JPH059515Y2 - - Google Patents

Info

Publication number
JPH059515Y2
JPH059515Y2 JP1986088897U JP8889786U JPH059515Y2 JP H059515 Y2 JPH059515 Y2 JP H059515Y2 JP 1986088897 U JP1986088897 U JP 1986088897U JP 8889786 U JP8889786 U JP 8889786U JP H059515 Y2 JPH059515 Y2 JP H059515Y2
Authority
JP
Japan
Prior art keywords
hydraulic
cooling fan
pump
hydraulic pump
power steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986088897U
Other languages
Japanese (ja)
Other versions
JPS62200185U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986088897U priority Critical patent/JPH059515Y2/ja
Priority to US07/060,525 priority patent/US4798050A/en
Publication of JPS62200185U publication Critical patent/JPS62200185U/ja
Application granted granted Critical
Publication of JPH059515Y2 publication Critical patent/JPH059515Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/044Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/07Supply of pressurised fluid for steering also supplying other consumers ; control thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/30Safety devices, e.g. alternate emergency power supply or transmission means to ensure steering upon failure of the primary steering means
    • B62D5/32Safety devices, e.g. alternate emergency power supply or transmission means to ensure steering upon failure of the primary steering means for telemotor systems

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、動力舵取装置とエンジン冷却フアン
の油圧モータにそれぞれ作動油を 供給する車両
用タンデムポンプ装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a tandem pump device for a vehicle that supplies hydraulic oil to a power steering device and a hydraulic motor of an engine cooling fan, respectively.

〔従来技術〕[Prior art]

この種の車両用タンデムポンプは、動力舵取装
置用油圧ポンプと冷却フアン用油圧ポンプを備
え、此等両油圧ポンプをエンジンと連動して回転
する共通の駆動軸上に設けて同時に回転駆動して
おり、寒冷時においても高温時と同様に冷却フア
ン用油圧ポンプから吐出される作動油をエンジン
冷却フアンの油圧モータに供給している。
This type of tandem pump for vehicles is equipped with a hydraulic pump for the power steering system and a hydraulic pump for the cooling fan. Both hydraulic pumps are installed on a common drive shaft that rotates in conjunction with the engine, and are driven to rotate at the same time. Even in cold weather, the hydraulic oil discharged from the cooling fan hydraulic pump is supplied to the engine cooling fan hydraulic motor in the same way as in hot weather.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

このような従来技術においては、寒冷時には作
動油の粘性の増大により管路抵抗が増大するの
で、ポンプの内部圧が高くなつてエネルギ損失が
生じ、特に冷却フアン用油圧ポンプは吐出量の大
なるものが用いられるのでエネルギ損失が大きく
なるという問題がある。また、動力舵取装置の使
用状態(例えば据切り)により動力舵取装置用油
圧ポンプの圧力も増大した場合にはタンデムポン
プ全体の負荷条件は極めて厳しくなり、このため
場合によつては焼付き等の問題も生じる。本考案
は、低温時にはエンジンの冷却フアンは作動させ
る必要がないことに着目して、低温時には冷却フ
アン用油圧ポンプから吐出される作動油を吸込側
にバイパスさせ、圧力損失を減少させて上記問題
を解決しただけでなく、このように低温時に冷却
フアン用油圧ポンプの負荷を減少させるために冷
却フアンから油圧モータへの作動油の供給を減少
または停止させても動力舵取装置はその影響を受
けることなく、動力舵取装置用油圧ポンプから常
に所定量の作動油の供給を受けて常に安定した操
舵フイーリングが得られるようにしたものであ
る。
In such conventional technology, when it is cold, the pipe resistance increases due to the increase in the viscosity of the hydraulic oil, which increases the internal pressure of the pump and causes energy loss.In particular, hydraulic pumps for cooling fans have a large discharge volume. There is a problem in that energy loss is large because a large amount of energy is used. Additionally, if the pressure of the hydraulic pump for the power steering device increases due to the state of use of the power steering device (for example, when the power steering device is stationary), the load conditions on the entire tandem pump become extremely severe, which may cause seizure in some cases. Other problems also arise. This invention focuses on the fact that the engine cooling fan does not need to operate at low temperatures, and bypasses the hydraulic fluid discharged from the cooling fan hydraulic pump to the suction side at low temperatures to reduce pressure loss and solve the above problem. In addition to solving this problem, even if the supply of hydraulic oil from the cooling fan to the hydraulic motor is reduced or stopped in order to reduce the load on the hydraulic pump for the cooling fan at low temperatures, the power steering system will not be affected by this. A stable steering feeling is always obtained by constantly receiving a predetermined amount of hydraulic oil from the hydraulic pump for the power steering device.

〔問題点を解決するための手段〕[Means for solving problems]

このために、本考案による車両用タンデムポン
プ装置は、添付図面に例示する如く、動力舵取装
置30に作動油を供給する動力舵取装置用油圧ポ
ンプ11と、エンジン冷却フアン15の油圧モー
タ14に作動油を供給する冷却フアン用油圧ポン
プ12を備え、前記両油圧ポンプ11,12のロ
ータをエンジン10と連動して回転する1個の駆
動軸13上に設けて同時に回転駆動してなる車両
用タンデムポンプ装置において、前記冷却フアン
用油圧ポンプ12と油圧モータ14を連通する吐
出通路22に設けられて同吐出通路を同冷却フア
ン用本考案の吸込通路21に連通されるバイパス
路23に分岐接続する電磁流量制御弁40と、前
記エンジン冷却フアン15の油圧モータ14に供
給する作動油の油温を検出する温度センサ61
と、この温度センサによる検出温度が低温の場合
に前記吐出通路22を通る作動油の全部または大
部分を前記バイパス路23を経て前記吸込通路2
1にバイパスさせるよう前記電磁流量制御弁40
を制御する制御装置60を備え、前記動力舵取装
置30及び動力舵取装置用油圧ポンプ11からな
る動力舵取装置側油圧回路と、前記油圧モータ1
4、電磁流量制御弁40及び冷却フアン用油圧ポ
ンプ12からなる冷却フアン側油圧回路とを、互
いに独立して設けたことを特徴とするものであ
る。
For this purpose, the tandem pump device for a vehicle according to the present invention includes a hydraulic pump 11 for a power steering device that supplies hydraulic oil to a power steering device 30, and a hydraulic motor 14 of an engine cooling fan 15, as illustrated in the accompanying drawings. The vehicle is equipped with a cooling fan hydraulic pump 12 that supplies hydraulic oil to the cooling fan, and the rotors of both the hydraulic pumps 11 and 12 are mounted on a single drive shaft 13 that rotates in conjunction with the engine 10 and are simultaneously driven to rotate. In a tandem pump device for a cooling fan, a discharge passage 22 communicating with the hydraulic pump 12 for the cooling fan and the hydraulic motor 14 is provided, and the discharge passage is branched into a bypass passage 23 communicating with the suction passage 21 of the present invention for the cooling fan. A temperature sensor 61 that detects the temperature of the hydraulic oil supplied to the connected electromagnetic flow control valve 40 and the hydraulic motor 14 of the engine cooling fan 15.
When the temperature detected by this temperature sensor is low, all or most of the hydraulic oil passing through the discharge passage 22 is transferred to the suction passage 2 via the bypass passage 23.
1 to bypass the electromagnetic flow control valve 40.
a power steering device side hydraulic circuit comprising the power steering device 30 and the hydraulic pump 11 for the power steering device, and the hydraulic motor 1.
4. The cooling fan side hydraulic circuit consisting of the electromagnetic flow control valve 40 and the cooling fan hydraulic pump 12 is provided independently from each other.

〔作用〕[Effect]

エンジン10の環境温度が低温の場合は、吐出
通路22に設けられた電磁流量制御弁40は制御
装置60により制御されて、冷却フアン用油圧ポ
ンプ12から吐出通路22に吐出される作動油の
全部または大部分を、バイパス路23を経て吸込
通路21にバイパスする。エンジン10の環境温
度が高温となれば、電磁流量制御弁40は冷却フ
アン用油圧ポンプ12から吐出される作動油の全
部または大部分を油圧モータ14に供給し、冷却
フアン15を作動させてエンジン10を冷却す
る。
When the environmental temperature of the engine 10 is low, the electromagnetic flow control valve 40 provided in the discharge passage 22 is controlled by the control device 60 to control all of the hydraulic fluid discharged from the cooling fan hydraulic pump 12 to the discharge passage 22. Alternatively, most of it is bypassed to the suction passage 21 via the bypass passage 23. When the environmental temperature of the engine 10 becomes high, the electromagnetic flow control valve 40 supplies all or most of the hydraulic fluid discharged from the cooling fan hydraulic pump 12 to the hydraulic motor 14, operates the cooling fan 15, and Cool 10.

また動力舵取装置用油圧ポンプ11は、冷却フ
アン15側から独立した油圧回路により、冷却フ
アン15の油圧モータ14に対する冷却フアン用
油圧ポンプ12の作動油の供給状態の変動とは全
く無関係に、常に所定量の作動油を動力舵取装置
30に供給してこれを作動させる。
Moreover, the hydraulic pump 11 for the power steering device has a hydraulic circuit independent from the side of the cooling fan 15, so that the hydraulic pump 11 for the power steering system can operate the hydraulic pump 11 independently of the fluctuation in the state of supply of hydraulic oil from the hydraulic pump 12 for the cooling fan to the hydraulic motor 14 of the cooling fan 15. A predetermined amount of hydraulic oil is always supplied to the power steering device 30 to operate it.

〔考案の効果〕[Effect of idea]

上述の如く、本考案によれば、エンジン冷却フ
アン15の油圧モータ14に供給する作動油の油
温が低温の場合は、冷却フアン用油圧ポンプから
吐出通路に吐出される作動油の全部または大部分
は電磁流量制御弁によりそのまま吸込側に戻さ
れ、油圧モータ及びその供給・排出管路を通らな
くなるので、吐出量が多くしかも低温で作動油の
粘性が大であるにも拘わらず殆ど圧力損失は生ぜ
ず、従つてエンジン損失も殆ど生じない。これに
より作動油の粘性が大となる低温時に冷却フアン
用油圧ポンプの負荷が減少するので、動力舵取装
置用油圧ポンプの圧力が増大した場合でもタンデ
ムポンプ全体の負荷条件が厳しくなることがなく
なり、従つて焼付き等の問題が生じることもなく
なる。
As described above, according to the present invention, when the temperature of the hydraulic oil supplied to the hydraulic motor 14 of the engine cooling fan 15 is low, all or most of the hydraulic oil discharged from the cooling fan hydraulic pump to the discharge passage is The part is directly returned to the suction side by the electromagnetic flow control valve and does not pass through the hydraulic motor and its supply/discharge pipes, so there is almost no pressure loss despite the large discharge volume and the low temperature and high viscosity of the hydraulic oil. Therefore, almost no engine loss occurs. This reduces the load on the cooling fan hydraulic pump at low temperatures when the viscosity of the hydraulic oil is high, so even if the pressure of the power steering system hydraulic pump increases, the load conditions on the tandem pump as a whole will not become severe. Therefore, problems such as image sticking will not occur.

しかも低温時に冷却フアン用油圧ポンプの負荷
を減少させるために冷却フアンから油圧モータへ
の作動油の供給を減少または停止させても動力舵
取装置はその影響を受けることなく、動力舵取装
置用油圧ポンプから常に所定量の作動油の供給を
受けて常に安定した操舵フイーリングが得られ
る。
Moreover, even if the supply of hydraulic oil from the cooling fan to the hydraulic motor is reduced or stopped in order to reduce the load on the hydraulic pump for the cooling fan at low temperatures, the power steering system will not be affected. A predetermined amount of hydraulic oil is always supplied from the hydraulic pump, providing a stable steering feel.

〔実施例〕〔Example〕

先ず第1図及び第2図に示す第1実施例の説明
をする。
First, the first embodiment shown in FIGS. 1 and 2 will be explained.

第1図において、動力舵取装置用油圧ポンプ1
1及び冷却フアン用油圧ポンプ12の各ロータは
自動車のエンジン10と連動して回転する1個の
駆動軸13上に設けられ同時に回転駆動される。
この動力舵取装置用油圧ポンプ11、冷却フアン
用油圧ポンプ12及び駆動軸13によりタンデム
ポンプが構成される。
In FIG. 1, a hydraulic pump 1 for a power steering device is shown.
The rotors of the cooling fan hydraulic pump 1 and the cooling fan hydraulic pump 12 are provided on a single drive shaft 13 that rotates in conjunction with the automobile engine 10, and are driven to rotate at the same time.
The power steering device hydraulic pump 11, the cooling fan hydraulic pump 12, and the drive shaft 13 constitute a tandem pump.

第1図に示す如く、動力舵取装置用油圧ポンプ
11はリザーバ20より吸入した作動油を、流量
制御弁32を経て、ハンドル軸31aを介して操
舵ハンドル31により作動される自動車の動力舵
取装置30に供給する。動力舵取装置30から排
出された使用済の作動油はリザーバ20に戻され
る。動力舵取装置用油圧ポンプ11はベーンポン
プであり、その吐出量はエンジン10の回転速度
に応じて増大するが、計量絞り33の前後の圧力
差により作動する流量制御弁32の作用により動
力舵取装置30には一定流量の作動油が供給さ
れ、余分の流量は動力舵取装置用油圧ポンプ11
の吸込側にバイパスされる。計量絞り33の下流
側には、吐出側油圧の異常な上昇から動力舵取装
置用油圧ポンプ11を保護するリリーフ弁34が
設けられている。
As shown in FIG. 1, the hydraulic pump 11 for the power steering system pumps hydraulic oil sucked from the reservoir 20 through the flow rate control valve 32, and then passes through the handle shaft 31a to the power steering system of the vehicle, which is operated by the steering handle 31. Supplied to device 30. The used hydraulic oil discharged from the power steering device 30 is returned to the reservoir 20. The hydraulic pump 11 for the power steering device is a vane pump, and its discharge amount increases according to the rotational speed of the engine 10, but the power steering device is controlled by the action of the flow control valve 32, which is activated by the pressure difference before and after the metering throttle 33. A constant flow of hydraulic oil is supplied to the device 30, and the excess flow is supplied to the power steering device hydraulic pump 11.
bypassed to the suction side. A relief valve 34 is provided on the downstream side of the metering throttle 33 to protect the power steering device hydraulic pump 11 from an abnormal increase in the discharge side hydraulic pressure.

上述の動力舵取装置30及び動力舵取装置用油
圧ポンプ11からなる動力舵取装置側油圧回路
は、次に述べる油圧モータ14、電磁流量制御弁
40及び冷却フアン用油圧ポンプ12からなる冷
却フアン側油圧回路とは、互いに独立して別個に
設けられている。
The power steering device side hydraulic circuit consisting of the power steering device 30 and the power steering device hydraulic pump 11 described above is connected to a cooling fan consisting of a hydraulic motor 14, an electromagnetic flow control valve 40, and a cooling fan hydraulic pump 12, which will be described below. The side hydraulic circuits are provided independently and separately from each other.

冷却フアン用油圧ポンプ12はベーンポンプで
あり、第1図に示す如く、吸込通路21を介して
リザーバ20より吸入した作動油を、後述の如く
制御装置60により制御される電磁流量制御弁4
0を設けた吐出通路22を経て、エンジン冷却フ
アン15を駆動する油圧モータ14に供給し、こ
れを作動させる。油圧モータ14から排出された
使用済の作動油はオイルクーラ26を経てリザー
バ20に戻される。エンジン冷却フアン15は、
水冷式ラジエータ16を介してエンジン10を冷
却するものである。油圧モータ14には、供給さ
れる作動油の流量が所定量Qo以上となれば余分
の流量をバイパスして最大回転数を制限する油圧
モータ回路リリーフ弁25が並列に設けられてい
る。また、吐出通路22の電磁流量制御弁40よ
り下流側には、吐出側油圧の異常な上昇から冷却
フアン用油圧ポンプ12を保護するリリーフ弁2
4が設けられている。
The cooling fan hydraulic pump 12 is a vane pump, and as shown in FIG. 1, the hydraulic oil sucked from the reservoir 20 through the suction passage 21 is passed through the electromagnetic flow control valve 4 controlled by the control device 60 as described later.
The oil is supplied to the hydraulic motor 14 that drives the engine cooling fan 15 through a discharge passage 22 provided with a pressure of 0 to operate the engine cooling fan 15. The used hydraulic oil discharged from the hydraulic motor 14 is returned to the reservoir 20 via an oil cooler 26. The engine cooling fan 15 is
The engine 10 is cooled through a water-cooled radiator 16. The hydraulic motor 14 is provided in parallel with a hydraulic motor circuit relief valve 25 that bypasses the excess flow and limits the maximum rotational speed when the flow of the supplied hydraulic oil exceeds a predetermined amount Qo. Further, on the downstream side of the electromagnetic flow control valve 40 in the discharge passage 22, a relief valve 2 is provided that protects the cooling fan hydraulic pump 12 from an abnormal increase in the discharge side hydraulic pressure.
4 is provided.

電磁流量制御弁40は、第2図に示す如く、油
圧モータ14に向かう吐出通路後半部22aに連
通される絞り55の開度を連続的に変化させる電
磁絞り弁50と、この絞り55の前後の圧力差に
応じて作動する流量制御弁44より構成されてい
る。電磁絞り弁50はタンデムポンプのハウジン
グ12aに螺合された弁本体51、この弁本体5
1に支持されると共に弁軸53を固定した可動ス
プール52及びソレノイド56を備え、可動スプ
ール52はスプリング54により弁軸53と共に
右方向に付勢されて、通常は絞り55を全開とし
ている。そして、ソレノイド56に通電されれば
その電流値に応じて可動スプール52はスプリン
グ54に抗して左方向に移動し、これにより弁軸
53の先端部は絞り55に接近してその開度を減
少させるようになつている。流量制御弁44は電
磁絞り弁50の弁本体51と同軸にハウジング1
2aに形成された弁収納孔45と、これに嵌合さ
れて両側が絞り55の前後に連通された弁スプー
ル46を主要構成部材としている。弁スプール4
6は封止栓48との間に設けたスプリング4によ
り通常は電磁絞り弁50の絞り55に向けて付勢
されて吐出通路22、吐出通路後半部22a及び
バイパス路23の連通を閉じているが、冷却フア
ン用油圧ポンプ12からの作動油が吐出通路22
を経て供給されれば絞り55の前後の圧力差によ
りスプリング47に抗して後退してバイパス路2
3を吐出通路22に分岐接続し、吐出通路22よ
りの作動油の一部又は全部をバイパス路23を経
て吸込通路21に戻すよう構成されている。バイ
パス路23より吸込通路21に戻る作動油量は、
絞り55の全開の場合は少なく、絞り55の開度
が減少するにつれて増大し、絞り55が全閉とな
れば吐出通路22からの作動油は全量が吸込通路
21に戻される。絞り55の開口面積及びスプリ
ング47のばね力を適当に設定することにより吐
出通路22からバイパス路23を経て吸込通路2
1に戻る作動油の圧力損失を充分小とすることが
できる。バイパス路23は、ハウジング12a内
において吸込通路21に連通されるよう形成され
ており、バイパス路23を適当な流入角度をもつ
て吸込通路21に連続すれば、リザーバ20より
吸込通路21に吸入される作動油に対し過給作用
を与えて吸入効率を向上させることができる。
As shown in FIG. 2, the electromagnetic flow control valve 40 includes an electromagnetic throttle valve 50 that continuously changes the opening degree of a throttle 55 that communicates with the rear half 22a of the discharge passage toward the hydraulic motor 14, and The flow rate control valve 44 operates according to the pressure difference between the two. The electromagnetic throttle valve 50 includes a valve body 51 screwed onto the housing 12a of the tandem pump, and this valve body 5.
The movable spool 52 and the solenoid 56 are supported by the valve shaft 53 and supported by the valve shaft 53, and the movable spool 52 is urged rightward together with the valve shaft 53 by a spring 54, so that the throttle 55 is normally fully opened. When the solenoid 56 is energized, the movable spool 52 moves to the left against the spring 54 according to the current value, and as a result, the tip of the valve shaft 53 approaches the throttle 55 and changes its opening degree. It is starting to decrease. The flow rate control valve 44 is mounted on the housing 1 coaxially with the valve body 51 of the electromagnetic throttle valve 50.
The main components are a valve storage hole 45 formed in 2a, and a valve spool 46 fitted into the valve spool 46 whose both sides communicate with the front and rear of the throttle 55. Valve spool 4
6 is normally biased toward the throttle 55 of the electromagnetic throttle valve 50 by a spring 4 provided between the sealing plug 48 and closes communication between the discharge passage 22, the rear half 22a of the discharge passage 22a, and the bypass passage 23. However, the hydraulic oil from the cooling fan hydraulic pump 12 flows through the discharge passage 22.
If it is supplied through the bypass passage 2, it will retreat against the spring 47 due to the pressure difference before and after the throttle 55, and the bypass passage 2
3 is branched and connected to the discharge passage 22, and a part or all of the hydraulic oil from the discharge passage 22 is returned to the suction passage 21 via the bypass passage 23. The amount of hydraulic oil that returns to the suction passage 21 from the bypass passage 23 is
The case where the throttle 55 is fully open is rare, and increases as the opening degree of the throttle 55 decreases, and when the throttle 55 is fully closed, the entire amount of hydraulic oil from the discharge passage 22 is returned to the suction passage 21. By appropriately setting the opening area of the throttle 55 and the spring force of the spring 47, the air flow from the discharge passage 22 through the bypass passage 23 to the suction passage 2
The pressure loss of the hydraulic oil returning to 1 can be made sufficiently small. The bypass passage 23 is formed in the housing 12a so as to communicate with the suction passage 21. If the bypass passage 23 is connected to the suction passage 21 at an appropriate inflow angle, suction from the reservoir 20 is drawn into the suction passage 21. The suction efficiency can be improved by giving a supercharging effect to the hydraulic oil.

電子式の制御装置60には、第1図に示す如
く、リザーバ20内の作動油温を検出する油温セ
ンサ61とラジエータ16内の冷却水温を検出す
る水温センサ62が接続され、また電磁絞り弁5
0のソレノイド56が接続されている。本実施例
においては、油温センサ61により検出される作
動油温Tはエンジン10の環境温度を示し、水温
センサ62により検出される冷却水温tはエンジ
ン10の負荷状態を示している。制御装置60
は、この作動油温Tと冷却水温tに基づいてソレ
ノイド56に印加する電流を制御して電磁流量制
御弁40を制御するものである。すなわち、制御
装置60がソレノイド56に印加する印加電流i
は、作動油温Tが所定温度To(例えば85℃)以下
の場合は、第3図の破線I1に示す如く冷却水温
tとは無関係に一定の最大値iAとなり、また制
御油温TがToを超えた場合は、実線I2に示す
如く冷却水温tにより変化し、t≦t1のときは前
記最大値iA、t≧t2のとき最小値iB、t1<t<t2
のときは水温tに応じた値となるように設定され
ている。水温t1及びt2は、例えば85℃及び95℃で
ある。これに応じて電磁絞り弁50の開度は、作
動油温TがTo以下の場合は、第4図の破線P1
に示す如く常に一定の最小開度pAとなり、また
作動油温TがToを超えた場合は、実線P2に示
す如くラジエータ水温tにより変化し、t≦t1の
ときは前記最小開度pA、t≧t2のとき最大開度
pB、t1<t<t2のときは水温tに応じた開度と
なる。
As shown in FIG. 1, the electronic control device 60 is connected with an oil temperature sensor 61 that detects the temperature of the hydraulic oil in the reservoir 20 and a water temperature sensor 62 that detects the temperature of the cooling water in the radiator 16. Valve 5
0 solenoid 56 is connected. In this embodiment, the hydraulic oil temperature T detected by the oil temperature sensor 61 indicates the environmental temperature of the engine 10, and the cooling water temperature t detected by the water temperature sensor 62 indicates the load state of the engine 10. Control device 60
The solenoid flow control valve 40 is controlled by controlling the current applied to the solenoid 56 based on the hydraulic oil temperature T and the cooling water temperature t. That is, the applied current i that the control device 60 applies to the solenoid 56
When the hydraulic oil temperature T is below a predetermined temperature To (e.g. 85°C), the maximum value iA is constant regardless of the cooling water temperature t, as shown by the broken line I1 in FIG. If it exceeds , it changes depending on the cooling water temperature t as shown by the solid line I2, and when t≦t1, the maximum value iA, when t≧t2, the minimum value iB, and t1<t<t2.
In this case, the value is set to correspond to the water temperature t. The water temperatures t1 and t2 are, for example, 85°C and 95°C. Accordingly, the opening degree of the electromagnetic throttle valve 50 is determined by the broken line P1 in FIG. 4 when the hydraulic oil temperature T is below To.
As shown in , the minimum opening pA is always constant, and when the hydraulic oil temperature T exceeds To, it changes depending on the radiator water temperature t as shown by the solid line P2, and when t≦t1, the minimum opening pA, t Maximum opening when ≧t2
pB, when t1<t<t2, the opening degree corresponds to the water temperature t.

電磁絞り弁50が最小開度pAの場合は、冷却
フアン用油圧ポンプ12からの作動油は大部分が
流量制御弁44により吸込通路21に戻されるの
で、吐出通路後半部22aから油圧モータ14に
供給される作動油の流量Qは、第5図の破線Aに
示す如く、ポンプの駆動軸13の回転速度と共に
次第に増大するがその量はわずかである。電磁絞
り弁50が最大開度pBの場合は、流量制御弁4
4により吸込通路21に戻される作動油量は少な
いので、油圧モータ14に供給される流量Qは、
実線B0に示す如く、ポンプの駆動軸回転速度と
共に急速に増大するが、流量QがQoに達すれば
モータ回路リリーフ弁25が作動して余分の流量
をバイパスするので流量Qは一定となる。電磁絞
り弁50の開度が最大開度pBより減少すれば、
ポンプの駆動軸回転速度に対する流量Qの増加割
合は、実線B1,B2……に示す如く減少する
が、流量Qの最大値Qoは一定である。油圧モー
タ14は供給される作動油の流量Qに比例した回
転速度で回転して冷却フアン15を作動させ、ラ
ジエータ16を冷却する。
When the electromagnetic throttle valve 50 is at the minimum opening pA, most of the hydraulic oil from the cooling fan hydraulic pump 12 is returned to the suction passage 21 by the flow rate control valve 44, so that the hydraulic oil is transferred from the rear half 22a of the discharge passage to the hydraulic motor 14. The flow rate Q of the supplied hydraulic oil gradually increases with the rotational speed of the drive shaft 13 of the pump, as shown by the broken line A in FIG. 5, but the amount is small. When the electromagnetic throttle valve 50 is at the maximum opening pB, the flow control valve 4
Since the amount of hydraulic oil returned to the suction passage 21 by 4 is small, the flow rate Q supplied to the hydraulic motor 14 is
As shown by the solid line B0, the flow rate Q increases rapidly with the rotational speed of the pump's drive shaft, but when the flow rate Q reaches Qo, the motor circuit relief valve 25 operates to bypass the excess flow rate, so the flow rate Q remains constant. If the opening degree of the electromagnetic throttle valve 50 decreases below the maximum opening degree pB,
Although the rate of increase in the flow rate Q with respect to the rotational speed of the drive shaft of the pump decreases as shown by solid lines B1, B2, . . . , the maximum value Qo of the flow rate Q remains constant. The hydraulic motor 14 rotates at a rotational speed proportional to the flow rate Q of the supplied hydraulic oil, operates the cooling fan 15, and cools the radiator 16.

上記実施例によれば、油温センサ61により検
出されるリザーバ20の作動油温Tが所定の低温
To以下となつて作動油の粘性が増大した場合は、
制御装置60により電磁絞り弁50は最低開度
pAとなり、流量制御弁44は冷却フアン用油圧
ポンプ12から吐出通路22に吐出される作動油
の大部分をバイパス路23を経て吸込通路21に
バイパスする。従つて吐出通路後半部22a、油
圧モータ14及びオイルクーラ25を設けた排出
管路を作動油の大部分が通らなくなるので、此等
の部分の流通抵抗によるエネルギ損失を防ぐこと
ができる。また、これにより冷却フアン用油圧ポ
ンプ12の負荷が減少するので、動力舵取装置用
油圧ポンプ11の圧力が増大した場合でもタンデ
ムポンプ全体の負荷条件が厳しくなることがなく
なり、焼付き等の問題が生じこともなくなる。ま
た、低温で作動油の粘性が増大した場合にはリザ
ーバ20から作動油を吸入する吸入通路21内の
抵抗の増大により吸込不足が生じてキヤビテーシ
ヨンが発生し易くなるが、本実施例ではバイパス
される作動油をタンデムポンプのハウジング12
a内で吸込通路21に戻しているのでリザーバ2
0からの吸込量が減少し、従つて吸込不足による
キヤビテーシヨンの発生を防止することができ
る。なお、この状態において油圧モータ14は殆
ど作動せず、従つて冷却フアン15もわずかしか
作動しないが、環境温度が低いのでエンジン10
に冷却不足による問題を生じることはない。
According to the above embodiment, the hydraulic oil temperature T of the reservoir 20 detected by the oil temperature sensor 61 is a predetermined low temperature.
If the viscosity of the hydraulic oil increases below To,
The electromagnetic throttle valve 50 is set to the minimum opening by the control device 60.
pA, and the flow rate control valve 44 bypasses most of the hydraulic oil discharged from the cooling fan hydraulic pump 12 into the discharge passage 22 through the bypass passage 23 to the suction passage 21. Therefore, since most of the hydraulic oil does not pass through the discharge pipe line provided with the rear half 22a of the discharge passage, the hydraulic motor 14, and the oil cooler 25, energy loss due to flow resistance in these parts can be prevented. In addition, this reduces the load on the cooling fan hydraulic pump 12, so even if the pressure of the power steering system hydraulic pump 11 increases, the load conditions on the entire tandem pump will not become severe, causing problems such as seizure. will no longer occur. Furthermore, when the viscosity of the hydraulic oil increases at low temperatures, the resistance in the suction passage 21 that sucks the hydraulic oil from the reservoir 20 increases, resulting in insufficient suction and cavitation. However, in this embodiment, cavitation is likely to occur. The tandem pump housing 12
Since it is returned to the suction passage 21 in a, the reservoir 2
The amount of suction from zero is reduced, and therefore cavitation due to insufficient suction can be prevented. In this state, the hydraulic motor 14 hardly operates, and therefore the cooling fan 15 also operates only slightly, but since the environmental temperature is low, the engine 10
There are no problems caused by insufficient cooling.

作動油温Tが所定の低温Toより高温となれば、
水温センサ62により検出されるラジエータ16
の冷却水温tに応じて冷却フアン用ポンプ12か
らの作動油の全部または大部分は油圧モータ14
に供給されるようになり、冷却フアン15を必要
かつ充分に作動させてエンジン10を冷却するよ
うになる。
If the hydraulic oil temperature T becomes higher than the predetermined low temperature To,
Radiator 16 detected by water temperature sensor 62
Depending on the cooling water temperature t, all or most of the hydraulic oil from the cooling fan pump 12 is transferred to the hydraulic motor 14.
The cooling fan 15 is operated as necessary and sufficiently to cool the engine 10.

また、このように作動油温Tの変動により冷却
フアン用油圧ポンプ12から油圧モータ14への
作動油の供給状態が変動しても、動力舵取装置用
油圧ポンプ11は、冷却フアン15側から独立し
た油圧回路により冷却フアン15の油圧モータ1
4に対する冷却フアン用油圧ポンプ12の作動油
の供給状態の変動とは全く無関係に常に所定量の
作動油を動力舵取装置30に供給してこれを作動
させるので、動力舵取装置30は冷却フアン15
側の作動状態の影響を受けることなく常に確実に
作動する。
Furthermore, even if the state of supply of hydraulic oil from the cooling fan hydraulic pump 12 to the hydraulic motor 14 fluctuates due to fluctuations in the hydraulic oil temperature T, the power steering device hydraulic pump 11 can be operated from the cooling fan 15 side. Hydraulic motor 1 of cooling fan 15 with independent hydraulic circuit
Since a predetermined amount of hydraulic oil is always supplied to the power steering device 30 to operate it, the power steering device 30 is cooled, regardless of fluctuations in the supply state of hydraulic oil of the cooling fan hydraulic pump 12 to the cooling fan 4. Juan 15
It always operates reliably without being affected by the operating status of the other side.

なお、上記実施例においては電磁絞り弁50
は、最小開度pAの状態において多少の通路面積
を残したが、必ずしもその必要はなく、全閉とし
てもよい。この場合は、最小開度状態における油
圧モータ流量Qは0となり、冷却フアン15は停
止する。
In addition, in the above embodiment, the electromagnetic throttle valve 50
Although some passage area is left in the state of the minimum opening degree pA, it is not necessary and may be completely closed. In this case, the hydraulic motor flow rate Q in the minimum opening state becomes 0, and the cooling fan 15 stops.

次に、第6図に示す第2実施例においては、上
記第1実施例と同様に作用する全ての構成に加え
て、動力舵取装置30の入力管路のギヤ発生圧力
を検出する油圧センサ63が制御装置60に接続
されている。制御装置60は、油圧センサ63に
より検出されるギヤ発生圧力が所定値以上となれ
ば他の条件如何に拘わらず電磁流量制御弁40の
電磁絞り弁50を全閉とし、冷却フアン用油圧ポ
ンプ12から吐出される作動油を全部吸込側にバ
イパスし、第7図の破線Aに示す如く油圧モータ
14への作動油流量Qを0として冷却フアン用油
圧ポンプ12の負荷を減少させるようになつてい
る。動力舵取装置30の作動時、特に据切りの際
にはギヤ発生圧力が高くなるので動力舵取装置用
油圧ポンプ11の負荷が増大し、タンデムポンプ
全体の負荷が増大する。本実施例によれば、この
ように動力舵取装置用油圧ポンプ11の負荷が増
大した場合に冷却フアン用油圧ポンプ12の負荷
を減少させて、タンデムポンプ全体の負荷のピー
クを減少させることができるので、一時的過負荷
による焼付き等のおそれを一側減少させることが
でき、また動力舵取装置30は油圧モータ14の
作動状態による影響を受けることなく常に確実に
作動して常に安定した操舵フイーリングを与え
る。
Next, in the second embodiment shown in FIG. 6, in addition to all the components that operate in the same manner as in the first embodiment, there is a hydraulic pressure sensor that detects the gear generated pressure in the input pipe of the power steering device 30. 63 is connected to the control device 60. The control device 60 fully closes the electromagnetic throttle valve 50 of the electromagnetic flow control valve 40 when the gear generated pressure detected by the oil pressure sensor 63 exceeds a predetermined value, regardless of other conditions, and closes the electromagnetic throttle valve 50 of the electromagnetic flow control valve 40 to close the cooling fan hydraulic pump 12. All the hydraulic oil discharged from the cooling fan is bypassed to the suction side, and the hydraulic oil flow rate Q to the hydraulic motor 14 is set to 0, as shown by the broken line A in FIG. 7, to reduce the load on the cooling fan hydraulic pump 12. There is. When the power steering device 30 is in operation, especially when stationary, the gear generation pressure increases, so the load on the power steering device hydraulic pump 11 increases, and the load on the entire tandem pump increases. According to this embodiment, when the load on the power steering system hydraulic pump 11 increases, the load on the cooling fan hydraulic pump 12 can be reduced to reduce the peak load on the entire tandem pump. As a result, the risk of seizure due to temporary overload can be reduced to one side, and the power steering device 30 always operates reliably and is always stable without being affected by the operating state of the hydraulic motor 14. Gives steering feel.

なお、第2実施例においては、動力舵取装置3
0のギヤ発生圧力が高い状態ではエンジン10の
冷却フアン15が作動しなくなるが、このような
状態は比較的短時間であり、またエンジン10は
相当な熱的慣性を有しているので、冷却フアン1
5のこのような一時的停止により問題が生じるこ
とはない。
In addition, in the second embodiment, the power steering device 3
The cooling fan 15 of the engine 10 will not operate when the 0 gear generation pressure is high, but this condition will last for a relatively short time and the engine 10 has considerable thermal inertia, so the cooling fan 15 will not operate. fan 1
Such a temporary suspension of 5 does not cause any problems.

第2実施例の変形例として、油圧センサ63に
よりギヤ発生圧力を検出する代わりに操舵角セン
サ65により動力舵取装置30の作動状態を検出
し、操舵角が所定値以上となれば冷却フアン用油
圧ポンプ12からの作動油を吸込側にバイパス
し、第7図の破線Aの特性が得られるようにして
もよい。なお、この変形例においては、或る程度
の車速(従つてエンジン回転速度)となれば操舵
角が増大してもギヤ発生圧力はそれ程は増大しな
いので、更にエンジン10(または駆動軸13)
の回転速度センサ65を制御装置60に接続し、
操舵角が増大した場合には第7図の二点鎖線Cに
示すような特性が得られるように、電磁流量制御
弁40を制御装置60により制御してもよい。
As a modification of the second embodiment, instead of detecting the gear generated pressure using the oil pressure sensor 63, the operating state of the power steering device 30 is detected using the steering angle sensor 65, and when the steering angle exceeds a predetermined value, the cooling fan is The hydraulic oil from the hydraulic pump 12 may be bypassed to the suction side so that the characteristics shown by the broken line A in FIG. 7 can be obtained. In this modification, even if the steering angle increases, the gear generation pressure does not increase that much once the vehicle speed (and thus the engine rotation speed) reaches a certain level, so the engine 10 (or drive shaft 13)
A rotational speed sensor 65 is connected to the control device 60,
When the steering angle increases, the electromagnetic flow control valve 40 may be controlled by the control device 60 so that a characteristic as shown by the two-dot chain line C in FIG. 7 is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本考案による車両用タンデム
ポンプ装置の第1実施例を示し、第1図は全体構
成図、第2図は電磁流量制御弁の縦断面図、第3
図は電磁絞り弁への印加電流の変化特性図、第4
図は電磁絞り弁の開度の変化特性図、第5図は油
圧モータを通る作動油の流量の変化特性図、第6
図及び第7図は第2実施例及びその変形例を示
し、第6図全体構成図、第7図は油圧モータを通
る作動油の流量の変化特性図である。 符号の説明、10……エンジン、11……動力
舵取装置用油圧ポンプ、12……冷却フアン用油
圧ポンプ、13……駆動軸、14……油圧モー
タ、15……冷却フアン、21……吸込通路、2
2……吐出通路、23……バイパス路、30……
動力舵取装置、40……電磁流量制御弁、60…
…制御装置。
1 to 5 show a first embodiment of a vehicle tandem pump device according to the present invention, in which FIG. 1 is an overall configuration diagram, FIG. 2 is a longitudinal sectional view of an electromagnetic flow control valve, and FIG.
The figure is a characteristic diagram of changes in the applied current to the electromagnetic throttle valve.
The figure is a characteristic diagram of changes in the opening degree of the electromagnetic throttle valve, Figure 5 is a characteristic diagram of changes in the flow rate of hydraulic oil passing through the hydraulic motor, and Figure 6 is a characteristic diagram of changes in the flow rate of hydraulic fluid passing through the hydraulic motor.
7 and 7 show the second embodiment and its modification, FIG. 6 is an overall configuration diagram, and FIG. 7 is a characteristic diagram of changes in the flow rate of hydraulic oil passing through a hydraulic motor. Explanation of symbols, 10...Engine, 11...Hydraulic pump for power steering device, 12...Hydraulic pump for cooling fan, 13...Drive shaft, 14...Hydraulic motor, 15...Cooling fan, 21... Suction passage, 2
2...Discharge passage, 23...Bypass path, 30...
Power steering device, 40... Electromagnetic flow control valve, 60...
…Control device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 動力舵取装置に作動油を供給する動力舵取装置
用油圧ポンプと、エンジン冷却フアンの油圧モー
タに作動油を供給する冷却フアン用油圧ポンプを
備え、前記両油圧ポンプをエンジンと連動して回
転する1個の駆動軸上に設けて同時に回転駆動し
てなる車両用タンデムポンプ装置において、前記
冷却フアン用油圧ポンプと前記油圧モータを連通
する吐出通路に設けられて同吐出通路を同冷却フ
アン用油圧ポンプの吸込通路に連通されるバイパ
ス路に分岐接続する電磁流量制御弁と、前記エン
ジン冷却フアンの油圧モータに供給する作動油の
油温を検出する温度センサと、この温度センサに
よる検出温度が低温の場合に前記吐出通路を通る
作動油の全部または大部分を前記バイパス路を経
て前記吸込通路にバイパスさせるよう前記電磁流
量制御弁を制御する制御装置を備え、前記動力舵
取装置及び動力舵取装置用油圧ポンプからなる動
力舵取装置側油圧回路と、前記油圧モータ、電磁
流量制御弁及び冷却フアン用油圧ポンプからなる
冷却フアン側油圧回路とを、互いに独立して設け
たことを特徴とする車両用タンデムポンプ装置。
A hydraulic pump for the power steering device supplies hydraulic oil to the power steering device, and a hydraulic pump for the cooling fan supplies hydraulic oil to the hydraulic motor of the engine cooling fan, and both hydraulic pumps are rotated in conjunction with the engine. In a tandem pump device for a vehicle, which is provided on a single drive shaft and driven to rotate at the same time, the hydraulic pump for the cooling fan is provided in a discharge passage communicating with the hydraulic motor, and the discharge passage is connected to the hydraulic pump for the cooling fan. An electromagnetic flow control valve branch-connected to a bypass passage communicating with the suction passage of the hydraulic pump, a temperature sensor for detecting the temperature of hydraulic oil supplied to the hydraulic motor of the engine cooling fan, and a temperature detected by the temperature sensor. a control device that controls the electromagnetic flow control valve to bypass all or most of the hydraulic fluid passing through the discharge passage to the suction passage via the bypass passage when the temperature is low; A power steering device side hydraulic circuit consisting of a hydraulic pump for a steering device, and a cooling fan side hydraulic circuit consisting of the hydraulic motor, an electromagnetic flow control valve, and a cooling fan hydraulic pump are provided independently from each other. A tandem pump device for vehicles.
JP1986088897U 1986-06-11 1986-06-11 Expired - Lifetime JPH059515Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1986088897U JPH059515Y2 (en) 1986-06-11 1986-06-11
US07/060,525 US4798050A (en) 1986-06-11 1987-06-11 Control system for hydraulic tandem pump in motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986088897U JPH059515Y2 (en) 1986-06-11 1986-06-11

Publications (2)

Publication Number Publication Date
JPS62200185U JPS62200185U (en) 1987-12-19
JPH059515Y2 true JPH059515Y2 (en) 1993-03-09

Family

ID=13955753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986088897U Expired - Lifetime JPH059515Y2 (en) 1986-06-11 1986-06-11

Country Status (2)

Country Link
US (1) US4798050A (en)
JP (1) JPH059515Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881165B2 (en) 2001-02-07 2005-04-19 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus of vehicle and control method

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016440A (en) * 1989-10-13 1991-05-21 Sager William F Apparatus for delivering a controllable variable flow of pressurized fluid
JPH089368Y2 (en) * 1989-11-30 1996-03-21 トヨタ自動車株式会社 Secondary air supply device for internal combustion engine
GB2251962B (en) * 1990-11-13 1995-05-24 Samsung Heavy Ind System for automatically controlling an operation of a heavy construction
US6021641A (en) * 1995-03-09 2000-02-08 Buschur; Jeffrey J. Hydraulically powered fan system for vehicles
US5960628A (en) * 1995-03-09 1999-10-05 Valeo Electrical Systems, Inc. Hydraulically powered fan and power steering in vehicle
US5535845A (en) * 1995-03-09 1996-07-16 Itt Automotive Electrical Systems, Inc. Automotive hydraulic system and method
AT402280B (en) * 1995-08-01 1997-03-25 Hoerbiger Gmbh HYDRAULIC ACTUATING ARRANGEMENT FOR A VEHICLE TAIL
JPH10131751A (en) * 1996-10-29 1998-05-19 Aisin Seiki Co Ltd Tandem pump device
JP3897185B2 (en) * 1996-12-26 2007-03-22 株式会社小松製作所 Cooling fan drive unit
US5946911A (en) * 1997-01-07 1999-09-07 Valeo Electrical Systems, Inc. Fluid control system for powering vehicle accessories
US5802848A (en) * 1997-08-28 1998-09-08 General Motors Corporation Hydraulic system for motor vehicle
US5943861A (en) * 1997-12-15 1999-08-31 General Motors Corporation Hydraulic system for motor vehicle
US6311488B1 (en) * 1998-10-26 2001-11-06 Komatsu Ltd. Cooling fan drive apparatus
US6330799B1 (en) * 2000-01-26 2001-12-18 Probir Chatterjea Adaptive cooling system control system
US6227221B1 (en) 2000-10-04 2001-05-08 Geoffrey W. Schmitz Single-fluid apparatus for supplying vehicle power and lubrication fluid requirements and a system and method for fluid distribution and delivery
US6463893B1 (en) * 2000-10-31 2002-10-15 Caterpillar Inc Cooling fan drive system
US6629411B2 (en) 2001-05-09 2003-10-07 Valeo Electrical Systems, Inc. Dual displacement motor control
DE10200092A1 (en) * 2002-01-03 2003-07-17 Zf Lenksysteme Gmbh Power steering system for vehicles
JP3969220B2 (en) * 2002-07-04 2007-09-05 株式会社ジェイテクト Absolute position detection device and absolute position detection method for electric power steering device
US6622672B1 (en) 2002-08-19 2003-09-23 Ford Global Technologies, L.L.C. Variable compression ratio control system for an internal combustion engine
SE524926C2 (en) * 2003-04-15 2004-10-26 Volvo Constr Equip Holding Se Liquid viscosity control system and method
JP2005076525A (en) * 2003-08-29 2005-03-24 Shin Caterpillar Mitsubishi Ltd Fan rotation speed control method
JP4464644B2 (en) * 2003-09-11 2010-05-19 キャタピラージャパン株式会社 Fan speed control method
US7165950B2 (en) * 2003-12-15 2007-01-23 Bell Helicopter Textron Inc. Two-stage pressure relief valve
CA2501917A1 (en) * 2004-03-23 2005-09-23 Hydra-Fab Fluid Power Inc. Electro-hydraulic fan drive cooling and steering system for vehicle
US7360357B2 (en) * 2005-03-07 2008-04-22 Parker-Hannifin Corporation Hydraulic steering system with input horsepower limiting circuit and increased fan speeds at low engine RPM
US7240486B2 (en) * 2005-04-18 2007-07-10 Caterpillar Inc Electro-hydraulic system for fan driving and brake charging
KR100631071B1 (en) * 2005-04-20 2006-10-02 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 Apparatus for controlling pump flow of construction equipment and method thereof
US7610927B2 (en) 2005-12-12 2009-11-03 Schmitz Geoffrey W Apparatus, system and method for monitoring fluid flows and/or filter conditions and/or distributing a single fluid
FR2895596B1 (en) * 2005-12-22 2008-03-14 Telma Sa METHOD FOR CONTROLLING AN ELECTROMAGNETIC RETARDER
JP4649354B2 (en) * 2006-03-20 2011-03-09 キャタピラー エス エー アール エル Cooling fan control device and work machine cooling fan control device
EP2055951B1 (en) * 2007-11-01 2019-03-27 Danfoss Power Solutions Aps Charged hydraulic system
DE102010047194A1 (en) * 2010-09-30 2012-04-05 Robert Bosch Gmbh Hydrostatic drive
US9086143B2 (en) * 2010-11-23 2015-07-21 Caterpillar Inc. Hydraulic fan circuit having energy recovery
US9416720B2 (en) 2011-12-01 2016-08-16 Paccar Inc Systems and methods for controlling a variable speed water pump
US9303662B2 (en) 2012-12-27 2016-04-05 Stac, Inc. Pump fan control circuit and block for truck mountable hydraulic system
EP2757024B1 (en) * 2013-01-16 2015-06-24 Danfoss Power Solutions Aps A hydraulic steering control arrangement
WO2015151582A1 (en) * 2014-03-31 2015-10-08 株式会社クボタ Work machine
RU2599185C1 (en) * 2015-05-27 2016-10-10 Валерий Яковлевич Обидин Vehicle steering mechanism
DE102018124912B4 (en) * 2018-10-09 2022-09-29 White Drive Motors And Steering Gmbh Hydraulic steering device with ratio change
CN111306027B (en) * 2020-02-17 2022-11-11 柳州柳工挖掘机有限公司 Method and system for controlling power of main pump of rotary drilling rig

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3664129A (en) * 1968-05-08 1972-05-23 Hyster Co Hydraulic cooling system
JPS4970387U (en) * 1971-06-28 1974-06-19
JPS4940183A (en) * 1972-08-17 1974-04-15
JPS52125246U (en) * 1976-03-19 1977-09-22
US4223646A (en) * 1978-02-16 1980-09-23 Trw Inc. Hydraulic fan drive system
US4179888A (en) * 1978-05-18 1979-12-25 Eaton Corporation Hydraulic fan drive system
DE2946656C2 (en) * 1979-11-19 1985-10-24 Wafios Maschinenfabrik Wagner, Ficker & Schmid (GmbH & Co KG), 7410 Reutlingen Method and machine for producing coil springs from endless wire by means of spring coils
US4414809A (en) * 1980-10-28 1983-11-15 General Motors Corporation Hydraulic power steering and cooling fan drive system for vehicles
JPS5813119A (en) * 1981-07-17 1983-01-25 Komatsu Ltd Automatic control device for cooling fan
DE3341795C2 (en) * 1983-11-19 1986-07-10 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Control valve for a control device of a hydraulic fan drive, in particular for cooling systems in rail vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881165B2 (en) 2001-02-07 2005-04-19 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus of vehicle and control method

Also Published As

Publication number Publication date
JPS62200185U (en) 1987-12-19
US4798050A (en) 1989-01-17

Similar Documents

Publication Publication Date Title
JPH059515Y2 (en)
US5217085A (en) Lubrication and cooling system for a powertrain including an electric motor
JP2767995B2 (en) Internal combustion engine cooling system
US6672056B2 (en) Device for cooling components by means of hydraulic fluid from a hydraulic circuit
US20140083376A1 (en) Cooling Circuit For A Liquid-Cooled Internal Combustion Engine
JPS6310289B2 (en)
JP3459265B2 (en) Automotive hydraulic fan system
JP4443096B2 (en) Water pump with electronically controlled viscous joint drive
EP0969189B1 (en) Total cooling assembly for a vehicle having an internal combustion engine
US5950431A (en) Tandem pump apparatus
JP3324440B2 (en) Engine lubrication device
JPS61215417A (en) Cooling system of vehicle
JPH04347382A (en) Pump discharge pressure controller
JPH0347422A (en) Cooling method for internal combustion engine
US6330799B1 (en) Adaptive cooling system control system
JP2560286B2 (en) Vehicle cooling system
JP2556001B2 (en) Vehicle cooling system
JPH0434247Y2 (en)
JPH09317465A (en) Hydraulic drive for cooling fan
JPS62261613A (en) Cooling control device for vehicle
JPH05178223A (en) Integration type hydraulic pressure feeding device for vehicle
JPH0222214B2 (en)
JP2934638B2 (en) Hydraulic drive for cooling fan
JPH0794804B2 (en) Cooling device for automobile radiator
JPH0748979Y2 (en) Hydraulic drive for cooling fan