JPS6065250A - Electronically controlled fuel injector for internal- combustion engine - Google Patents
Electronically controlled fuel injector for internal- combustion engineInfo
- Publication number
- JPS6065250A JPS6065250A JP58173215A JP17321583A JPS6065250A JP S6065250 A JPS6065250 A JP S6065250A JP 58173215 A JP58173215 A JP 58173215A JP 17321583 A JP17321583 A JP 17321583A JP S6065250 A JPS6065250 A JP S6065250A
- Authority
- JP
- Japan
- Prior art keywords
- injection
- injection amount
- fuel injection
- basic
- calculation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
- F02D41/34—Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
- F02D41/345—Controlling injection timing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】 く技術分野〉 本発明は内燃機関の電子制御燃料噴射装置に関する。[Detailed description of the invention] Technical fields> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine.
〈背景技術〉
内燃機関の電子制御燃料噴射装置において、噴射量Ti
は次式に従って演算される。尚、Tiば燃料Wit 射
弾への噴射パルスのパルス中であり、噴射時間でもある
。<Background technology> In an electronically controlled fuel injection device for an internal combustion engine, the injection amount Ti
is calculated according to the following equation. Note that Ti is the duration of the injection pulse to the fuel bullet, and is also the injection time.
Ti =TpXCOEF+Ts : Tp=KXQ/N
ここで、’rpは基本噴射量であり、吸入空気流量Qと
回転数Nとからめられる(Kは定数)。Ti=TpXCOEF+Ts: Tp=KXQ/N
Here, 'rp is the basic injection amount, which is intertwined with the intake air flow rate Q and the rotational speed N (K is a constant).
C0EFは各種補正係数である。Tsは電圧補正分であ
る。C0EF is various correction coefficients. Ts is a voltage correction amount.
ところで従来、噴射量Tiの演算等は第1図に示すタイ
ミングで行われていた。By the way, in the past, calculations of the injection amount Ti, etc. were performed at the timing shown in FIG.
すなわち、機関回転に同期して発生される基準入力信号
、例えば点火信号(4気筒の場合、%回転毎に発生)に
同期して、その直前の点火信号間の周期(時間)Tig
nを測定することにより回転数をめ、同時に点火信号間
の吸入空気流量の積分値を算出して吸入空気流量。をめ
る。そして、これらの値をもとにして、基本噴射量Tp
を演算し、次いで噴射量Tiを演算する。一方、燃料噴
射は、マルチポイントインジェクションシステムの場合
、1回転毎に点火信号に同期して行うので、燃料噴射弁
に対しては、噴射量Tiの演算後の次の点火信号に同期
して噴射量Tiに相応するパルス中の噴射パルスを出力
する。That is, in synchronization with a reference input signal generated in synchronization with engine rotation, for example, an ignition signal (generated every % rotation in the case of a 4-cylinder engine), the cycle (time) between the immediately preceding ignition signals Tig
The rotational speed is determined by measuring n, and at the same time, the integral value of the intake air flow rate between the ignition signals is calculated to determine the intake air flow rate. I put it on. Then, based on these values, the basic injection amount Tp
is calculated, and then the injection amount Ti is calculated. On the other hand, in the case of a multi-point injection system, fuel injection is performed in synchronization with the ignition signal every revolution, so the fuel injection valve injects fuel in synchronization with the next ignition signal after calculating the injection amount Ti. An injection pulse in a pulse corresponding to the quantity Ti is output.
しかしながら、この方式では、Tiを演算する時間のた
め、燃料噴射の時点からみると、回転数及び吸入空気流
量のデータは2回転前のデータを用いており、古いデー
タで演算されたTiを出力していた。このため、過渡状
態では応答性に問題があった。However, in this method, due to the time it takes to calculate Ti, from the point of fuel injection, data on the rotational speed and intake air flow rate are from two revolutions ago, and Ti calculated using old data is output. Was. For this reason, there was a problem with responsiveness in a transient state.
そこで特開昭57−13239号公報に開示されている
ように、基準入力信号に同期して噴射量Tiの演算を開
始する一方、同時に燃料噴射弁への噴射パルスの発信を
開始して燃料噴射を開始し、この噴射中に噴射時間を計
測していて、演算終了後に演算結果と計測している噴射
時間とが一致したところで、噴射パルスの発信を停止し
て燃料噴射を終了させるようにすることが考えられた。Therefore, as disclosed in Japanese Unexamined Patent Publication No. 57-13239, calculation of the injection amount Ti is started in synchronization with the reference input signal, and at the same time, transmission of an injection pulse to the fuel injection valve is started to inject fuel. The injection time is measured during this injection, and when the calculation result matches the measured injection time after the calculation is completed, the injection pulse is stopped and the fuel injection is ended. I thought about that.
ところが、この方式では、Tiの噴射を開始してから終
了するまでの間にTiの全ての演算を終了することが条
件であり、演算に最低必要な時間以上のパルス中の噴射
パルスでなければ、制御不能となってしまうので、実際
上は実現が困難であった。However, in this method, the condition is that all Ti calculations be completed between the start and the end of Ti injection, and the injection pulse must be within a pulse longer than the minimum time required for the calculation. , it would become uncontrollable, so it was difficult to realize in practice.
〈発明の目的〉
本発明は叙上の実状に鑑み、燃料噴射をできるかぎり最
新のデータによる演算結果に基づいて行うようにして過
渡応答性の向上を図ると共に、比較的小さいパルス中の
噴射パルスの出力も可能にして制御範囲の拡大を図るこ
とのできる電子制御燃料噴射装置を提供することを目的
とする。<Object of the Invention> In view of the above-mentioned actual situation, the present invention aims to improve transient response by performing fuel injection based on calculation results using the latest data as much as possible, and to improve injection pulses among relatively small pulses. An object of the present invention is to provide an electronically controlled fuel injection device that can expand the control range by making it possible to output as much as possible.
〈発明の構成〉
このため、本発明は、噴射量の演算を基本噴射量の計算
とその後の補正計算とに分けて行い、補正計算の際に燃
料噴射を開始させるようにしたものである。<Configuration of the Invention> Therefore, in the present invention, calculation of the injection amount is performed separately into calculation of the basic injection amount and subsequent correction calculation, and fuel injection is started during the correction calculation.
すなわち、第2図に示すように、機関回転に同期して発
生される基準入力信号により起動されてその直前の基準
入力信号間の周期と吸入空気流量とから基本噴射量を計
算する基本噴射量計算手段と、前記基準入力信号に対し
所定の遅れをもったタイミングで起動されて計算された
基本噴射量を補正することにより噴射量を計算する噴射
量計算手段と、前記タイミングで燃料噴射弁への噴射パ
ルスをオン状態にて燃料噴射を開始させる一方、燃料噴
射の開始と同時に計時を開始し、噴射量の計算の終了と
同時にセントされる噴射時間に達したところで燃料噴射
弁への噴射パルスをオフ状態にして燃料噴射を終了させ
る噴射パルス制御手段とを設けて構成したものである。That is, as shown in Fig. 2, the basic injection amount is activated by a reference input signal generated in synchronization with the engine rotation, and the basic injection amount is calculated from the period between the immediately preceding reference input signals and the intake air flow rate. a calculation means; an injection amount calculation means that is activated at a timing with a predetermined delay with respect to the reference input signal and calculates the injection amount by correcting the calculated basic injection amount; Fuel injection is started with the injection pulse in the on state, while timing is started at the same time as the start of fuel injection, and when the injection time reaches the injection time, which is calculated at the same time as the calculation of the injection amount is completed, the injection pulse is sent to the fuel injection valve. and an injection pulse control means for turning off the fuel injection valve and terminating the fuel injection.
〈実施例〉 第3図〜第5図は第1の実施例を示している。<Example> 3 to 5 show a first embodiment.
先ず第3図によってハードウェア構成を説明する。First, the hardware configuration will be explained with reference to FIG.
1はCPU、2はP−ROM、3はA/D変換器、4は
アドレスデコーダである。1 is a CPU, 2 is a P-ROM, 3 is an A/D converter, and 4 is an address decoder.
噴射量の制御のためのアナログ入力信号としては、熱線
式エアフロメータ5からの吸入空気流量信号、水温セン
サ6からの水温信号、o2センサ7からの排気中酸素濃
度信号、バッテリ8がらのバッテリ電圧等があり、これ
らはアナログ入力インタフェース9を介してA/D変換
器3に入力される。Analog input signals for controlling the injection amount include an intake air flow rate signal from the hot wire airflow meter 5, a water temperature signal from the water temperature sensor 6, an exhaust oxygen concentration signal from the O2 sensor 7, and a battery voltage from the battery 8. etc., and these are input to the A/D converter 3 via the analog input interface 9.
デジタル入力信号としては、アイドルスイッチ10、ス
ター1−スイッチ11等からの0N−OFF信号があり
、これらはデジタル入力インタフェース12を介してC
PUIに入力される。Digital input signals include ON-OFF signals from the idle switch 10, star 1-switch 11, etc., and these are input to the C through the digital input interface 12.
Input to PUI.
その他、点火コイル13がらの点火信号が波形整形回路
14を介してCPUIに入力される。In addition, the ignition signal from the ignition coil 13 is input to the CPUI via the waveform shaping circuit 14.
CPUIからの出力信号(燃料噴射弁への噴射パルス)
は電流制御回路15を介して燃料噴射弁16に送られる
。Output signal from CPUI (injection pulse to fuel injection valve)
is sent to the fuel injection valve 16 via the current control circuit 15.
次に第4図のタイミングチャートと第5図のフローチャ
ートとによって説明する。Next, explanation will be given with reference to the timing chart of FIG. 4 and the flow chart of FIG. 5.
点火信号に同期して基本噴射量’rpの演算を開始する
。これば第5図fAlに示す点火信号による割込みルー
チンによって行われる。Calculation of the basic injection amount 'rp is started in synchronization with the ignition signal. This is performed by an interrupt routine using an ignition signal as shown in FIG. 5fAl.
すなわち、Slにおいて、所定時間(例えば1m s
)後の割込みルーチンを予約する。S2において、直前
の点火信号間の周期Tignを測定する。That is, in Sl, a predetermined time (for example, 1 m s
) reserves the later interrupt routine. In S2, the period Tign between the previous ignition signals is measured.
S3において、点火信号間の吸入空気流量Qを算出する
。尚、吸入空気流量Qの算出に際しては、点火信号間に
おいて所定時間(例えば1.28m S ’)毎にエア
フロメータの出力をA/D変換してその値を加算し、点
火信号が入力された段階で加算値ΣQをデータの個数n
で除することにより吸入空気流量の平均値をめればよい
。ハードで行うことも可能である。そして、S4におい
て、周期Tignと吸入空気流量Qとから次式に従って
基本噴射量Tpを演算する。In S3, the intake air flow rate Q between the ignition signals is calculated. In addition, when calculating the intake air flow rate Q, the output of the air flow meter was A/D converted every predetermined time (for example, 1.28 m S') between the ignition signals, the values were added, and the ignition signal was input. In each stage, the addition value ΣQ is set to the number of data n
The average value of the intake air flow rate can be calculated by dividing by . It is also possible to do it with hardware. Then, in S4, the basic injection amount Tp is calculated from the cycle Tign and the intake air flow rate Q according to the following equation.
Tp=KXQXTign
尚、空燃比のフィードバンク制御を行う場合は次式に従
って基本噴射量’rpを演算する。Tp=KXQXTign Note that when performing feedbank control of the air-fuel ratio, the basic injection amount 'rp is calculated according to the following equation.
Tp−KXQXTign xα
αは空燃比フィードバック補正係数(基準値1)で、0
2センサによって検出される実際の空燃比と理論空燃比
とを比較して比例積分制御により定める。Tp-KXQXTign xα α is the air-fuel ratio feedback correction coefficient (reference value 1), 0
The actual air-fuel ratio detected by the two sensors is compared with the stoichiometric air-fuel ratio and determined by proportional-integral control.
そして、点火信号から1ms後に噴射量Tiの演算を開
始すると共に燃料噴射を開始する。これは第5図fBl
に示す割込みルーチンによって行われる。Then, 1 ms after the ignition signal, calculation of the injection amount Ti is started and fuel injection is started. This is Figure 5 fBl
This is done by the interrupt routine shown in .
すなわち、Sllにおいて、燃料噴射弁への噴射パルス
の発信を開始する。312において、クロックパルスの
カウントを開始する。313において、すでに計算され
ている基本噴射量Tpを次式の如く補正することにより
噴射量Tiを演算する。That is, at Sll, transmission of an injection pulse to the fuel injection valve is started. At 312, counting of clock pulses begins. In step 313, the injection amount Ti is calculated by correcting the already calculated basic injection amount Tp as shown in the following equation.
Ti=TpXCOEF+Ts 。Ti=TpXCOEF+Ts.
計算終了後は、S14でのカウント値Cの読込みと、3
15でのカウント値Cと計算されたTiとの比較とを繰
返し、両者が一致したところで、S16へ進んで、燃料
噴射弁への噴射パルスの発信を停止する。After the calculation is completed, the count value C is read in S14, and 3
The comparison between the count value C and the calculated Ti in Step 15 is repeated, and when the two match, the process proceeds to S16 and the transmission of the injection pulse to the fuel injection valve is stopped.
第6図〜第8図は第2の実施例を示している。6 to 8 show a second embodiment.
尚、この実施例は同一ユニットで点火制御を行っている
場合の例であり、かつシングルポイントインジェクショ
ンシステムの例である。Note that this embodiment is an example in which ignition control is performed by the same unit, and is an example of a single point injection system.
第6図のハードウェア構成で異なるところは、基準入力
信号として、クランク角センサ17からの180°毎の
リファレンス信号と1°毎のポジション信号とが波形整
形回路18を介して入力されることと、点火制御のため
、CPUIから点火コイルドライバ19を介して点火コ
イルのパワートランジスタ20に出力信号が発せられる
ことである。The difference in the hardware configuration shown in FIG. 6 is that reference signals every 180 degrees and position signals every 1 degree from the crank angle sensor 17 are input as standard input signals via the waveform shaping circuit 18. For ignition control, an output signal is issued from the CPU via the ignition coil driver 19 to the power transistor 20 of the ignition coil.
次に第7図のタイミングチャートと第8図のフローチャ
ートとによって説明する。Next, explanation will be given with reference to the timing chart of FIG. 7 and the flow chart of FIG. 8.
180°毎に上死点前80”において発せられるクラン
ク角センサからのリファレンス信号に同期して基本噴射
量’rpの演算を開始する。これは第8図fAlに示す
リファレンス信号による割込みルーチンによって行われ
る。Calculation of the basic injection amount 'rp is started in synchronization with the reference signal from the crank angle sensor that is generated every 180 degrees at 80'' before top dead center.This is performed by the interrupt routine using the reference signal shown in Fig. 8fAl. be exposed.
すなわち、S21において、直前のリファレンス信号間
の周期Trefを測定する。S22において、リファレ
ンス信号間の吸入空気流量Qを算出する。That is, in S21, the period Tref between the immediately preceding reference signals is measured. In S22, the intake air flow rate Q between the reference signals is calculated.
尚、吸入空気流量Qの算出に際しては、リファレンス信
号間において所定時間(例えば940μs)毎にエアフ
ロメータの出力をA/D変換してその値を加算し、リフ
ァレンス信号が入力された段階で加算値ΣQをデータの
個数nで除することにより吸入空気流量の平均値をめる
。そして、S23において、周期Trefと吸入空気流
量Qとから次式に従って基本噴射量’rpを演算する。In addition, when calculating the intake air flow rate Q, the output of the air flow meter is A/D converted every predetermined time (for example, 940 μs) between the reference signals, and the resulting values are added, and when the reference signal is input, the added value is The average value of the intake air flow rate is calculated by dividing ΣQ by the number of data items n. Then, in S23, the basic injection amount 'rp is calculated from the period Tref and the intake air flow rate Q according to the following equation.
Tp=KxQXTref
尚、空燃比フィードバック制御を行う場合は次式に従っ
て基本噴射量’rpを演算する。Tp=KxQXTref When performing air-fuel ratio feedback control, the basic injection amount 'rp is calculated according to the following equation.
Tp=KxQXTref Xα
一方、点火制御については、点火進角ADVが決定され
ると、カウンタに(80°−ADV)がセントされ、リ
ファレンス信号が入力された後、クランク角センサから
のポジション信号が入力される毎にカウンタ値が1つず
つ減算され、カウンタ値がOとなったところで、点火コ
イルドライバを介して点火コイルのパワートランジスタ
に点火パルスが出力される。Tp=KxQXTref The counter value is decremented by one each time the counter value reaches O, and when the counter value reaches O, an ignition pulse is output to the power transistor of the ignition coil via the ignition coil driver.
ここで、点火パルスに同期して噴射量Tiの演算を開始
すると共に燃料噴射を開始する。これは第8図(B)に
示す割込みルーチンによって行われる。Here, calculation of the injection amount Ti is started in synchronization with the ignition pulse, and fuel injection is also started. This is done by the interrupt routine shown in FIG. 8(B).
すなわち、S31において、燃料噴射弁への噴射パルス
の発信を開始する。S32において、クロックパルスの
カウントを開始する。S33において、すでに計算され
ている基本噴射量Tpを次式の如く補正することにより
噴射量Tiを演算する。That is, in S31, transmission of an injection pulse to the fuel injection valve is started. In S32, counting of clock pulses is started. In S33, the injection amount Ti is calculated by correcting the already calculated basic injection amount Tp as shown in the following equation.
T i = T p X COE F + T s計算
終了後は、S34でのカウント値Cの読込みと、S35
でのカウント値Cと計算されたTiとの比較とを繰返し
、両者が一致したところで、S36へ進んで、燃料噴射
弁への噴射パルスの発信を停止する。T i = T p
The comparison between the count value C and the calculated Ti is repeated, and when the two match, the process proceeds to S36 and the transmission of the injection pulse to the fuel injection valve is stopped.
〈発明の効果〉
以上説明したように本発明によれば、常に最新の回転数
と吸入空気量のデータで演算を行って噴射量を制御でき
、しかもデータのサンプリングタイミングが一致してい
るため、過渡応答に優れたシステムを構成でき、また演
算を2回に分けて行うので、小さなパルス中の噴射パル
スの出力も可能になる。<Effects of the Invention> As explained above, according to the present invention, the injection amount can be controlled by always performing calculations using the latest rotational speed and intake air amount data, and the sampling timing of the data coincides. It is possible to configure a system with excellent transient response, and since the calculation is performed in two steps, it is also possible to output injection pulses in small pulses.
第1図は従来例を示すタイミングチャート、第2図は本
発明の構成を示すブロック図、第3図は第1の実施例の
ハードウェア構成図、第4図は同上のタイミングチャー
ト、第5図fAl、f口)は同上のフローチャート、第
6図は第2の実施例のハードウェア構成図、第7図は同
上のタイミングチャート、第8図(A)、 (Blは同
上のフローチャートである。
1・・・CPU 5・・・エアフローメータ 13・・
・点火コイル 16・・・燃料噴射弁 ]7・・・クラ
ンク角センサ 19・・・点火コイルドライバ特許出願
人 日本電子機器株式会社
代理人 弁理士 笹 島 冨二雄
第5図(B)FIG. 1 is a timing chart showing a conventional example, FIG. 2 is a block diagram showing the configuration of the present invention, FIG. 3 is a hardware configuration diagram of the first embodiment, FIG. 4 is a timing chart of the same as above, and FIG. FIG. 1...CPU 5...Air flow meter 13...
・Ignition coil 16... Fuel injection valve] 7... Crank angle sensor 19... Ignition coil driver Patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio Sasashima Figure 5 (B)
Claims (1)
されてその直前の基準入力信号間の周期と吸入空気流量
とから基本噴射量を計算する基本噴射量計算手段と、前
記基準入力信号に対し所定の遅れをもったタイミングで
起動されて計算された基本噴射量を補正することにより
噴射量を計算する噴射量計算手段と、前記タイミングで
燃料噴射弁への噴射パルスをオン状態にて燃料噴射を開
始させる一方、燃料噴射の開始と同時に計時を開始し、
噴射量の計算の終了と同時にセットされる噴射時間に達
したところで燃料噴射弁への噴射パルスをオフ状態にし
て燃料噴射を終了させる噴射パルス制御手段とを備えて
なる内燃機関の電子制御燃料噴射装置。a basic injection amount calculating means that is activated by a reference input signal generated in synchronization with engine rotation and calculates a basic injection amount from the period between the immediately preceding reference input signals and the intake air flow rate; an injection amount calculation means that is activated at a timing with a predetermined delay and calculates the injection amount by correcting the calculated basic injection amount; and an injection amount calculation means that is activated at a timing with a predetermined delay and calculates the injection amount by correcting the calculated basic injection amount; starts, and at the same time starts timing at the same time as the start of fuel injection,
electronically controlled fuel injection for an internal combustion engine, comprising an injection pulse control means that turns off an injection pulse to a fuel injection valve to end fuel injection when an injection time that is set at the same time as the calculation of the injection amount is completed; Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58173215A JPS6065250A (en) | 1983-09-21 | 1983-09-21 | Electronically controlled fuel injector for internal- combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58173215A JPS6065250A (en) | 1983-09-21 | 1983-09-21 | Electronically controlled fuel injector for internal- combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6065250A true JPS6065250A (en) | 1985-04-15 |
JPS6340932B2 JPS6340932B2 (en) | 1988-08-15 |
Family
ID=15956256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58173215A Granted JPS6065250A (en) | 1983-09-21 | 1983-09-21 | Electronically controlled fuel injector for internal- combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6065250A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361755A (en) * | 1986-09-03 | 1988-03-17 | Hitachi Ltd | Rotation synchronizing type control system for engine |
-
1983
- 1983-09-21 JP JP58173215A patent/JPS6065250A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361755A (en) * | 1986-09-03 | 1988-03-17 | Hitachi Ltd | Rotation synchronizing type control system for engine |
Also Published As
Publication number | Publication date |
---|---|
JPS6340932B2 (en) | 1988-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2577210B2 (en) | Electronically controlled fuel injection device for internal combustion engine | |
JPH04214947A (en) | Torque fluctuation control device for internal combustion engine | |
JPH04214946A (en) | Torque fluctuation control device for internal combustion engine | |
JPH0575902B2 (en) | ||
JP2001050082A (en) | Air-fuel ratio control system | |
JPS6065250A (en) | Electronically controlled fuel injector for internal- combustion engine | |
JP3203440B2 (en) | Air-fuel ratio feedback control device for internal combustion engine | |
JP2694729B2 (en) | Air-fuel ratio feedback control method for an internal combustion engine | |
JP2531155B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2547380B2 (en) | Air-fuel ratio feedback control method for internal combustion engine | |
JPS61155641A (en) | Fuel injection amount control device | |
JPH06137242A (en) | Air-fuel ratio control device of engine | |
JPH029173B2 (en) | ||
JPS62253936A (en) | Electronically controlled fuel injection equipment for internal combustion engine | |
JPS61106935A (en) | Electronic control fuel injection device of internal-combustion engine | |
JPS5968530A (en) | Control method of internal-combustion engine | |
JPH09264169A (en) | Cylinder direct injection type engine | |
JPS6067748A (en) | Battery voltage detection controller | |
JPS5999042A (en) | Method and apparatus for supplying fuel to electronically controlled engine | |
JPS59200034A (en) | Method of controlling fuel injection in internal- combustion engine | |
JPS6053645A (en) | Air-fuel ratio control device of internal-combustion engine | |
JPS6090945A (en) | Fuel injection apparatus for internal-combustion engine | |
JPS62203957A (en) | Electronically controlled fuel injection device for internal combustion engine | |
JPH01280654A (en) | Electronically-controlled fuel injection device for internal combustion engine | |
JPS59206626A (en) | Method of electronically controlled fuel injection in internal-combustion engine |