JPS6065223A - Cooling device of engine - Google Patents

Cooling device of engine

Info

Publication number
JPS6065223A
JPS6065223A JP17225783A JP17225783A JPS6065223A JP S6065223 A JPS6065223 A JP S6065223A JP 17225783 A JP17225783 A JP 17225783A JP 17225783 A JP17225783 A JP 17225783A JP S6065223 A JPS6065223 A JP S6065223A
Authority
JP
Japan
Prior art keywords
engine
oil hydraulic
oil
flow fan
hydraulic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17225783A
Other languages
Japanese (ja)
Other versions
JPH0222214B2 (en
Inventor
Shunzo Tsuchikawa
土川 俊三
Yasuhiro Kawabata
川端 康浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP17225783A priority Critical patent/JPS6065223A/en
Priority to US06/639,224 priority patent/US4539943A/en
Publication of JPS6065223A publication Critical patent/JPS6065223A/en
Publication of JPH0222214B2 publication Critical patent/JPH0222214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/044Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using hydraulic drives

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

PURPOSE:To both cool an engine and prevent overcooling of the engine when it is driven at a high speed, by coupling a cross flow fan in a radiator shroud to an oil hydraulic motor and connecting an oil hydraulic pump, connected to the oil hydraulic motor through a selector valve controlled to be opened and closed by the temperature of cooling water, to an engine through a fluid coupling which controls the maximum speed of the oil hydraulic pump. CONSTITUTION:An oil hydraulic motor 7, being coupled to a cross flow fan 1 arranged along the direction of width of a car body in a radiator shroud 4, is connected to an oil hydraulic pump 6 through a forward path 8 and a return path 11 which are connected by a selector valve 10 opening as the temperature of cooling water rises. A fluid coupling, through which the oil hydraulic pump 6 is coupled to the output shaft of an engine, restricts the maximum speed of the oil hydraulic pump. In this way, overcooling of the engine is prevented when it is driven at a high speed.

Description

【発明の詳細な説明】 この発明は、エンジン冷却装置に関する。[Detailed description of the invention] The present invention relates to an engine cooling device.

エンジン冷却装置として、水冷式および空冷式が提供さ
れている。水冷式エンジンはラジェータを有し、該2ジ
エータに強制送風をなすことで、ラジェータを通る冷却
水を放熱させる。該ラジェータへの強制送風のため、軸
流ファン或いはクロスフローファンを用いる。
Water-cooled and air-cooled engine cooling systems are available. A water-cooled engine has a radiator, and by forcing air into the two radiators, cooling water passing through the radiator radiates heat. An axial fan or cross-flow fan is used to force air into the radiator.

軸流ファンは、空気の流れが円形をなすのに対し、クロ
スフローファンは、車体中方向に沿って配置させ得るこ
とから、ラジェータの全面に一様な冷却風を送ることが
可能である。
An axial fan has a circular air flow, whereas a cross flow fan can be arranged along the inside of the vehicle body, making it possible to uniformly send cooling air to the entire surface of the radiator.

このため、車高の低いロングノーズ車に、クロスフロー
ファンは好適である。
For this reason, crossflow fans are suitable for long nose vehicles with low vehicle height.

クロスフローファンを用いた例は、たとえば、特開昭5
4−110519号公報および特開昭57−16311
8号公報に開示される。これら従来例は、クロスフロー
ファンの動力源として、電動モータ或いはエンジンの回
転トルクを用いる。電動モータを用いる場合、バッテリ
やオルターネータの負荷が増大し、他のエレクトロニク
ス補機へ悪影響を与えると共に、バッテリー等の大型が
必要となる。又、エンジンの回転トルクをベルトを用い
ファンに連結させて利用する場合、エンジン側のファン
と車体側クロスフローファンケーシングとの振動差によ
り両者が接触する危険が大であり、又、クロスフローフ
ァンの取付位置もクランク軸との関係で制約を受ける。
An example using a cross flow fan is, for example, Japanese Patent Application Laid-open No. 5
Publication No. 4-110519 and JP-A-57-16311
It is disclosed in Publication No. 8. These conventional examples use the rotational torque of an electric motor or an engine as a power source for the cross flow fan. When an electric motor is used, the load on the battery and alternator increases, which adversely affects other electronic auxiliary equipment, and requires a larger battery or the like. Furthermore, when using the rotational torque of the engine by connecting it to a fan using a belt, there is a great risk that the fan on the engine side and the cross-flow fan casing on the vehicle body will come into contact with each other due to the difference in vibration between them. The mounting position is also limited by its relationship with the crankshaft.

この発明は、前述した従来技術の不具合を解消させるこ
とを意図したもので、基本的には、クロスフローファン
を油圧で作動させ、該油圧をエンジンで駆動される油ポ
ンプで得るようにすると共に、油ポンプの回転を流体継
手で制御させる技術手段を用いる。エンジンと油ポンプ
との間に流体継手を介在させたことで、油ポンプの吐出
量はエンジンの高回転時にも一定に抑えられ、クロスフ
ローファンの回転を一定に保ち、エンジンの過冷却を防
止できる。この結果、エンジン冷却水温が高く且つエン
ジンアイドリンク時に必要な冷却風をクロスフローファ
ンで確保できる容量に油モータを構成しても、エンジン
高回転時に過剰な冷却風をエンジンに送ることはない。
This invention is intended to solve the above-mentioned problems of the prior art. Basically, the cross flow fan is operated by hydraulic pressure, and the hydraulic pressure is obtained by an oil pump driven by an engine. , using technical means to control the rotation of the oil pump with a fluid coupling. By interposing a fluid coupling between the engine and the oil pump, the oil pump's discharge volume can be held constant even when the engine is running at high speeds, keeping the crossflow fan's rotation constant and preventing engine overcooling. can. As a result, even if the engine cooling water temperature is high and the oil motor is configured to have a capacity that allows the crossflow fan to secure the cooling air required during engine idling, excessive cooling air will not be sent to the engine during high engine rotation.

この発明の実施例を添付図面を参照して説明する。Embodiments of the invention will be described with reference to the accompanying drawings.

第1図において、1は車体中方向に沿って配置されるク
ロスフローファンである。クロスフローファン1の前方
にラジェータ2および/又はクーラコンデンサ3を配す
。ヅユラウド4は、ラジェータ2を通る風をクロスフロ
ーファン1に導き、エンジン5へ強制送風させる。
In FIG. 1, reference numeral 1 denotes a cross flow fan arranged along the inside direction of the vehicle body. A radiator 2 and/or a cooler condenser 3 are placed in front of the crossflow fan 1. The duplexer 4 guides the air passing through the radiator 2 to the crossflow fan 1 and forces the air to the engine 5.

前記冷却装置の駆動システムを第2図に示す。エンジン
5の出力軸により駆動される油ポンプ6を、クロスフロ
ーファン1の軸に速製・ 結した油モータ7に接続し、油モータの尋り油を油ポン
プ6にもどす。油ポンプ6から油モータ7への往路8に
フィルター9と切換弁10を設ける。切換弁10は、往
路8の油の流れを、油モータTに供給することなく、油
モータ7から油ポンプ6への復路11に短絡可能とさせ
る。往路Bをクロスフローファン1又はラジェータ2お
よびコンデンサ−3の前方或いは後方の位置で車幅の巾
方向に配管して油の冷却をなす。
The drive system of the cooling device is shown in FIG. An oil pump 6 driven by the output shaft of the engine 5 is connected to an oil motor 7 which is made and connected to the shaft of the cross flow fan 1, and oil from the oil motor is returned to the oil pump 6. A filter 9 and a switching valve 10 are provided on an outgoing path 8 from the oil pump 6 to the oil motor 7. The switching valve 10 allows the flow of oil on the outward path 8 to be short-circuited to the return path 11 from the oil motor 7 to the oil pump 6 without being supplied to the oil motor T. The outward path B is piped in the width direction of the vehicle at a position in front or behind the cross flow fan 1 or the radiator 2 and the condenser 3 to cool the oil.

第3図に示す例は、油モータ7からの油をオイルパン或
いはオイルタンク12にもどし、油ポンプ6でこの油を
油モータ7に供給させるものである。切換弁10は、水
温センサー13およびクーラコンプレッサ高圧センサー
14からの信号に応じ、その開閉を制御させる。このよ
うな制御により、エンジン温度に応じた送風を可能とす
る。即ち、たとえばエンジン冷却時には、切換弁10を
開とし、油ポンプ6からの往路8を油モータ7からの復
路11に短絡させ、クロスフローファン10回転を中断
させる。
In the example shown in FIG. 3, oil from the oil motor 7 is returned to the oil pan or oil tank 12, and the oil is supplied to the oil motor 7 by the oil pump 6. The switching valve 10 has its opening and closing controlled in response to signals from a water temperature sensor 13 and a cooler compressor high pressure sensor 14. Such control makes it possible to blow air according to the engine temperature. That is, for example, during engine cooling, the switching valve 10 is opened, the outgoing path 8 from the oil pump 6 is short-circuited to the incoming path 11 from the oil motor 7, and the rotation of the cross flow fan 10 is interrupted.

第4図にラジェータシャッタ15およびシュラウド4を
可動とさせる例でめる。第5図に第4図に示す冷却装置
の駆動回路を示す。
FIG. 4 shows an example in which the radiator shutter 15 and the shroud 4 are movable. FIG. 5 shows a drive circuit for the cooling device shown in FIG. 4.

油ポンプ6から油モータ7への往路8中に第1の切換弁
10と該弁と並列に第2の切換弁16を配し、第1の切
換弁10を水温センサー13とクーラコンプレッサー高
圧センサー14からの信号によりその開閉を制御し、又
、第2の切換弁16を水温センサー13および車速セン
サー1Tからの信号に応じてその開閉制御させる。第1
の切換弁10はクロスフローファン1の油圧モータTお
よびラジェータシャッタ15の駆動シリンダ18に接続
する。又、第1の切換弁10を復路11に直接連通させ
、油ポンプ6をオイルタンク12に短絡可能とさせる。
A first switching valve 10 and a second switching valve 16 are arranged in parallel with the first switching valve 10 in the outward path 8 from the oil pump 6 to the oil motor 7, and the first switching valve 10 is connected to a water temperature sensor 13 and a cooler compressor high pressure sensor. The second switching valve 16 is controlled to open and close according to signals from the water temperature sensor 13 and the vehicle speed sensor 1T. 1st
The switching valve 10 is connected to the hydraulic motor T of the cross flow fan 1 and the drive cylinder 18 of the radiator shutter 15. Further, the first switching valve 10 is connected directly to the return path 11, so that the oil pump 6 can be short-circuited to the oil tank 12.

第2の切換弁16を可動シュラウド4の駆動シリンダ1
9に接続し、又、復路11と短絡可能である。第4図お
よび第5図に示す例において、水温および高圧コンプレ
ッサーの値が高い時クロスフローファン1を作動させ且
つラジェータシャッタ15を開とし、又、それぞれの値
が低い時第1の切換弁10により往路8を復路11に短
絡させクロスフローファン1を非作動とさせ且つラジェ
ータシャッタ15を閉とさせるエンジンへの送風を中断
させる。同、車速か低くラジェータ水温が高い時第2の
切換弁16を介して油ポンプ6からの油をシリンダ19
に供給しシュラウド4を閉じ、クロスフローファン1お
よび開のラジェータシャッタ15によりエンジンに冷却
風を送る。さらに、車速か高い時可動シュラウド4およ
びラジェータシャッタ15を開放し、且つクロスフロー
ファン1を非作動とさせ、車が切る風をエンジンに送る
The second switching valve 16 is connected to the drive cylinder 1 of the movable shroud 4.
9 and can be short-circuited with the return path 11. In the example shown in FIGS. 4 and 5, when the water temperature and high pressure compressor values are high, the cross flow fan 1 is operated and the radiator shutter 15 is opened, and when the respective values are low, the first switching valve 10 is activated. This short-circuits the outgoing path 8 to the incoming path 11, deactivates the cross flow fan 1, closes the radiator shutter 15, and interrupts the air blowing to the engine. Similarly, when the vehicle speed is low and the radiator water temperature is high, the oil from the oil pump 6 is transferred to the cylinder 19 via the second switching valve 16.
The shroud 4 is closed, and the cross flow fan 1 and the open radiator shutter 15 send cooling air to the engine. Further, when the vehicle speed is high, the movable shroud 4 and the radiator shutter 15 are opened, and the cross flow fan 1 is deactivated to send the wind cut by the vehicle to the engine.

第4図に示すように、上方の可動シュラウド4の下端が
クロスフローファン1の回転軸中心を通る水平面近くの
前方に位置するよう配され且つその開放時仮想線で示す
位置へ移動し、又、下方シュラウド20が前記水平面と
略平行に該シュラウド20の下方に配される場合、クロ
スフローファンの風による回転抵抗を減少させ且つ送風
効率を高めるため、クロスフローファン1を反時計方向
に回転させる。一方、第6図に示すように、下方シュラ
ウド20の前方が前記水平面近くに延在し、又、可動シ
ュラウド4の下端がりpスフローフアン1のや\後方に
位置する時は、りpスフローフアン1を時計方向に回転
させる。
As shown in FIG. 4, the lower end of the upper movable shroud 4 is arranged to be located in front near the horizontal plane passing through the center of the rotation axis of the cross flow fan 1, and when it is opened, it moves to the position shown by the imaginary line, and , when the lower shroud 20 is disposed below the shroud 20 substantially parallel to the horizontal plane, the cross-flow fan 1 is rotated counterclockwise in order to reduce the rotational resistance due to the wind of the cross-flow fan and increase the air blowing efficiency. let On the other hand, as shown in FIG. 6, when the front of the lower shroud 20 extends close to the horizontal plane and the lower end of the movable shroud 4 is located near and behind the flow fan 1, Rotate the flow fan 1 clockwise.

エンジン回転数が高い場合でもエンジンの過冷却を防止
するため、クロスフローファン10回転数を抑え、又、
エンジン回転数が低いにも拘らず(たとえば、アイドリ
ンク時)エンジン温度が高い場合、クロスフローファン
10回転数を極力確保する必要がある。このため、エン
ジン出力軸と油ポンプ6との間に、第7図に示すように
、流体継手21を配す。流体継手21は、エンジン出力
軸の回転数が一定値以上になるとすべり現象を生じ、油
ポンプ6の最高回転数を一定に抑え、又、エンジンの低
回転時の回転トルクの伝達効率も良い。この結果、第8
図に実線で示すようなエンジン回転数(NK)に対する
クロスフローファン回転数(Nf)が得られる。同図か
ら明らかなように、エンジンの高回転時にはクロスフロ
ーファン1の回転数を抑え、又、二/ジン低回転時必要
最小限のクロスフローファン回転数を確保できる。陶、
第7図は、第3図の例に流体継手21を配したものと実
質的に同じであるから、作動は第3図の例と同じでおり
、その説明を省略する。流体継手に替えて、油圧ポンプ
6の吐出油量がエンジンの回転数に電比例しない可変型
のものを用い、 4同効果を得るようにしても良い。
In order to prevent overcooling of the engine even when the engine speed is high, the cross flow fan speed is suppressed by 10 times, and
If the engine temperature is high even though the engine speed is low (for example, during idling), it is necessary to ensure the crossflow fan 10 rotations as much as possible. For this reason, a fluid coupling 21 is arranged between the engine output shaft and the oil pump 6, as shown in FIG. The fluid coupling 21 causes a slipping phenomenon when the rotational speed of the engine output shaft exceeds a certain value, suppresses the maximum rotational speed of the oil pump 6 to a constant value, and has good transmission efficiency of rotational torque when the engine is running at low rotational speeds. As a result, the 8th
The cross-flow fan rotation speed (Nf) relative to the engine rotation speed (NK) is obtained as shown by the solid line in the figure. As is clear from the figure, the number of rotations of the cross flow fan 1 can be suppressed when the engine is running at high speeds, and the minimum number of rotations of the cross flow fan 1 can be ensured when the engine is running at low speeds. Pottery,
Since FIG. 7 is substantially the same as the example shown in FIG. 3 with a fluid coupling 21, the operation is the same as the example shown in FIG. 3, and the explanation thereof will be omitted. Instead of the fluid coupling, a variable type hydraulic pump 6 in which the amount of oil discharged is not electrically proportional to the engine speed may be used to obtain the same effect.

エンジン回転数が低く、シかも、エンジン温度が高い状
態時のクロスフローファン10回転数をより確実に確保
するため、該状態時にのみ作動する電動モータをクロス
フローファン1と連結させることもできる。この場合、
該電動モータを作動させることでエンジンへの冷却風を
さらに多量とさせ得る。この程度の電動モータの作動は
他のエレクトロニクス補機に悪影智を与えることなく、
バッテリやオルターネータを大型化させる必要もない。
Even if the engine speed is low and the engine temperature is high, in order to more reliably secure the crossflow fan 10 rotation speed when the engine temperature is high, an electric motor that operates only in this state may be connected to the crossflow fan 1. in this case,
By operating the electric motor, a larger amount of cooling air can be supplied to the engine. This level of electric motor operation does not adversely affect other electronic auxiliary equipment.
There is no need to increase the size of the battery or alternator.

電動モータを設けることなく、エンジン冷却水が高温で
あり且つエンジンアイドリンク時に必要な冷却風をクロ
ス70−ファンで供給可能なように、油モータの容量を
構成させることもできる。この場合でも、流体継手がエ
ンジン高回転時に過剰な空気をエンジンに送らせない働
きをするので、エンジンの過冷却は防止できる。
Without providing an electric motor, the capacity of the oil motor can be configured so that the engine cooling water is at a high temperature and the cross 70-fan can supply the cooling air required during engine idling. Even in this case, the fluid coupling functions to prevent excessive air from being sent to the engine when the engine rotates at high speeds, so overcooling of the engine can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一例の側面図、第2図はその平面図
、第3図は作動回路を示す説明図、第4図は別の例を示
す側面図、第5図はその作動回路を示す説明図、第6図
は第5図に示す例のシュラウドの取付を変えた状態を示
す側圓図、第7図は他の例を示す側面図、および第8図
はエンジン回転数とクロスフローファンの回転数との関
係を示す図である。 図中: 1・・・クロスフローファン、2・・・ラジェ
ータ、4・・・可動シュラウド、5・・・エンジン、6
・・・油ポンプ 7・・・油モータ、10.16・・・
切換弁、13,14.17・・・センサー、15・・・
ラジェータシャッタ。 代理人 弁理士 桑 原 英 明
Fig. 1 is a side view of one example of this invention, Fig. 2 is a plan view thereof, Fig. 3 is an explanatory diagram showing an operating circuit, Fig. 4 is a side view showing another example, and Fig. 5 is its operating circuit. FIG. 6 is a side view showing the example shown in FIG. 5 with the shroud installed differently, FIG. 7 is a side view showing another example, and FIG. It is a figure showing the relationship with the number of rotations of a crossflow fan. In the diagram: 1...Cross flow fan, 2...Radiator, 4...Movable shroud, 5...Engine, 6
...Oil pump 7...Oil motor, 10.16...
Switching valve, 13, 14. 17... sensor, 15...
radiator shutter. Agent Patent Attorney Hideaki Kuwahara

Claims (1)

【特許請求の範囲】[Claims] ラジェータ、該ラジェータと近接し且つシュラウド内に
配されるクロスフローファン、該クロスフローファンを
回転させる油モータ、該油モータに作動油を供給し且つ
エンジンにより駆動される油ポンプ、前記油モータと前
記油ポンプとを結ぶ回路(接続され且つ冷却水温によっ
て開閉制御される切換弁、前記油ポンプと前記エンジン
との間に配され且つ前記油ポンプの最高回転数を制御さ
せる流体継手を有するエンジン冷却装置。
a radiator, a crossflow fan disposed in the shroud and close to the radiator, an oil motor that rotates the crossflow fan, an oil pump that supplies hydraulic oil to the oil motor and is driven by the engine, the oil motor; An engine cooling circuit that connects the oil pump (a switching valve that is connected and controlled to open and close depending on the cooling water temperature, and a fluid coupling that is arranged between the oil pump and the engine and that controls the maximum rotation speed of the oil pump) Device.
JP17225783A 1983-09-20 1983-09-20 Cooling device of engine Granted JPS6065223A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17225783A JPS6065223A (en) 1983-09-20 1983-09-20 Cooling device of engine
US06/639,224 US4539943A (en) 1983-09-20 1984-08-09 Engine cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17225783A JPS6065223A (en) 1983-09-20 1983-09-20 Cooling device of engine

Publications (2)

Publication Number Publication Date
JPS6065223A true JPS6065223A (en) 1985-04-15
JPH0222214B2 JPH0222214B2 (en) 1990-05-17

Family

ID=15938537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17225783A Granted JPS6065223A (en) 1983-09-20 1983-09-20 Cooling device of engine

Country Status (1)

Country Link
JP (1) JPS6065223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382027U (en) * 1986-11-18 1988-05-30
FR3093760A1 (en) * 2019-03-15 2020-09-18 Valeo Systemes Thermiques TANGENTIAL TURBOMACHINE ELECTRIC MOTOR VEHICLE COOLING MODULE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922324U (en) * 1972-06-02 1974-02-25
JPS582416A (en) * 1981-06-22 1983-01-08 イ−トン・コ−ポレ−シヨン Cooling device for car engine
JPS58142314U (en) * 1982-03-18 1983-09-26 株式会社小松製作所 Radiator fan drive circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922324U (en) * 1972-06-02 1974-02-25
JPS582416A (en) * 1981-06-22 1983-01-08 イ−トン・コ−ポレ−シヨン Cooling device for car engine
JPS58142314U (en) * 1982-03-18 1983-09-26 株式会社小松製作所 Radiator fan drive circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382027U (en) * 1986-11-18 1988-05-30
FR3093760A1 (en) * 2019-03-15 2020-09-18 Valeo Systemes Thermiques TANGENTIAL TURBOMACHINE ELECTRIC MOTOR VEHICLE COOLING MODULE
WO2020188188A1 (en) * 2019-03-15 2020-09-24 Valeo Systemes Thermiques Cooling module for an electric motor vehicle, comprising a tangential-flow turbomachine
CN113597504A (en) * 2019-03-15 2021-11-02 法雷奥热系统公司 Electric vehicle cooling module comprising tangential flow turbine

Also Published As

Publication number Publication date
JPH0222214B2 (en) 1990-05-17

Similar Documents

Publication Publication Date Title
US4539943A (en) Engine cooling system
US5353757A (en) Vehicular use cooling apparatus
JPH059515Y2 (en)
US6192838B1 (en) Engine cooling apparatus
JP2767995B2 (en) Internal combustion engine cooling system
KR100386066B1 (en) Total cooling assembly for i.c. engine-powered vehicles
CA2358793A1 (en) Vehicular cooling system
JPH03242419A (en) Cooling method and device thereof for internal combustion engine
JP2010025009A (en) Cooling system and cooling method of internal combustion engine
JP2001507651A (en) Fans and power steering for hydraulically powered vehicles
EP0969189B1 (en) Total cooling assembly for a vehicle having an internal combustion engine
US4461246A (en) Hydraulically operated fan assembly for a heat exchange assembly
US4175388A (en) Radiator cooling system
CN112127985B (en) Coolant circuit of a drive device and method for operating a coolant circuit
JPH11321346A (en) Engine cooling device
US4356796A (en) Cooling system for hydronamic retarder of internal combustion engine
JPS6065223A (en) Cooling device of engine
JPH0218404B2 (en)
JPS61215417A (en) Cooling system of vehicle
JPH0335846Y2 (en)
JPS6065221A (en) Cooling device of engine
JP2687965B2 (en) Rotation control device for vehicle cooling fan
JPH11210465A (en) Cooling device for engine
JP2000186553A (en) Cooling device for vehicle
JP3225200B2 (en) Cooling system for power unit for railway vehicles