JPS5999042A - Method and apparatus for supplying fuel to electronically controlled engine - Google Patents

Method and apparatus for supplying fuel to electronically controlled engine

Info

Publication number
JPS5999042A
JPS5999042A JP20773582A JP20773582A JPS5999042A JP S5999042 A JPS5999042 A JP S5999042A JP 20773582 A JP20773582 A JP 20773582A JP 20773582 A JP20773582 A JP 20773582A JP S5999042 A JPS5999042 A JP S5999042A
Authority
JP
Japan
Prior art keywords
acceleration
fuel
acceleration increase
engine
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20773582A
Other languages
Japanese (ja)
Inventor
Fumiaki Ooya
大矢 文昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20773582A priority Critical patent/JPS5999042A/en
Publication of JPS5999042A publication Critical patent/JPS5999042A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To control acceleration of an engine appropriately at the time when the engine temperature is low, by effecting first increase of fuel for acceleration at the time when a throttle valve is opened in case that the engine temperature is lower than a prescribed value, and effecting second increase of fuel for acceleration calculated from the flow rate of intake air and the engine speed after passing of a prescribed time. CONSTITUTION:In operation of an engine, whether an idle switch 29 is ON or OFF is judged at first by an electronic control unit 31. When the switch 29 is turned from ON to OFF, that is, it is judged that an engine is in acceleration, judgement is then made on whether the temperature TW of cooling water detected by a water temperature sensor 22 is lower than 30 deg.C or not. In case of YES, an initial value A is substituted into a first fuel increasing rate F1 for acceleration and a fuel injection valve 7 is controlled on the basis of the value obtained by the above substitution. After passing of a prescribed time, the injection valve 7 is controlled on the basis of a second fuel increasing rate F2 for acceleration calculated from the outputs of an air-flow meter 2 and a crank angle sensor 26 in consideration of the engine load. After the engine is accelerated, the second fuel increasing rate F2 is decreased gradually until it is reduced to zero.

Description

【発明の詳細な説明】 本発明は、電子制御機関の燃料供給方法および装置に係
り、特に機関低温時の加速時の燃料供給量を制御する燃
料供給方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel supply method and apparatus for an electronically controlled engine, and more particularly to a fuel supply method and apparatus for controlling the amount of fuel supplied during acceleration when the engine is at low temperature.

機関低温時の燃料の要求加速増量は、加速開始直後では
大きく、加速開始から所定時間経過以降は小さい。従来
の燃料供給方法および装置では加速開始時に加速増量を
所定値に設定し、この加速増量を時間経過とともにほぼ
線形的に減少する形式である。したがって制御結果と1
〜での加速増量を加速開始直後の要求加速増量に合わせ
ると加速期間後期に混合気が過濃(オーバリッチ)にな
って黒煙の発生、点火プラグのくすぶシ等の不具合が生
じ、まだ、制御結果としての加速増量を加速期間後期の
要求加速増量に合わせると加速開始直後の混合気は過希
薄(オーバリーン)になってバツクファイア等の不具合
が生じている。
The required acceleration increase in fuel when the engine is at low temperature is large immediately after the start of acceleration, and small after a predetermined period of time has passed since the start of acceleration. In conventional fuel supply methods and devices, the acceleration increase is set to a predetermined value at the start of acceleration, and the acceleration increase decreases approximately linearly over time. Therefore, the control result and 1
If the acceleration increase at ~ is matched with the requested acceleration increase immediately after acceleration starts, the mixture becomes overrich in the latter half of the acceleration period, causing problems such as black smoke and smoldering spark plugs. If the increase in acceleration as a result of the control is matched with the required increase in acceleration in the latter half of the acceleration period, the air-fuel mixture immediately after the start of acceleration becomes overlean, causing problems such as backfire.

本発明の目的は機関低温時の燃料の加速増量を全加速期
間にわたって適切に制御することができる燃料供給方法
および装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel supply method and apparatus that can appropriately control the acceleration increase in fuel during the entire acceleration period when the engine is at low temperature.

本発明の燃料供給方法によれば、機関温度が所定値未満
である場合にスロットル弁がアイドリング開度から開か
れると燃料の第1の加速増量を計算し、吸入空気流量と
機関回転速度との比の時間変化に基づいて第2の加速増
量を計算し、スロットル弁がアイドリング開度から開か
れた時から所定時間が経過する壕では第1の加速増量に
基づいて計算した量の燃料を吸気系へ供給し、所定時間
の経過後は第2の加速増量に基づいて計算゛した量の燃
料を吸気系へ供給する。
According to the fuel supply method of the present invention, when the engine temperature is less than a predetermined value and the throttle valve is opened from the idling position, a first acceleration increase in fuel is calculated, and the intake air flow rate and engine rotation speed are calculated. A second acceleration increase is calculated based on the time change in the ratio, and the amount of fuel calculated based on the first acceleration increase is inhaled in a trench where a predetermined period of time has elapsed since the throttle valve was opened from idling. After a predetermined time has elapsed, an amount of fuel calculated based on the second acceleration increase is supplied to the intake system.

本発明の燃料供給装置は、スロットル弁がアイドリング
開度から開かれた時を検出するスロットル開度検出手段
、機関温度が所定値未満である期間ではスロットル開度
検出手段の出力に基づいて燃料の第1の加速増量を計算
する第1の計算手段、吸入空気流量と機関回転速度との
比の時間変化に基づいて燃料の第2の加速増量を計算す
る第2の計算手段、および加速期間の前期では第1の加
速増量に基づいて計算した燃料を吸気系へ供給1〜、加
速期間の後期では第2の加速増量に基づいて計算l−だ
燃料を吸気系へ供給する供給手段を備えている。
The fuel supply device of the present invention includes a throttle opening detection means for detecting when the throttle valve is opened from an idling opening, and a fuel supply system based on the output of the throttle opening detection means during a period when the engine temperature is less than a predetermined value. a first calculation means for calculating a first acceleration increase; a second calculation means for calculating a second acceleration increase of fuel based on a time change in the ratio of intake air flow rate and engine rotational speed; In the first period, the fuel calculated based on the first acceleration increase is supplied to the intake system, and in the latter half of the acceleration period, the fuel calculated based on the second acceleration increase is supplied to the intake system. There is.

加速開始に伴う吸入空気流量および機関回転速度の時間
変化は加速開始からしばらく経ってから現われるので、
加速開始直後から吸気系への燃料供給量を第2の加速増
量に基づいて計算すると、応答性が悪化するが、本発明
では、加速開始直後の燃料供給量は第1の加速増量に基
づいて計算されるので、加速期間前期の加速増量を速や
かに行なえかつ要求加速増量に合ったものにすることが
できる。
Changes in the intake air flow rate and engine rotational speed that occur with the start of acceleration appear a while after the start of acceleration, so
If the amount of fuel supplied to the intake system immediately after the start of acceleration is calculated based on the second increase in acceleration, the responsiveness will deteriorate, but in the present invention, the amount of fuel supplied immediately after the start of acceleration is calculated based on the first increase in acceleration. Since the amount is calculated, it is possible to promptly increase the amount of acceleration in the first half of the acceleration period and to match the required amount of acceleration.

好ましくは、スロットル弁がアイドリング開度から開か
れるとオンからオフに変わるアイドルスイッチが利用さ
れ、機関温度が所定値未満にある場合にアイドルスイッ
チがオンからオフに切換わると、第1の加速増量に初期
値を設定するとともに第1の加速増量実行フラグをセッ
トする。好ましくはアイドルスイッチがオンからオフへ
変化した時から所定時間が経過すると、第2の加速増量
に初期値が設定されるとともに第1の加速増量実行フラ
グがリセットされる。
Preferably, an idle switch is utilized that changes from on to off when the throttle valve is opened from an idling opening, and when the idle switch changes from on to off when the engine temperature is below a predetermined value, the first acceleration increase is performed. An initial value is set for , and a first acceleration increase execution flag is set. Preferably, when a predetermined period of time has elapsed since the idle switch was turned from on to off, the second acceleration increase is set to an initial value and the first acceleration increase execution flag is reset.

好ましくは第1の加速増量実行フラグの値に関係して第
1の加速増量あるいは第2の加速増量の値を零まで所定
の周期で所定量ずつ減少させる。
Preferably, the value of the first acceleration increase or the second acceleration increase is decreased by a predetermined amount at a predetermined period to zero in relation to the value of the first acceleration increase execution flag.

図面を参照して本発明を説明する。The present invention will be explained with reference to the drawings.

第1図は電子制御機関の概略図である。吸気通路1には
上流から順番にエアフローメータ2、吸気温センサ3、
スロットル弁4、サージタンク5、吸気管″6が設けら
れている。燃料噴射弁7は吸気管6に取付けられ、吸気
系へ燃料を噴射する。燃焼室11は、点火プラグ12を
備え、シリンダヘッド13、シリンダブロック14、お
よびピストン15によシ画定され、吸気弁1Gを経て混
合気を供給される。燃焼室11で燃焼した混合気は排気
弁19を経て排気管20へ排出される。酸素センサ21
は排気中の酸素濃度を検出し、水温センサ22はシリン
ダブロック14に取付けられて冷却水温度を検出する。
FIG. 1 is a schematic diagram of an electronically controlled engine. In the intake passage 1, an air flow meter 2, an intake temperature sensor 3,
A throttle valve 4, a surge tank 5, and an intake pipe "6" are provided.A fuel injection valve 7 is attached to the intake pipe 6 and injects fuel into the intake system.The combustion chamber 11 is equipped with a spark plug 12, and a cylinder It is defined by a head 13, a cylinder block 14, and a piston 15, and is supplied with an air-fuel mixture through an intake valve 1G.The air-fuel mixture combusted in the combustion chamber 11 is discharged through an exhaust valve 19 to an exhaust pipe 20. Oxygen sensor 21
detects the oxygen concentration in the exhaust gas, and the water temperature sensor 22 is attached to the cylinder block 14 to detect the cooling water temperature.

気筒判別センサ25および回転角センサ26は配電器2
7の軸28の回転からクランク角を検出する。気筒判別
センサ25および回転角センサ26はクランク角がそれ
ぞれ720°および30°変化するごとにパルスを発生
する。アイドルスイッチ29はスロットル弁4がアイド
ル開度よV大きくなると、厳密にはアイドル開度よシ少
し大きい所定開度以上になると、オンからオフへ変化す
る。電子制御装置31は、各種センサから入力信号を受
け、燃料噴射弁7および点火装置32へ出力信号を送る
。点火装置32の二次点火電流は配電器27を経て点火
プラグ12へ送られる。
The cylinder discrimination sensor 25 and the rotation angle sensor 26 are connected to the power distributor 2
The crank angle is detected from the rotation of the shaft 28 of No. 7. The cylinder discrimination sensor 25 and the rotation angle sensor 26 generate pulses every time the crank angle changes by 720° and 30°, respectively. The idle switch 29 changes from on to off when the throttle valve 4 becomes larger in V than the idle opening, or more precisely, when the opening reaches a predetermined opening which is slightly larger than the idle opening. The electronic control device 31 receives input signals from various sensors and sends output signals to the fuel injection valve 7 and the ignition device 32. The secondary ignition current of the ignition device 32 is sent to the spark plug 12 via the power distributor 27.

第2図は電子制御装置31の内部のブロック図である。FIG. 2 is a block diagram of the inside of the electronic control device 31. As shown in FIG.

RAM 35、ROM36、CPU37、入出力ポート
38 、39、出カポ−1−/10 、 /IIはノく
ス42を介して互いに接続されている。CLOCK42
はCPU37△、クロツクパルスヲ送る。エアフローメ
ータ2、吸気温センサ3、および水温センサ22のアナ
ログ出力はバッファ45 、46 、49ヲ4でマルチ
プレクサ47へ送られる。マルチプレクサは入力信号を
選択し、選択された入力信号はA/D (アナログ/デ
ジタル)変換器48においてA/D変換されてから入出
力ポート38へ送られる。酸素センサ21の出力はノ(
ソファ50およびコンパレータ51を経て入出力ポート
39へ送られ、気筒判別センサ25および回転角センサ
26の出力は整形回路53を経て入出力ポート39へ送
られ、アイドルスイッチ29の出力は直接入出力ポート
39へ送られる。燃料噴射弁7は出カポ−) 40 7
5−ら駆動回路55を経て入力信号を受け、点火装置3
2は出カポニド41から駆動回路56を経て入カイ言号
を受ける。
The RAM 35, ROM 36, CPU 37, input/output ports 38 and 39, and output ports 1-/10 and /II are connected to each other via a node 42. CLOCK42
sends a clock pulse to CPU37△. Analog outputs of the air flow meter 2, intake air temperature sensor 3, and water temperature sensor 22 are sent to a multiplexer 47 through buffers 45, 46, and 49. The multiplexer selects an input signal, and the selected input signal is A/D converted in an A/D (analog/digital) converter 48 and then sent to the input/output port 38. The output of the oxygen sensor 21 is ノ(
The output of the cylinder discrimination sensor 25 and the rotation angle sensor 26 is sent to the input/output port 39 via the sofa 50 and the comparator 51, the output of the idle switch 29 is sent to the input/output port 39 via the shaping circuit 53, and the output of the idle switch 29 is sent directly to the input/output port. Sent to 39. Fuel injection valve 7 is an output capo) 40 7
5- receives an input signal via the drive circuit 55, and the ignition device 3
2 receives an input signal from the output caponide 41 via the drive circuit 56.

第3図は、第5図のフローチャートのステップ80の詳
細を示し、アイドルスイッチ29がオンからオフへ変化
すると第1の加速増量F1の初期値Aをセットするとと
もに第1の加速増量の実行フラグFeをセットするプロ
グラムのフローチャートである。ステップ60ではアイ
ドルスイッチ29がオンかオフかを判定し、オンであれ
ば、すなわちスロットル弁4がアイドリング開度にあれ
ばステップ68へ進んでアイドルフラグF/をセットし
、オフであれば、すなわちスロットル弁4がアイドリン
グ開度より大きく開かれていればステップ61へ進む。
FIG. 3 shows details of step 80 in the flowchart of FIG. 5, in which when the idle switch 29 changes from on to off, the initial value A of the first acceleration increase F1 is set and the first acceleration increase execution flag is set. It is a flowchart of the program which sets Fe. In step 60, it is determined whether the idle switch 29 is on or off, and if it is on, that is, if the throttle valve 4 is at the idling opening, the process proceeds to step 68, where the idle flag F/ is set, and if it is off, that is, If the throttle valve 4 is opened more than the idling opening, the process advances to step 61.

ステップ61ではFl = 1か否かを判定し、# =
 1であれば、すなわち前回のプログラム実行時ではア
イドルスイッチ29がオンであればステップ62へ進み
、FA = Oであれば、すなわち前回のプログラム実
行時ではアイドルスイッチ29がオフであればステップ
62〜65の実行を省略する。ステップ62ではjすな
わちアイドルスイッチ29がオンからオフへ変化すると
、アイドルフラグF7をリセットする。ステップ63で
は機関冷却水温度Tw〈30℃か否かを判定TW<30
℃である場合、すなわち機関低温時はステップ64へ進
み、TW>30 ’Cである場合、すなわち非低温時は
ステップ64 、 65を省略する。ステップ64では
第1の加速増量F1に初期値Aを代入する。ステップ6
5では第1の加速増量実行フラグFeをセットする。
In step 61, it is determined whether Fl = 1 or not, and # =
If it is 1, that is, the idle switch 29 was on during the previous program execution, the process proceeds to step 62, and if FA=O, that is, when the idle switch 29 was off during the previous program execution, the process proceeds to step 62. 65 is omitted. In step 62, when j, that is, the idle switch 29 changes from on to off, the idle flag F7 is reset. In step 63, it is determined whether the engine cooling water temperature Tw<30°C TW<30
℃, that is, when the engine temperature is low, the process proceeds to step 64, and when TW>30'C, that is, when the engine temperature is not low, steps 64 and 65 are omitted. In step 64, the initial value A is substituted for the first acceleration increase amount F1. Step 6
5, the first acceleration increase execution flag Fe is set.

第4図は、第5図のフローチャートのステップ80の詳
細を示し、加速増量係数Fの値を減衰させるプログラム
のフローチャートである。ステップ71では第1の加速
増量実行フラグpe=1か否かを判定し、Fe−1であ
ればステップ72へ進み、Fe−0であればステップ7
3へ進む。
FIG. 4 is a flowchart of a program for attenuating the value of the acceleration increase coefficient F, showing details of step 80 in the flowchart of FIG. In step 71, it is determined whether or not the first acceleration increase execution flag pe=1. If Fe-1, the process proceeds to step 72; if Fe-0, step 7
Proceed to step 3.

ステップ72では第1の加速増量F1の値を所定量aだ
け減少させる。ステップ72では第2の加速増量F2の
値を所定量すだけ減少させる。Fl、F2の下限は零と
する。ステップ74ではステップ72あるいは73で減
少させた方の加速増量F1あるいはF2を加速増量係数
Fに代入し、かつとのFを記憶する。・ 第5図はメインルーチンのフローチャートである。ステ
ップ78ではクランク軸が1回転したか否かを判定し、
判定結果が正であればステップ79へ進み、否であれば
ステップ79を通過する。
In step 72, the value of the first acceleration increase amount F1 is decreased by a predetermined amount a. In step 72, the value of the second acceleration increase amount F2 is decreased by a predetermined amount. The lower limits of Fl and F2 are set to zero. In step 74, the acceleration increase F1 or F2, whichever was decreased in step 72 or 73, is substituted for the acceleration increase coefficient F, and the two F are stored. - Figure 5 is a flowchart of the main routine. In step 78, it is determined whether the crankshaft has rotated once,
If the determination result is positive, the process advances to step 79; if the determination result is negative, the process passes through step 79.

ステップ7つでは加速増量係数Fの減衰処理を行なう。In step 7, the acceleration increase coefficient F is attenuated.

ステップ79の詳細は第4図のフローチャートで説明し
たとおりである。ステップ80ではアイドルスイッチ2
9がオンからオフへ変化した時の処理を行なう。ステッ
プ80の詳細は第3図で説明したとおシである。ステッ
プ81では機関負荷Q’/N(−吸入空気流量Q/機関
回転速度N)を検出する。ステップ82では第1の加速
増量から第2の加速増量へ切換える時期か否かを判定し
、判定結果が正であればステップ83へ進み、否であれ
ばステップ83を通過する。切換時期は、所定時間当た
りのQ/Nの変化量ΔQ/Nが機関の加速状態を十分に
反映するようになった時刻とj〜て設定され、例えばア
イドルスイッチ2つがオンからオフに切換わつだ時刻か
ら所定時間11’l aの経過後の時刻である。ステッ
プ83では第2の加速増量F2に初期値Bを代入すると
ともに、第1の加速増量実行フラグFeをリセットする
。ステップ84では燃イ料の最終噴射量Tfは次式に従
って計算する。
The details of step 79 are as explained in the flowchart of FIG. In step 80, idle switch 2
9 changes from on to off. The details of step 80 are as explained in FIG. In step 81, the engine load Q'/N (-intake air flow rate Q/engine rotational speed N) is detected. In step 82, it is determined whether it is time to switch from the first acceleration increase to the second acceleration increase, and if the determination result is positive, the process proceeds to step 83, and if not, the process passes through step 83. The switching timing is set at the time when the amount of change ΔQ/N in Q/N per predetermined time sufficiently reflects the acceleration state of the engine, for example, when two idle switches are switched from on to off. This is the time after a predetermined time 11'la has elapsed from the time. In step 83, the initial value B is assigned to the second acceleration increase F2, and the first acceleration increase execution flag Fe is reset. In step 84, the final fuel injection amount Tf is calculated according to the following equation.

Tf =TpXGX (1+F) ただし、TpはQ/Nの関数として定まる基本噴射量、
Gは酸素センサ21からのフィードバック信号および冷
却水温度等から定まる補正係数である。こうしてアイド
ルスイッチ29がオンからオフへ変化した時から所定時
間Taが経過するまではF=Flであるので、最終噴射
量TfはFlに基づいて計算され、また、該所定時間が
経過した後はF=F2となり、最終噴射量TfはF2に
基づいて計算される。
Tf = TpXGX (1+F) However, Tp is the basic injection amount determined as a function of Q/N,
G is a correction coefficient determined from the feedback signal from the oxygen sensor 21, the cooling water temperature, etc. Since F=Fl from the time when the idle switch 29 changes from on to off until the predetermined time Ta has elapsed, the final injection amount Tf is calculated based on Fl, and after the predetermined time has elapsed, F=F2, and the final injection amount Tf is calculated based on F2.

第6図は本発明(a)と従来技術(b)とを対比して加
速期間の加速増量係数Fの変化を示している。
FIG. 6 shows the change in the acceleration increase coefficient F during the acceleration period, comparing the present invention (a) and the prior art (b).

ΔQ/Nに基づいて加速増量係数Fを計算する従来技術
(b)ではΔQ/Nの計算が所定の周期で行なわれるの
で、゛アイドルスイッチ29がオンからオフに変化した
時から次にΔQ/Nの計算周期が来るまでに時間がかが
シ、加速増量Fが設定されるまでに時間がかかり応答性
が悪いとともに、加速増量Fを−だん設定した後は所定
量ずつ加速増量係数の値を零まで減少させるのみである
ので、加速期間の後期では混合気がオーツクリッチにな
る。これに対し本発明(a)ではアイドルスイッチ29
がオンからオフへ変化するとただちにF=F1に設定さ
れ、アイドルスイッチ29がオンからオフになった時か
ら所定時間Taの経過後はF=F2に再設定されるので
、加速増量係数を加速期間の要求燃料噴射量に適切に合
わせることができる。
In the conventional technique (b) in which the acceleration increase coefficient F is calculated based on ΔQ/N, the calculation of ΔQ/N is performed at a predetermined period. It takes time to arrive at the calculation cycle of N, and it takes time to set the acceleration increase amount F, resulting in poor responsiveness.After the acceleration increase amount F is gradually set, the value of the acceleration increase coefficient is changed by a predetermined amount. is only reduced to zero, so the air-fuel mixture becomes oat-climate in the latter half of the acceleration period. On the other hand, in the present invention (a), the idle switch 29
When the idle switch 29 changes from on to off, it is immediately set to F=F1, and after a predetermined time Ta has passed since the idle switch 29 was turned off, it is reset to F=F2. Therefore, the acceleration increase coefficient is set during the acceleration period. can be adjusted appropriately to the required fuel injection amount.

第7図は本発明の装置の構成図である。第7図において
、第1の計算手段90は、機関冷却水温度が30°C未
満である場合にアイドルスイッチ29がオンからオフに
なると第1の加速増量F1に初期値Aを設定L、それ以
降、所定の周期でFlを所定量aずつ減少させる。Fl
の下限は零である。第2の計算手段91は所定時間当た
りのQ/Nの変化量ΔQ/Nの関数としてのBを、アイ
ドルスイッチ29がオンからオフに変化した時から所定
時間Taが経過1〜だ時に第2の加速増量F2に設定し
、それ以降第1の計算手段90の場合と同じ周期でF2
を所定量すずつ減少させる。F2の下限も零である。燃
料噴射量計算手段92は所定時間Taが経過するまでは
第1の加速増量F1に基づいて最終燃料噴射量Tfを計
算し、所定時間Taが経過した後は第2の加速増量F2
に基づいて最終噴射量Tfを計算し、Tfに関係して燃
料噴射弁7を作動させる。
FIG. 7 is a block diagram of the apparatus of the present invention. In FIG. 7, the first calculation means 90 sets the initial value A to the first acceleration increase F1 when the idle switch 29 is turned from on to off when the engine cooling water temperature is less than 30°C; Thereafter, Fl is decreased by a predetermined amount a at a predetermined period. Fl
The lower bound of is zero. The second calculation means 91 calculates B as a function of the amount of change in Q/N per predetermined time ΔQ/N when a predetermined time Ta has elapsed from 1 to 1 when the idle switch 29 changed from on to off. F2 is set at the acceleration increase F2 of
decrease by a predetermined amount. The lower limit of F2 is also zero. The fuel injection amount calculation means 92 calculates the final fuel injection amount Tf based on the first acceleration increase F1 until the predetermined time Ta has elapsed, and after the predetermined time Ta has elapsed, the final fuel injection amount Tf is calculated based on the second acceleration increase F2.
The final injection amount Tf is calculated based on Tf, and the fuel injection valve 7 is operated in relation to Tf.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される電子制御機関の全体を示す
図、第2図は電子制御装置のブロック図、第3図は第1
の加速増量を設定するプログラムのフローチャート、第
4図は加速増量係数の値を減衰させるプログラムのフロ
ーチャート、第5図はメインルーチンのフローチャート
、第6図は加速増量係数の時間変化を示すグラフ、第7
図は本発゛明の装置の構成図である。 2・・・エアフローメータ、4・・・スロットル弁、2
2・・・水温センサ、26・・・クランク角センサ、2
9・・・アイドルスイッチ、31・・・電子制御装置、
90パ第1の計算手段、91・・・第2の計算手段、9
2・・・燃料噴射量計算手段。 第3図 ステップ81 ステップ79 ステップ81 第6図 (a)       (b)
FIG. 1 is a diagram showing the entire electronic control engine to which the present invention is applied, FIG. 2 is a block diagram of the electronic control device, and FIG.
FIG. 4 is a flowchart of a program to attenuate the value of the acceleration increase coefficient, FIG. 5 is a flowchart of the main routine, FIG. 6 is a graph showing changes over time in the acceleration increase coefficient, 7
The figure is a configuration diagram of the device of the present invention. 2... Air flow meter, 4... Throttle valve, 2
2...Water temperature sensor, 26...Crank angle sensor, 2
9... Idle switch, 31... Electronic control device,
90 first calculation means, 91... second calculation means, 9
2...Fuel injection amount calculation means. Figure 3 Step 81 Step 79 Step 81 Figure 6 (a) (b)

Claims (1)

【特許請求の範囲】 ■ 機関温度が所定値未満である場合にスロットル弁が
アイドリング開度から開かれると燃料の第1の加速増量
を計算し、吸入空気流量と機関回転速度との比の時間変
化に基づいて第2の加速増量を計算し、スロットル弁が
アイドリング開度から開かれた時から所定時間が経過す
るまでは第1の加速増量に基づいて計算した量の燃料を
吸気系−・供給し、所定時間の経過後は第2の加速増量
に基づいて計算した量の燃料を吸気系へ供給することを
特徴とする、電子制御機関の燃料供給方法。 2、第1および第2の加速増量の値を零になるまで所定
の周期で所定量ずつ減少させることを特徴とする特許請
求の範囲第1項記載の燃料供給方法。 3 暖機中にスロットル弁がアイドリンク開度から開か
れると第1の加速増量の実行フラグをセットし、この実
行フラグがセットされていれば第1の加速増量の値を零
になるまで所定の周期で所定量ずつ減少させ、この実行
フラグがリセットされていれば第2の加速増量の値を零
になるまで所定の周期で所定量ずつ減少させることを特
徴とする特許請求の範囲第2項記載の燃料供給方法。 4 暖機中にスロットル弁がアイドリング開度から開か
れると第1の加速増量を初期値に設定し、前記所定時間
が経過した時に第2の加速増量に初期値を設定すること
を特徴とする特許請求の範囲第1項記載の燃料供給方法
。 5、 スロットル弁がアイドリング開度から開かれた時
を検出するスロットル開度検出手段、機関温度が所定値
未満である期間ではスロットル開度検出手段の出力に基
づいて燃料の第1の加速増量を計算する第1の計算手段
、吸入空気流量′と機関回転速度との比の時間変化に基
づいて燃料の第2の加速増量を計算する第2の計算手段
、および加速期間の前期では第1の加速増量に基づいて
計算した燃料を吸気系へ供給し、加速期間の後期では第
2の加速増量に基づいて計算した燃料を吸気系へ供給す
る供給手段を備えていることを特徴とする、電子制御機
関の燃料供給装置。
[Claims] ■ When the engine temperature is less than a predetermined value, when the throttle valve is opened from the idling opening, a first acceleration increase in fuel is calculated, and the time of the ratio of the intake air flow rate to the engine rotation speed is calculated. A second acceleration increase is calculated based on the change, and the amount of fuel calculated based on the first acceleration increase is applied to the intake system from the time when the throttle valve is opened from idling until a predetermined period of time has elapsed. 1. A method for supplying fuel to an electronically controlled engine, the method comprising: supplying fuel to an intake system in an amount calculated based on a second acceleration increase after a predetermined time has elapsed. 2. The fuel supply method according to claim 1, characterized in that the values of the first and second acceleration increases are decreased by a predetermined amount at a predetermined period until they become zero. 3 When the throttle valve is opened from the idle link opening during warm-up, the execution flag of the first acceleration increase is set, and if this execution flag is set, the value of the first acceleration increase is kept at a predetermined value until it becomes zero. Claim 2, characterized in that the value of the second acceleration increase is decreased by a predetermined amount at a predetermined cycle until it becomes zero if this execution flag is reset. Fuel supply method described in section. 4. When the throttle valve is opened from an idling opening degree during warm-up, the first acceleration increase amount is set to an initial value, and when the predetermined time has elapsed, the second acceleration increase amount is set to an initial value. A fuel supply method according to claim 1. 5. A throttle opening detection means detects when the throttle valve is opened from an idling opening, and during a period when the engine temperature is less than a predetermined value, a first acceleration increase of the fuel is performed based on the output of the throttle opening detection means. a first calculation means for calculating a second acceleration increase in fuel based on a time change in the ratio between the intake air flow rate' and the engine rotational speed; The electronic device is characterized by having a supply means for supplying fuel calculated based on the acceleration increase to the intake system, and supplying fuel calculated based on the second acceleration increase to the intake system in the latter half of the acceleration period. Control engine fuel supply system.
JP20773582A 1982-11-29 1982-11-29 Method and apparatus for supplying fuel to electronically controlled engine Pending JPS5999042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20773582A JPS5999042A (en) 1982-11-29 1982-11-29 Method and apparatus for supplying fuel to electronically controlled engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20773582A JPS5999042A (en) 1982-11-29 1982-11-29 Method and apparatus for supplying fuel to electronically controlled engine

Publications (1)

Publication Number Publication Date
JPS5999042A true JPS5999042A (en) 1984-06-07

Family

ID=16544666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20773582A Pending JPS5999042A (en) 1982-11-29 1982-11-29 Method and apparatus for supplying fuel to electronically controlled engine

Country Status (1)

Country Link
JP (1) JPS5999042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344772A2 (en) * 1988-06-03 1989-12-06 Hitachi, Ltd. Method and apparatus for controlling a throttle valve of internal combustion engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0344772A2 (en) * 1988-06-03 1989-12-06 Hitachi, Ltd. Method and apparatus for controlling a throttle valve of internal combustion engines

Similar Documents

Publication Publication Date Title
JP3632424B2 (en) Control device for valve opening / closing characteristics of internal combustion engine
JPS61101635A (en) Apparatus for controlling quantity of fuel supplied to internal-combustion engine
US5664544A (en) Apparatus and method for control of an internal combustion engine
JPH0211729B2 (en)
JPH04214947A (en) Torque fluctuation control device for internal combustion engine
JPH0416622B2 (en)
JPS6338537B2 (en)
JP3393626B2 (en) Ignition timing control device for internal combustion engine
JPH04279742A (en) Fuel injection control device of internal combustion engine
JPS5999042A (en) Method and apparatus for supplying fuel to electronically controlled engine
JPS61135948A (en) Method of controlling injection quantity of fuel in internal combustion engine
JPH0316498B2 (en)
JPH0530984B2 (en)
JP3846195B2 (en) Fuel injection control device for internal combustion engine
JPH0953492A (en) Air fuel ratio and ignition timing control device of internal combustion engine
JP3692641B2 (en) Fuel injection control device for internal combustion engine
JPH0246777B2 (en)
JPS6017245A (en) Electronically controlled fuel injection device
JPS6032963A (en) Electronic control type fuel injector
JPS5946334A (en) Air-fuel ratio controlling method for electronically controlled internal-combustion engine
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JPS59231144A (en) Method of fuel injection in internal-combustion engine
JPS62258152A (en) Method for controlling ignition timing of internal combustion engine
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS6036747A (en) Fuel injection of internal-combustion engine