内のディファレンシャル幅が広いと負荷に見合っ
た適切な運転能力に戻るには不当に時間を費いやすもの
であった。また、温度制御幅を狭く設定した場合には夫
々の運転能力のステップ幅が小さくなり運転能力の変動
が激しくなるものであった。
(Naka) Conventional technology In general, when controlling the operating capacity of a refrigerator whose operating capacity can be changed using a variable capacity compressor or a combination of multiple compressors, the sensor that detects the controlled temperature of the refrigerator is placed at the controlled position. In preparation for this, adjust the difference between the detected temperature of this sensor and the set temperature according to the difference.
1, Nakahiro 1, ner 11 sill, gi outside 1 During cooling operation of the physical conditioner, if the difference between the detected temperature of the sensor and the set temperature is large, the operating capacity of the compressor should be increased or the compressor's operating capacity should be increased. There have been methods to increase the number of compressors in operation, and to reduce the operating capacity of the compressor or to reduce the number of compressors in operation when the difference between the temperature detected by the sensor and the set temperature is small. When controlling the operating capacity of an air conditioner in this way, it was controlled based on the temperature detected by the sensor, so if an instantaneous temperature fluctuation occurs, the operating capacity changes due to this fluctuation, and the differential width in the control device If the range was too wide, it would take an unreasonable amount of time to return to an appropriate operating capacity commensurate with the load. Further, when the temperature control width is set narrowly, the step width of each operating capacity becomes small, and the fluctuations in the operating capacity become severe.

また、上記と同様なセンサを用い、所定時間毎に温度を
検出し、この温度差から温度勾配を算出し、この値と所
定値との差をめ、この差が大きい時には圧縮機の運転能
力を太き(するかもしくは圧縮機の運転台数を増加させ
、温度勾配と所定値との差が小さい時には圧縮機の運転
能力を小さくするかもしくは圧縮機の運転台数を減少さ
せるものがあった。このように空気調和機の運転能力を
制御した場合は、所定周期毎にしか運転能力の変更がで
きないものであった。従って、この周期が長いと負荷の
変動に対して遅れが生じ、この周期が短いと運転能力の
変更が頻繁に行なわれ機器の故障を導く場合があった。
In addition, using the same sensor as above, the temperature is detected at predetermined time intervals, the temperature gradient is calculated from this temperature difference, the difference between this value and the predetermined value is determined, and when this difference is large, the operating capacity of the compressor is When the difference between the temperature gradient and a predetermined value is small, the operating capacity of the compressor is reduced or the number of compressors operated is reduced. When the operating capacity of an air conditioner is controlled in this way, the operating capacity can only be changed at predetermined intervals. Therefore, if this cycle is long, there will be a delay in response to load fluctuations, and this cycle will be delayed. If the time period is too short, the operating capacity must be changed frequently, which may lead to equipment failure.

(ハ)発明の目的 斯る問題点に織入、本発明は所定の温度変化幅に要する
時間をめ、この時間に基づいて冷凍機の運転能力を変更
させて、負荷の変動予測に対応する最適な運転能力で運
転が行なえる制御装置を提供するものである。
(c) Purpose of the Invention In order to address these problems, the present invention calculates the time required for a predetermined temperature change range and changes the operating capacity of the refrigerator based on this time to respond to predicted load fluctuations. The present invention provides a control device that allows operation to be performed with optimal operating performance.

に)発明の構成 本発明による冷凍機の制御装置は、被制御温度を検出す
るセンサと、このセンサの出力が所定幅変化する時間を
計る計時手段と、この時間に基づいて冷凍機の運転能力
を変更する演算手段とを備え、予測される負荷の変動に
見合った運転能力で冷凍機を運転することができるよう
にしたものである。
B) Structure of the Invention The refrigerator control device according to the present invention includes a sensor that detects the temperature to be controlled, a timer that measures the time for the output of the sensor to change by a predetermined width, and a controller that measures the operating capacity of the refrigerator based on this time. The chiller is equipped with a calculating means for changing the load, so that the refrigerator can be operated with an operating capacity commensurate with predicted load fluctuations.

(ホ)実施例 以下本発明を5台のユニット<AJ乃至(E)からなる
空気調和機に用いた実施例を第1図乃至第5図に基づい
て説明すると、先づ第1図は空気調和機の概略構成図で
あり、囚乃至(Elは夫々冷凍サイクルを備えたユニッ
トであり、夫々ポンプ(1)乃至(5)で送られて来た
温水を冷房運転時には冷却し、暖房運転時には加熱して
送出するものである。尚、(6)乃至aO)は逆止弁、
またaI)はクーリングタワーでありポンプaつを介し
てユニット(4)乃至■)と配管で接続されている。0
3)はユニット(イ)乃至田)の送出温水を複数のファ
ンコイルa蜀へ導く送り配管であり、この配管03)に
は送出温水の温度(被制御温度)を検出する温水センサ
aωが設けられている。またファンコイルα岨ま夫々の
電磁弁(16)を介して送り配管(131に接続されて
いる。αηはファンコイルαaがらの温水をユニット(
5)乃至(E)へ導く戻り配管、a唱ま外気の温度を検
出する外気温センサ、(1’Jは温水センサ(151,
外気温センサ081の出力及び運転設定値に基づいてユ
ニッ)(A)乃至(E)、ポンプ(1)乃至(5)の運
転制御を行なう制御機構であり第2図に示すように構成
されている。すなわち温水セ/す(151、外気温セン
サQal及び冷暖の設定、運転開始及び停止、タイマに
よる運転モード等の運転設定値を定めるキーボード(2
01の入力に基づいて演算及びユニット囚乃至(6)、
ポンプ(1)乃至(5)の制御を行なうマイクロプロセ
ッサ(2υ(演算手段)からなっている。尚、0721
は温水センザ叫、外気温センサQ樽からのアナログ入力
をデジタル入力に変換するアナログ/デジタル(A/D
 )変換器、(ハ)はマイクロプロセラサシυからの信
号で時間を計る計時手段である。
(E) Example Hereinafter, an example in which the present invention is applied to an air conditioner consisting of five units <AJ to (E) will be explained based on FIGS. 1 to 5. First, FIG. This is a schematic configuration diagram of a harmonizer, in which units 1 to 1 are each equipped with a refrigeration cycle, and each unit cools hot water sent by pumps (1) to (5) during cooling operation, and cools it during heating operation. It is heated and sent out. Note that (6) to aO) are check valves,
Further, aI) is a cooling tower, which is connected to the units (4) to (2) via pumps (a) and piping. 0
3) is a feed pipe that guides the hot water sent out from the units (A) to 2) to a plurality of fan coils a, and this pipe 03) is equipped with a hot water sensor aω that detects the temperature (controlled temperature) of the hot water sent out. It is being In addition, each fan coil αa is connected to a feed pipe (131) via a solenoid valve (16). αη is connected to a unit (
5) Return piping leading to (E), an outside temperature sensor that detects the temperature of the outside air, (1'J is a hot water sensor (151,
It is a control mechanism that controls the operation of units (A) to (E) and pumps (1) to (5) based on the output and operation setting value of the outside temperature sensor 081, and is configured as shown in FIG. There is. In other words, the hot water center (151), the keyboard (2
Calculation based on the input of 01 and unit capture to (6),
It consists of a microprocessor (2υ (calculation means)) that controls the pumps (1) to (5).
The analog/digital (A/D) converts analog input from the hot water sensor and external temperature sensor Q barrel into digital input.
) converter, (c) is a timekeeping means that measures time using the signal from the microprocessor cassette υ.

このマイクロプロセッサ(21)の動作は、特に冷房運
転時には先づ運転が開始されると外気温センナ(1al
からの入力に基づいて第3図に示すような演算と判断を
行ない運転開始時のユニット(イ)乃至(ト))の運転
台数を設定するものである。すなわち外気温センサ0.
8+の検出温度がθ。度より大きい時にはニー−、kI
^1xZE/C11y−ムーr−二W+に:ニー4.I
’−’lil力4ノM4mJvンサ0枠の検出温度がθ
。度以下の時にはユニット(イ)乃至田)のいずれかの
4台で運転を開始する。このθ。の値は各ユニットの能
力及び空調負荷の大きさに合わせて定められるものであ
り、例えば各ユニットの能力が大きい時はθ。の値を太
き(設定でき、各ユニットの能力が小さい時はθ。の値
が小さく設定されるものである。このようにユニット4
台で運転が開始された場合マイクロプロセッサ0υ内の
タイマを作動させる。この後、タイマが1時間をカウン
トするとマイクロプロセッサeυは送り配管Q3)に設
けられた温水センサa5で温水温を検出し、この検出温
度が01度より大きい時にはユニッ1−(A)乃至(E
)の5台の運転に切換えた後■の通常運転に至る。温水
センサaωの検出温度が61度以下の時にはそのまま■
の通常運転に至り、またユニット5台で運転を開始した
時にも運転開始の 後はそのままへ通常運転に至る。タイマ時間を及び06
度もθ。度と同様に各ユニットの能力と空調負荷の大き
さに合わせて定められるものであり、空気調和機の総合
能力及び空調負荷の状態に合つた最適なユニットの台数
で運転が開始されるものである。
The operation of this microprocessor (21) is controlled by the outside temperature sensor (1al) when the operation is started, especially during cooling operation.
The number of operating units (a) to (g) at the start of operation is set by performing calculations and judgments as shown in FIG. 3 based on the input from the controller. That is, the outside temperature sensor 0.
The detected temperature of 8+ is θ. Knee, kI when larger than degree
^1xZE/C11y-Mu r-2 W+: Knee 4. I
'-'The detected temperature of lil force 4 no M4 mJv sensor 0 frame is θ
. When the temperature is below 50°C, any four of the units (A) to (D) will start operating. This θ. The value of is determined according to the capacity of each unit and the size of the air conditioning load. For example, when the capacity of each unit is large, θ is determined. When the capacity of each unit is small, the value of θ is set small.In this way, unit 4
When the machine starts operating, a timer in the microprocessor 0υ is activated. After this, when the timer counts 1 hour, the microprocessor eυ detects the hot water temperature with the hot water sensor a5 installed in the feed pipe Q3), and when this detected temperature is higher than 01 degrees, the microprocessor eυ detects the hot water temperature in units 1-(A) to (E).
) After switching to operation of 5 units, normal operation (■) is reached. If the temperature detected by the hot water sensor aω is below 61 degrees, continue as is ■
Normal operation is reached, and even when operation is started with five units, normal operation continues after the start of operation. Timer time and 06
The degree is also θ. Similar to the air conditioning rate, it is determined according to the capacity of each unit and the size of the air conditioning load, and operation is started with the optimal number of units that matches the overall capacity of the air conditioner and the condition of the air conditioning load. be.

このように運転が開始されるとマイクロプロセッサ(2
11は第4図に示すように温水センサ(I5)の検出す
る検出値が所定幅変化する時間を引時手段(ハ)を用い
て計り、この時間に基づいてユニットの運転台数を増減
するものである。すなわち温水センナ(15)の検出温
度(Tlが01度(=10度)以下となるまでは第3図
に基づいて定まったユニットの運転台数で運転を行ない
、温水センサa句の検出温度(Tlが01度以下となる
と、マイクロプロセッサCI!Dは内部の変数T。を1
0″′に設定し、次に計時手段C?3)にON信号を出
力して計時を開始させる。この後マイクロプロセッサc
21)は温水センサQ5)で温度(T)を約2秒周期で
検出し以下の動作を行なうものである。先づ温度(力が
5.5度(保護上の水温の下限設定値)以下か否かを判
断し、温度CI”lが5.5度以下の時にはユニット(
4)乃至田)の運転を全て停止させる。この時いずれか
一台のポンプ例えばポンプ(1)は運転を維持し、冷温
水を送り配管(13)で7アンコイルa4へ送出してい
る。この後温度(T)が7度以上となるとユニット(5
)の運転を開始して通常運転を再開するものである。ま
た温水センサ(15)の検出温度α)が5.5度以上の
場合に′l≦To−T″の条件を満たす時、すなわちマ
イクロプロセッサ021)の内部に設定された変数T。
When operation is started in this way, the microprocessor (2
11, as shown in Fig. 4, measures the time when the detected value detected by the hot water sensor (I5) changes by a predetermined width using a timing means (c), and increases or decreases the number of operating units based on this time. It is. That is, until the detected temperature (Tl) of the hot water sensor (15) becomes 01 degrees (=10 degrees) or less, operation is performed with the number of operating units determined based on FIG. When T becomes less than 01 degrees, microprocessor CI!D sets internal variable T to 1.
0''', and then outputs an ON signal to the timekeeping means C?3) to start timekeeping.After this, the microprocessor C?
21) is a hot water sensor Q5) that detects the temperature (T) at a cycle of approximately 2 seconds and performs the following operations. First, it is determined whether the temperature (power) is below 5.5 degrees (lower limit set value of water temperature for protection), and if the temperature CI"l is below 5.5 degrees, the unit (
4) Stop all operations. At this time, one of the pumps, for example, the pump (1), maintains its operation and sends cold and hot water to the seventh uncoil a4 through the sending pipe (13). After this, when the temperature (T) becomes 7 degrees or higher, the unit (5
) and resume normal operation. Further, when the detected temperature α) of the hot water sensor (15) is 5.5 degrees or higher and the condition 'l≦To-T' is satisfied, that is, the variable T is set inside the microprocessor 021).

より温水センサ(I5)の検出温度α)が約1度以上低
くなった時には、温度(力が下り勾配であると判断し次
の動作を行なう。
When the detected temperature α) of the hot water sensor (I5) becomes lower by about 1 degree or more, it is determined that the temperature (force) is on a downward slope, and the next operation is performed.

先づ変数T、の値に−1″を加算して新しくT。First, add -1'' to the value of variable T to create a new T.

を設定した後に計時手段(ハ)に計時の停止信号を発し
同時・にこの計時時間を読み込んで、この運転状態を維
持した場合に温水センサQ51の検出温度(T)が6度
に達する予測時間(T、)を演算する。この予測時間(
Tア)がTx≦15″ の時にはユニットの運転台数を
2台減らし、”15〈Tx≦30′の時にはユニットの
運転台数を1台減らし、″”rx >30″の時にはユ
ニットの運転台数はそのまま維持させるなど負荷の状態
に合わせてユニットの運転台数の変更を判断するもので
ある。
After setting, issue a timing stop signal to the timing means (c) and read this clocked time at the same time to calculate the predicted time when the detected temperature (T) of hot water sensor Q51 will reach 6 degrees if this operating state is maintained. Compute (T,). This predicted time (
When Ta) is Tx≦15'', the number of units in operation is reduced by two, when Tx≦30', the number of units in operation is reduced by one, and when rx > 30, the number of units in operation is reduced by one. It determines whether to maintain the same status or change the number of operating units depending on the load condition.

また温水センサa!li1の検肝「肥πが5.5度以上
−の場合に°l≦T−To”の条件を満たず時、すなわ
ちマイクロプロセッサ(21)の内部に設定された変数
To より温水センサ(15)の検出温度(T)が約1
度以上低(なった時には、温度σ)が上り勾配であると
判断し次の動作を行なう。先づ変数T。の値に”+1 
”を加算した後に変数T。が10“か否かを判断し、変
数T。の値が10”以上の時には運転の初期の状態にな
るものである。変数T。
Also hot water sensor a! When the liver test of li1 does not satisfy the condition of "°l≦T-To when the hypertrophy π is 5.5 degrees or more," that is, the hot water sensor (15 ) detected temperature (T) is approximately 1
It is determined that the temperature σ is on an upward slope and the next operation is performed. First, variable T. +1 to the value of
After adding ", it is determined whether the variable T. is 10" or not. When the value of T is 10" or more, it is the initial state of operation. Variable T.

の値が10″より小さい場合には前記と同様に検出温度
(T)が6度に達する予測時間(T、)を演算する。こ
の予測時間(TI)がTI≧15″の時にはユニットの
運転台数を1台増加しごTX(15”の時にはユニット
の運転台数を2台増加させるなど負荷の状態に合わせて
ユニットの運転台数の変更を判断するものである。
If the value of is smaller than 10'', calculate the predicted time (T, ) for the detected temperature (T) to reach 6 degrees in the same way as above.If this predicted time (TI) is TI≧15'', the unit will not operate. It determines whether to change the number of units in operation according to the load condition, such as increasing the number of units by one and increasing the number of units in operation by two when the TX is 15".

尚、ユニットの運転台数は最大で5台を越えず、5台以
上の運転信号が出た場合にも5台の運転しか行なわない
ものであり、5台以上の運転を必要とする場合にはユニ
ットの総台数を増設する必要がある。ユニットが全て停
止の状態になった時には、いずれか一台のポンプの動作
が維持されてファンコイルα荀への冷覧水の供給を保つ
ものである。
Furthermore, the maximum number of units in operation does not exceed 5 units, and even if an operation signal for 5 units or more is given, only 5 units will be operated.If it is necessary to operate 5 or more units, It is necessary to increase the total number of units. When all the units are in a stopped state, one of the pumps is maintained in operation to maintain the supply of cooling water to the fan coil α.

また運転ユニットの選択はマイクロプロセッサ(21)
で任意に選出されるものである。
In addition, the selection of the operation unit is performed by a microprocessor (21).
It is arbitrarily selected.

このような動作をする空気調和機を実際に運転した場合
を第5図に基づいて説明すると、例えば外気温がθ。度
以下の時に運転を開始すると、外気温センナα8の検出
する外気温に基づいてマイクロプロセッサ0υが第3図
に示すような判断を行ない、4台のユニットによる運転
が開始される。この時空調負荷が太き(を時間後にも温
水の温度ぼ)が08度より大きいのでユニットの運転台
数が5台に増加される。この後温水温度(T)が低下し
て10度となるとマイクロプロセッサ(21)の信号で
計時手段(2)が時間を計り始める。この後温水温度σ
)がさらに低下して9度となると計時手段(ハ)の計時
を止めてこの時間(t、)をめる。この計時時間(tl
) に基づいてこのままの運転台数を維持した場合に温
水温度C1l’)が6度となる時間(tx+)を演算す
る。この予測時間(t□)が15 < Tx1≦30の
の関係にあるのでユニットの運転台数が4台に変更され
る。この後、上記と同様に計時手段(ハ)で温水温度α
)が9度から8度まで低下する時間(t2)を計り同様
に温水温度(T)が6度となる予測時間(tx2)を演
算し、この予測時間(txz )に基づ(・てユニット
の運転台数が1台減り3台の運転に変更される。
A case in which an air conditioner that operates in this manner is actually operated will be explained based on FIG. 5. For example, when the outside temperature is θ. When operation is started when the temperature is below 50°C, the microprocessor 0υ makes a determination as shown in FIG. 3 based on the outside temperature detected by the outside temperature sensor α8, and the four units start operating. At this time, since the air conditioning load was heavy (the temperature of the hot water remained even after a certain period of time) was greater than 08 degrees, the number of operating units was increased to five. Thereafter, when the hot water temperature (T) decreases to 10 degrees, the timer (2) starts measuring time based on a signal from the microprocessor (21). After this, the hot water temperature σ
) further decreases to 9 degrees, the timer (c) stops measuring time and counts this time (t, ). This clock time (tl
), the time (tx+) during which the hot water temperature C1l') reaches 6 degrees is calculated if the number of operating units is maintained as is. Since this predicted time (t□) is in the relationship 15<Tx1≦30, the number of operating units is changed to four. After this, in the same way as above, the timer (c) measures the hot water temperature α.
) is measured from 9 degrees to 8 degrees (t2), similarly calculates the predicted time (tx2) for the hot water temperature (T) to drop to 6 degrees, and based on this predicted time (txz), the unit The number of vehicles in operation will be reduced by one to three.

さらに温水温度(′r)が8度から7度に低下するまで
の時間(t、)を計時し、同様に予測時間(txs)を
演算する。この予測時間(tx、)に基づいてユニツー
トの運転台数が1台減り2台の運転に変更される。
Furthermore, the time (t,) until the hot water temperature ('r) decreases from 8 degrees to 7 degrees is measured, and the predicted time (txs) is calculated in the same way. Based on this predicted time (tx,), the number of UNITOOTs in operation is reduced by one and changed to two.

このようにユニット2台の運転で空調負荷とのノ(ラン
スがほぼとれ温水温度(′r)が7度から8度に上昇す
る時間(t4)に基づいて上記と同様に負の予測時間(
1x4)を検出してユニットの運転台数を1台増加させ
ユニット3台の運転に変更されるものである。
In this way, based on the time (t4) for the air conditioning load and the air conditioning load to reach almost the same level when two units are operated and the hot water temperature ('r) rises from 7 degrees to 8 degrees, the negative predicted time (
1x4) is detected, the number of operating units is increased by one, and the operation is changed to three units.

以下、空調負荷に大きな変動がない限りユニット3台も
しくはユニット2台の運転が行なわれるものであり、空
調負荷に大きな変動があった場合は、この変動に合わせ
てユニットの運転台数が増加するものである。
Below, unless there is a large change in the air conditioning load, three units or two units will be operated; if there is a large change in the air conditioning load, the number of units in operation will increase to match this change. It is.

尚、上記実施例では冷房運転の場合のみを説明したが暖
房運転の場合にも同様な制御が行なえるものである。す
なわち暖房運転の場合には温水温度Cr)が上り勾配の
時はユニットの運転台数を減らし、温水温度σ)が下り
勾配の時はユニットの運転台数を増加させるように制御
すれば良く上記実施例で用いた定数及び設定値は空気調
和機の総合能力、各ユニットの能力、及び空調負荷の設
計上の大ぎさ等の要素に基づいて設定されるものである
In the above embodiment, only the case of cooling operation was explained, but similar control can be performed also in case of heating operation. In other words, in the case of heating operation, the number of operating units may be reduced when the hot water temperature Cr) is on an upward slope, and the number of operating units may be increased when the hot water temperature σ) is on a downward slope. The constants and set values used in are set based on factors such as the overall capacity of the air conditioner, the capacity of each unit, and the design size of the air conditioning load.

さらに上記実施例で用いた計時手段はマイクロプロセッ
サ(演算手段)の内部にソフトウェアで構成しても良い
ものである。
Further, the time measuring means used in the above embodiments may be configured by software inside a microprocessor (arithmetic means).

また、上記実施例のように空気調和機の能力制御にの入
眠るものではなく冷凍機一般の能力制御に用いることが
できるものである。
Further, unlike the above embodiments, the present invention is not limited to controlling the capacity of air conditioners, but can be used to control the capacity of refrigerators in general.

(へ)発明の効果 本発明の冷凍機の制御装置は被制御温度を検出するセン
サと、このセンナの出力が所定幅変化する時間を計る計
時手段と、この時間に基づいて冷凍機の運転能力を変更
する演算手段とを備えたので、センナを介して負荷の変
動を検出し、この所定幅の変化時間に基づいて負荷の変
動を予測することができ、この負荷の変動に対して運転
能力の変更を行ない冷凍機の制御する負荷の温度変化幅
を小さくすることができる。
(f) Effects of the Invention The refrigerator control device of the present invention includes a sensor that detects the temperature to be controlled, a timer that measures the time for the output of this sensor to change by a predetermined width, and a refrigerator operating capacity based on this time. Since it is equipped with a calculation means for changing the load fluctuation, it is possible to detect the load fluctuation through the sensor and predict the load fluctuation based on the change time of this predetermined width. By making the following changes, it is possible to reduce the range of temperature changes in the load controlled by the refrigerator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による空気調和機を示す概略構
成図、第2図は第1図に示す制御機構の説明図、第3図
は第2図に示すマイクロプロセッサが運転開始時に行な
う動作のフローチャートを示す説明図、第4図は第2図
に示すマイクロプロセッサが通常運転時に行なう動作の
フローチャートを示す説明図、第5図は温水温度の変化
を示す説明図である。 α9・・・温水センサ、0υ・・・マイクロプロセッサ
、e3)・・・計時手段。 第2図 第3図 第4図
FIG. 1 is a schematic configuration diagram showing an air conditioner according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the control mechanism shown in FIG. 1, and FIG. 3 is a diagram showing the control mechanism shown in FIG. 2 when the microprocessor shown in FIG. FIG. 4 is an explanatory diagram showing a flow chart of operations performed by the microprocessor shown in FIG. 2 during normal operation. FIG. 5 is an explanatory diagram showing changes in hot water temperature. α9... Hot water sensor, 0υ... Microprocessor, e3)... Timing means. Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1) 被制御温度を検出するセン1点、このセンサの
出力が所定幅変化する時間を計る計時手段と、この時間
に基づいて冷凍機の運転能力を変更する演算手段とを備
えたことを特徴とする冷凍機の制御装置。
(1) It is equipped with one sensor that detects the temperature to be controlled, a timer that measures the time that the output of this sensor changes by a predetermined width, and a calculation means that changes the operating capacity of the refrigerator based on this time. Features of the refrigerator control device.
JP17453783A 1983-09-20 1983-09-20 Controller for refrigerator Pending JPS6066077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17453783A JPS6066077A (en) 1983-09-20 1983-09-20 Controller for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17453783A JPS6066077A (en) 1983-09-20 1983-09-20 Controller for refrigerator

Publications (1)

Publication Number Publication Date
JPS6066077A true JPS6066077A (en) 1985-04-16

Family

ID=15980265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17453783A Pending JPS6066077A (en) 1983-09-20 1983-09-20 Controller for refrigerator

Country Status (1)

Country Link
JP (1) JPS6066077A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512384A (en) * 1978-07-12 1980-01-28 Sharp Corp Operational capacity conrol method of compressor in air conditioner
JPS5620942A (en) * 1979-07-27 1981-02-27 Hitachi Ltd Control of air conditioner
JPS5637441A (en) * 1979-09-03 1981-04-11 Toshiba Corp Control device for air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512384A (en) * 1978-07-12 1980-01-28 Sharp Corp Operational capacity conrol method of compressor in air conditioner
JPS5620942A (en) * 1979-07-27 1981-02-27 Hitachi Ltd Control of air conditioner
JPS5637441A (en) * 1979-09-03 1981-04-11 Toshiba Corp Control device for air conditioner

Similar Documents

Publication Publication Date Title
US4209994A (en) Heat pump system defrost control
CN109631376B (en) Screw type water chilling unit and control method and system thereof
CN110736203B (en) Control method and control device for defrosting of air conditioner and air conditioner
US20140041848A1 (en) Temperature control system, air conditioning system and control method
EP3575712B1 (en) Cooling system
KR960012739B1 (en) Automatic chiller stopping sequence
JP2006038379A (en) Cold and hot water control method of cold and hot heat source machine
CN110332649A (en) A kind of heating antioverloading control method, device and the air conditioner of air conditioner
JP5227247B2 (en) Heat source system operating method and heat source system
CN111102691B (en) Module combined air conditioning system
CN210425631U (en) Machine set capable of freely regulating and controlling cold and hot capacity
JPH046854B2 (en)
JP2001241735A (en) Air conditioning system and its controlling method
JPH08261544A (en) Control method for number of operated heat source machines
JP2577668B2 (en) Water temperature control device for heat source water for air conditioning
JP2957781B2 (en) Control method of indoor electric valve in air conditioner
JP2947255B1 (en) Control method of refrigerant heater outlet temperature
JPS6066077A (en) Controller for refrigerator
JP3320631B2 (en) Cooling and heating equipment
JP2504997Y2 (en) Air conditioner
JPH0534578B2 (en)
JPH038453B2 (en)
US11598549B2 (en) Thermal cycling system and control method of the thermal cycling system
CN110736217B (en) Control method and control device for defrosting of air conditioner and air conditioner
US10578371B1 (en) Thermal bridge for chiller plants