JPS6065005A - Partial impartment of hydrophilicity to polymeric material - Google Patents

Partial impartment of hydrophilicity to polymeric material

Info

Publication number
JPS6065005A
JPS6065005A JP17323383A JP17323383A JPS6065005A JP S6065005 A JPS6065005 A JP S6065005A JP 17323383 A JP17323383 A JP 17323383A JP 17323383 A JP17323383 A JP 17323383A JP S6065005 A JPS6065005 A JP S6065005A
Authority
JP
Japan
Prior art keywords
pattern
polymer
polymeric material
fries rearrangement
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17323383A
Other languages
Japanese (ja)
Inventor
Yoichi Kamoshita
鴨志田 洋一
Mitsunobu Koshiba
小柴 満信
Yasuaki Yokoyama
泰明 横山
Yoshiyuki Harita
榛田 善行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP17323383A priority Critical patent/JPS6065005A/en
Publication of JPS6065005A publication Critical patent/JPS6065005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To facilitate the formation of a printing plate material suitable for relief printing or the like, by applying light of a specified wavelength through a pattern mask against a polymeric material capable of undergoing phot-Fries rearrangement and thereby introducing thereto hydroxyl or amino groups after the pattern. CONSTITUTION:A polymeric material is prepared from a polymerix compound having an aryl ester, aryl amide, or aryl carbonate unit in the main chain or a side chain and being capable of undergoing photo-Fries rearrangement (e.g., polyphenyl methacrylate or poly-N-acetylaminostyrene). Near-ultraviolet to far-ultraviolet light of a wavelength of 210-390nm is applied through a pattern mask against the polymeric material to effect Fries rearrangement after the pattern to introduce hydroxyl or amino groups to render the material hydrophilic after the pattern. A negative or positive pattern can be obtained by developing the material.

Description

【発明の詳細な説明】 本発明はホトレジストとしてまたは凸版、もしくは平版
印刷に有用な高分子材料の部分的親水化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for partially hydrophilizing polymeric materials useful as photoresists or in letterpress or lithographic printing.

従来ホトレジストとしては、ネガ型レジストとしてポリ
ビニルシンナマート系レジスト、環化ゴム系レジストな
どが、またポジ型レジストとしてナフトキノンジアジド
系レジスト力とが知られているが、これらはいずれもい
わゆるネガ型レジストまたはポジ型レジストとしてのみ
使用できるものであシ、ネガ型レジストをポジ型レジス
トとして、またポジ型レジストをネガ型レジストとして
使用することができないものである。
Conventional photoresists include polyvinyl cinnamate resists, cyclized rubber resists, etc. as negative resists, and naphthoquinone diazide resists as positive resists, but both of these are so-called negative resists or It can only be used as a positive resist, and cannot be used as a negative resist or as a negative resist.

また高分子材料の表面親水化方法としては、例えば酸素
プラズマ処理あるいはアクリルアミド、N−ビニルピロ
リドン、アクリル酸などの親水性モノマーを高分子羽村
の表面にグラフト重合させるなどの方法が提案されてい
るが、前者では高分子材料表面の損傷が大きく条件を選
ばないと該材料が灰化したシ、またパターン状に処理す
る1(は耐酸素プラズマ性のあるホトレジストによるマ
スキングが必要となり、一方後者では表面をパターン状
に親水化できず、またグラフトM合の装置も大規模なも
のとなる。
In addition, methods for making the surface of polymeric materials hydrophilic include, for example, oxygen plasma treatment or graft polymerization of hydrophilic monomers such as acrylamide, N-vinylpyrrolidone, and acrylic acid onto the surface of polymeric materials. In the former case, the surface of the polymer material is severely damaged and unless the conditions are selected, the material will turn into ash. cannot be made hydrophilic in a pattern, and the equipment for grafting M must be large-scale.

本発明はこれらの技術的課題を庁以になさiしたもので
、光フリース転位することが可能な高分子財産;[と特
定の波長の近紫外光乃至遠紫外光(以下単に光と記す)
の照射との組合せによって、高分子材料の少なくともそ
の表面をパターン状に親水化処理せしめることによりポ
ジ型レジストにもネガ型レジストにもなシ、また凸版印
刷材としても使用でき、しかもそのままで平版印刷とし
ても使用可能な高分子I料の部分的親水化方法を提供す
ることを目的とする。
The present invention has solved these technical problems, and it uses a polymer property capable of optical Fries rearrangement;
In combination with irradiation, at least the surface of the polymer material is hydrophilized in a pattern, so it can be used as a positive resist or a negative resist, and can also be used as a letterpress printing material. The object of the present invention is to provide a method for partially hydrophilizing a polymer I material that can also be used for printing.

即ち本発明は、光フリース転位可能な高分子羽村にパタ
ーンマスクを介して波長210〜390nmの光を照射
することによフ該高分子材料の少なくとも表面に水酸基
またはアミン基を導入することを特徴とする高分子材料
の部分的親水化方法である。
That is, the present invention is characterized in that a hydroxyl group or an amine group is introduced into at least the surface of the polymer material by irradiating the polymer Hamura capable of photo-Fries rearrangement with light having a wavelength of 210 to 390 nm through a pattern mask. This is a method for partially hydrophilizing polymeric materials.

本発明は、光フリース転位可能な高分子材料に光をパタ
ーンマスクを介して照射し親水化させることによってホ
トレジストまたは凸版もしくは平版印刷材料として有用
な部分的親水化高分子材料を提供しうるところに特徴を
有する。
The present invention provides a partially hydrophilized polymeric material useful as a photoresist or letterpress or lithographic printing material by irradiating a polymeric material capable of photo-Fries rearrangement with light through a pattern mask to make it hydrophilic. Has characteristics.

ここでフリース転位とは、一般的にフェノールエステル
や芳香族酸アジドのアシル基が塩化アルミニウム、塩化
亜鉛などの触媒の作用によジオルトまたはパラ位に転位
して0−またはp−アシルフェノールを生成する反応で
あるが、本発明ではかかるフリース転位を高分子材料に
応用し光フリース転位によって親水化処理する。
Fries rearrangement generally refers to the acyl group of a phenol ester or aromatic acid azide being rearranged to the di-ortho or para position by the action of a catalyst such as aluminum chloride or zinc chloride to produce 0- or p-acylphenol. However, in the present invention, such Fries rearrangement is applied to a polymer material, and a hydrophilic treatment is carried out by optical Fries rearrangement.

本発明において光フリース転位することが可能な高分子
材料としては、 (イ〕アリールエステル; −Ar−0−C−(Ar 
Id−1 アリール残基、以下同じ)を主鎖あるいは側鎖に有する
ポリマー。
In the present invention, polymeric materials capable of photo-Fries rearrangement include (i) aryl ester; -Ar-0-C-(Ar
Id-1 A polymer having an aryl residue (the same applies hereinafter) in the main chain or side chain.

(ロ)了り−ルアミド; −A r −N H−C−を
主鎖あ1 るいは側鎖に有するポリマー。
(b) Ori-ruamide: A polymer having -A r -N H-C- in the main chain or side chain.

(ハ)アリールカーボナー) ; −Ar −0−C−
0−1 を主鎖あるいは側鎖に有するポリマー。
(c) Aryl carboner); -Ar -0-C-
A polymer having 0-1 in the main chain or side chain.

を挙けることができるが、具体的には下記一般式(1)
〜M)の少なくとも1種の繰返し単位を含む重合体また
は共重合体を例示することができる。
Specifically, the following general formula (1)
-M) Polymers or copolymers containing at least one type of repeating unit can be exemplified.

(但しR,は水素原子またはメチル基、R2はC1〜C
4の低級アルキル基、フェニル基、ナフチル基またはト
リル基を示す) R1 (但しR1は前記に同じ、馬〜lt7は水素原子、ハロ
ゲン原子または01〜C4の低級アルキル基を示す) ・−壷・ (II CH5 (但しXはーC − 1 −CH2− 、 −8− 、
 −SO2− 。
(However, R is a hydrogen atom or a methyl group, R2 is C1-C
4 lower alkyl group, phenyl group, naphthyl group, or tolyl group) R1 (However, R1 is the same as above, horse~lt7 represents a hydrogen atom, a halogen atom, or a 01-C4 lower alkyl group) ・-pot・(II CH5 (However, X is -C-1-CH2-, -8-,
-SO2-.

H3CH5 一〇−,または −C− を示す) 2H5 ■丸。H3CH5 10- or -C-) 2H5 ■Maru.

− CH2−曾− 、−−− @、 (但しR1, lも。は前記に同じ) l:Ll (但しR1, it2は前記に同じ) なお本発明に適用される前記ボ1ツマ−は、MfT記繰
返し単位を好ましくは10モル係以上、特に好ましくは
30モル係以上、最も好ましくは50モル係以上有して
いればよく、他の繰返し単位、例えば、スチレン、α−
メチルスチレン、メチルメタクリレート、エチルメタク
リレート、メチルアクリレート、エチルアクリレート、
ビニルピリジン、N−ビニルピロリド“ンなどのスチレ
ン系モノマー、アクリル系モノマー、含窒素ビニル系モ
ノマーなどの繰返し単位を含有していてもよい。
- CH2- , --- @, (However, R1 and l are the same as above) l: Ll (However, R1 and it2 are the same as above) The above-mentioned button knob applied to the present invention is as follows: It is sufficient if the MfT repeating unit is preferably 10 molar or more, particularly preferably 30 molar or more, and most preferably 50 molar or more, and other repeating units such as styrene, α-
Methyl styrene, methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate,
It may contain repeating units such as styrene monomers such as vinylpyridine and N-vinylpyrrolidone, acrylic monomers, and nitrogen-containing vinyl monomers.

前記繰返し単位が10モルチ未満では、親水化が十分に
進行しない。
If the number of repeating units is less than 10 moles, hydrophilization will not proceed sufficiently.

次に前記光7リース転位可能な高分子材料を構成するポ
リマーとその重合方法について具体例を挙げて説明する
Next, the polymer constituting the polymeric material capable of photo-7-Riess rearrangement and its polymerization method will be explained by giving specific examples.

〈ポリフェニルメタクリレート〉 フェニルメタクリレートを例えば開始剤としてアゾビス
インブチロニトリル、溶媒としてベンゼンを用い、60
℃前後で重合し、重合後、非溶媒で沈澱後再沈精製しポ
リフェニルメタクリレートC以下「PPMAJ と称す
る)を得る。
<Polyphenyl methacrylate> Using phenyl methacrylate, for example, azobisin butyronitrile as an initiator and benzene as a solvent,
Polymerization is carried out at around 0.degree. C., and after the polymerization, it is precipitated with a non-solvent and then purified by reprecipitation to obtain polyphenyl methacrylate C (hereinafter referred to as "PPMAJ").

このPPMAは、後記する光の照射によって側鎖にある
了り−ルエステルが光フリース転位を生起し親水化ポリ
マーとなる。
When this PPMA is irradiated with light, which will be described later, the ester in the side chain undergoes photo-Fries rearrangement and becomes a hydrophilic polymer.

〈アセチル化ポリヒドロキシスチレン〉ポリヒドロキシ
スチレンを例えば水酸化カリウムを用いて乾燥したピリ
ジンに溶解し反応液が10℃を越えないように冷却、攪
拌しつつ塩化アセチルを滴下し、反応終了後ゼラチン状
の反応液をメタノールで沈澱させ、さらにメチルエチル
ケトンで再沈することによジアセチル化ポリヒドロキシ
スチレン(以下’i’ A c P )(S Jと称す
る)を得る◎ このA c P H8は側鎖のアリールエステルが光フ
リース転位を生起して親水化ポリマーに変化する。
<Acetylated polyhydroxystyrene> Polyhydroxystyrene is dissolved in dried pyridine using, for example, potassium hydroxide, and acetyl chloride is added dropwise while stirring and cooling the reaction solution so that it does not exceed 10°C. After the reaction is completed, a gelatin-like The reaction solution is precipitated with methanol and further reprecipitated with methyl ethyl ketone to obtain diacetylated polyhydroxystyrene (hereinafter 'i' A c P ) (referred to as S J). ◎ This A c P H8 has a side chain of The aryl ester undergoes photo-Fries rearrangement and turns into a hydrophilic polymer.

A c P H8 〈ポリ→オキシカルボニルオキシ−1,4−7エニレン
イングロピリデンー1,4−フェニレン)〉常法に従い
、ビスフェノールAと炭酸エステルとの反応またはビス
フェノールAVcアルカリの存在下でホスゲンを作用す
ることによって得られる。
A c P H8 <Poly→oxycarbonyloxy-1,4-7enylene ingropylidene-1,4-phenylene)> Phosgene is reacted with bisphenol A and carbonic acid ester or bisphenol AVc in the presence of an alkali according to a conventional method. obtained by acting on

ポリ+オキシカルボニルオキシ−1,4−フェニレンイ
ングロピリデン−1,4−フェニレン)(以下「PC」
と称する)は、主鎖中のアリールカーボナートが光フリ
ース転位し親水化ポリマーに変化する。
Poly+oxycarbonyloxy-1,4-phenylene ingropylidene-1,4-phenylene) (hereinafter referred to as "PC")
), the aryl carbonate in the main chain undergoes photo-Fries rearrangement and changes into a hydrophilic polymer.

くポリ−N−アセチル−アミノスチレン〉酢酸とアミノ
スチレンを無水ピリジン中で四塩化ケイ素の存在下反応
させることによって得らtt7)N−アセチル−アミノ
スチレンを例えば開始剤としてアゾビスインブチロニト
リル、溶媒としてテトラヒドロフランを用い60 ”0
前後で型針する。次いで重合m液を非溶媒であるメタノ
ール中it滴下し、沈澱しだポリ−N−アセチル−アミ
ノスチレンc以下rPNAAs J ト称1−る)を得
る□ このPNAASは後記する光照射1(よって側鎖にある
アリールエステル゛が光フリース転位を生起し、親水化
ポリマーとなる。
Poly-N-acetyl-aminostyrene> Obtained by reacting acetic acid and aminostyrene in anhydrous pyridine in the presence of silicon tetrachloride. , using tetrahydrofuran as the solvent and 60”0
Make a pattern needle at the front and back. Next, the polymerization solution was added dropwise into methanol, which is a non-solvent, to obtain precipitated poly-N-acetyl-aminostyrene (hereinafter referred to as rPNAAs). The aryl ester in the chain undergoes photo-Fries rearrangement and becomes a hydrophilic polymer.

以上は、本発明に適用される光7リース転位可能な高分
子材料を構成するポリマーの数例を示したに過ぎず、こ
れらに限定されるものでもない。
The above is just a few examples of polymers constituting the polymeric material capable of photo7-Riess rearrangement applied to the present invention, and the present invention is not limited thereto.

本発明では、前記の如き光フリース転位可能な高分子材
料をそれ自体で成型するか、あるいは基板上にロールコ
ータ−、スピンナーなどの手段で塗布、乾燥した後、か
かる高分子材料の表面゛または表面近傍をパターンマス
クを介してパターン状に波長210〜390nmの光を
照射することてよシ該高分子材料の照射された少なくと
も表面を光フリース転位を起こすことによって親水化さ
せる。波長が21Qnmよシ短かいとポリマー中の主鎖
の切断を生じた勺して好ましくなく、一方39Qnmを
越えるとエネルギーが充分でなく光フリース転位が生起
し難い。好ましい波長は250〜3651mである。光
の照射は前記の如くパターンマスクを介してパターン状
に照射すればネガ型もしくはポジ型のホトレジストまた
は凸版印刷もしくは平版印刷の版面として使用できる。
In the present invention, the above-mentioned polymeric material capable of optical Fries dislocation is molded by itself, or it is coated onto a substrate using a roll coater, a spinner, etc. and dried, and then the surface of the polymeric material or By irradiating the vicinity of the surface with light having a wavelength of 210 to 390 nm in a pattern through a pattern mask, at least the irradiated surface of the polymer material is made hydrophilic by causing optical Fries dislocation. If the wavelength is as short as 21 Q nm, this is undesirable as it may cause the main chain in the polymer to break, while if it exceeds 39 Q nm, the energy is insufficient and optical Fries rearrangement is difficult to occur. The preferred wavelength is 250-3651 m. If light is irradiated in a pattern through a pattern mask as described above, it can be used as a negative or positive photoresist or a printing plate for letterpress printing or planographic printing.

次に本発明の具体的適用方法について述べると、光フリ
ース転位可能な高分子材料を有機、容剤を用い固形分濃
度5〜60重量俤の溶液となしシリコンウェハー、金属
などの基板、または凸版用もしくは平版用版材上にロー
ルコータ−またはスピンナーなどで塗布し被膜を形成さ
せる。この被膜上に所定のパターンを持つパターンマス
クを重ね光を照射する。かくて照射部分は光フリース転
位を生起し、親水化ポリマーとなシ、親水化ポリマーを
溶解せず、光フリース転位前のポリマー(以下「転位前
ポリマー」と称する)を溶解する現像液を用いればネガ
型のパターンを、一方親水化ポリマーを溶解し、転位前
ポリマーを溶解しない現像液を用いればポジ型のパター
ンを得ることができる。しかもがかる現像液を用いなく
ともマスクを通して親水化ポリマーと転位前ポリマー(
これは親油性ポリマーでもある)が特定のパターンを形
成しているから、これをそのまま平版印刷に適用するこ
とも可能である。
Next, to describe a specific application method of the present invention, a polymeric material capable of optical Fries rearrangement is prepared as a solution with a solid content concentration of 5 to 60% by weight using an organic container, a silicon wafer, a metal substrate, or a letterpress. A film is formed by applying the coating onto a plate material for printing or lithography using a roll coater or a spinner. A pattern mask having a predetermined pattern is placed on this film and light is irradiated. Thus, the irradiated area undergoes photo-Fries rearrangement and becomes a hydrophilic polymer.A developer is used that does not dissolve the hydrophilic polymer but dissolves the polymer before photo-Fries rearrangement (hereinafter referred to as "pre-rearranged polymer"). On the other hand, it is possible to obtain a positive pattern by using a developer that dissolves the hydrophilized polymer but does not dissolve the polymer before rearrangement. Moreover, without using such a developer, the hydrophilized polymer and pre-rearranged polymer (
(This is also an oleophilic polymer) forms a specific pattern, so it is possible to apply this directly to lithographic printing.

以上の様に本発明によれば、光フリース転1位可能な高
分子材料に光を照射することによって親水化させること
によシ、現像液の組合せによってはネガ型にもポジ型に
もなるパターンを得ることができる上、光照射後の版材
を平版印刷にそのまま活用し得るポリマーの親水化方法
も提供し得たもので、その産業分野への適用範囲は広範
囲であシ、工業的意義は極めて大である。
As described above, according to the present invention, by irradiating a polymeric material capable of photo-fries conversion with light to make it hydrophilic, it can be made into either a negative type or a positive type depending on the combination of developer. In addition to being able to obtain a pattern, this method also provided a method for making polymers hydrophilic, allowing the plate material after light irradiation to be directly used in lithographic printing. The significance is extremely great.

以下実施例によって本発明を更に具体的に説明する。The present invention will be explained in more detail below using Examples.

実施例1 フェニルメタクリレートを無水硫酸バリウムを用い乾燥
した後減圧蒸留(48℃/ 0.2 mmHP )によ
り精製した。得られたモノマー10.4Fと開始剤とし
てアゾビスインブチロニトリル02661%溶媒として
ベンゼン50m1を内容量1 o orrtのガラス製
アンプルに仕込み、脱気封管し内容物が均一な溶液にな
ったのを確認して、60℃で10時間重合した。重合後
内容物に53 mlのテトロヒドロンラン(THF)を
加え均一な溶液とした後に1500m/のメタノールに
沈澱させ1)PMAを得た。得られたポリマーは再び1
00m1のT HFに溶解し1500j1/のメタノー
ルを用いて再沈精製した。ゲルパーミェーションクロマ
トグラ7 (GP C) (Waters製150C壓
)によフ鞘製ポリマーのポリスチレン換算平均分子量を
めたところ、数平均分子:lt (Mn )は8.80
0、重量平均分子量(Mw)は25,000であった。
Example 1 Phenyl methacrylate was dried using anhydrous barium sulfate and then purified by vacuum distillation (48°C/0.2 mmHP). The obtained monomer 10.4F and azobisin butyronitrile 02661% as an initiator were charged into a glass ampoule with an internal volume of 1 o orrt, and the contents became a homogeneous solution. After confirming this, polymerization was carried out at 60°C for 10 hours. After polymerization, 53 ml of tetrohydrone (THF) was added to the contents to make a homogeneous solution, which was then precipitated in 1500 m/m of methanol to obtain 1) PMA. The obtained polymer is again 1
It was dissolved in 00ml of THF and purified by reprecipitation using 1500ml of methanol. When the polystyrene equivalent average molecular weight of the gel permeation chromatograph 7 (GPC) (Waters 150C bottle) was calculated, the number average molecular weight: lt (Mn) was 8.80.
0, and the weight average molecular weight (Mw) was 25,000.

このようにして得られたポリマーを溶媒としてクロロホ
ルムを用い20重量係の溶液となし岩塩板上に塗布した
後、60℃、 1 mm)(yの減圧変で12時間乾燥
し、岩塩板上に厚さ10μmの被膜を形成させた。
The polymer thus obtained was made into a 20% solution by weight using chloroform as a solvent, and the solution was coated on a rock salt plate, dried at 60°C and under reduced pressure of 1 mm) (y) for 12 hours, and then coated on the rock salt plate. A film with a thickness of 10 μm was formed.

この試料を窒素中で254 nmおよび311nmの波
長の光を発生する20Wの低圧水銀灯を用いて0.5時
間光照射し、ポリマーのIRスペクトル変化を調べた。
This sample was irradiated in nitrogen for 0.5 hours using a 20 W low-pressure mercury lamp that generates light with wavelengths of 254 nm and 311 nm, and changes in the IR spectrum of the polymer were examined.

その結果PPMA は光照射によって1760cm の
エステル基に起因する吸収が減少し、344Qn を中
心とした水酸基に起因する吸収が増加し、また1635
c1n (o−ヒドロキシアセトフェノンに起因する吸
収および1670cm (p−ヒドロキシアセトフェノ
ンに起因する吸収)に鋭い吸収が発現し、PP M A
の0−フリース転位およびp−フリース転位が生起し親
水化ポリマーに変化していることが判明した。
As a result, when PPMA was irradiated with light, the absorption due to the ester group at 1760 cm decreased, the absorption due to the hydroxyl group centered on 344Qn increased, and the absorption due to the hydroxyl group at 1635 cm increased.
A sharp absorption occurs at c1n (absorption due to o-hydroxyacetophenone) and at 1670cm (absorption due to p-hydroxyacetophenone), and PP MA
It was found that 0-Fries rearrangement and p-Fries rearrangement occurred to transform the polymer into a hydrophilic polymer.

次にこのPPMA を前記と同様にしてクロロホルム溶
液となし厚さQ、51111のアルミニウム製平版版材
にロールコータ−によシ塗布、乾燥1−で厚さ100μ
mの被膜を形成させた。これを前記と同様の低圧水銀灯
を用いポジ型のノくターンマスクを通して光照射し画像
を焼付けた後、この平版を用いて常法に従い平版印刷に
かけたところ1万枚寸での耐刷力を有し、かつ印刷物も
鮮明であった。
Next, this PPMA was made into a chloroform solution in the same manner as above, and coated on an aluminum lithographic plate material of thickness Q, 51111 using a roll coater, and dried to a thickness of 100 μm.
A film of m was formed. This was irradiated with light through a positive-type no-turn mask using the same low-pressure mercury lamp as described above to print the image, and then the planographic plate was subjected to lithographic printing according to the usual method, and the printing durability at 10,000 sheets was confirmed. and the printed matter was clear.

実施例2 ポリヒドロキシスチレン(丸善石油(株)製、Mn =
 10,000 ) 24 yを水酸化カリウムを用い
て乾燥したピリジ/120りに溶解した後50゛Cに冷
却した。反応液を攪拌しつつ反応液温IWがioo’c
を越えないように塩化アセチル236ノを2時間かけ滴
下した。滴下終了後更に室温で1時間反応を続けた後、
2000m1のメタノール中にゼラチン状の反応液をあ
け、沈澱したポリマー(AcPH8)を回収した。
Example 2 Polyhydroxystyrene (manufactured by Maruzen Oil Co., Ltd., Mn =
10,000) 24y was dissolved in dried pyridine/120 using potassium hydroxide and then cooled to 50°C. While stirring the reaction solution, the reaction solution temperature IW reaches ioo'c.
236 g of acetyl chloride was added dropwise over 2 hours so as not to exceed After the dropwise addition was completed, the reaction was continued for 1 hour at room temperature,
The gelatinous reaction solution was poured into 2000 ml of methanol, and the precipitated polymer (AcPH8) was recovered.

さらに′4られたポリマーを20 Q meの メチル
エチルケトンに溶解しろ000m/のメタノールを用い
て再沈精製後、減圧乾燥1−た。 )l−NMltによ
りめたアセチル化率は92モルチであった0 このようにして得られたポリマーの分子量をopcによ
請求めたところ、Mn==6,000、Mw==15.
oooであった。
Furthermore, the polymer obtained was dissolved in 20 Qme of methyl ethyl ketone, purified by reprecipitation using 1,000 m/m of methanol, and then dried under reduced pressure. ) The acetylation rate determined by l-NMlt was 92 molti. When the molecular weight of the polymer thus obtained was determined by OPC, Mn==6,000, Mw==15.
It was ooo.

このポリマーを実施例1と同様にして岩塩板上に塗布、
光照射し、IRスペクトルによフポリマーの変化を調べ
たところ1760cIn のエステル基に起因する吸収
が減少し、344Qcm の水酸基に起因する吸収と、
1640cm のO−ヒドロキシフェノン構造(で起因
する吸収の増加が認められ、0−7リ一ス転位による親
水化ポリマーが生成していることが確認された。
This polymer was applied on a rock salt plate in the same manner as in Example 1,
When irradiated with light and examined the changes in the polymer by IR spectrum, the absorption due to the ester group of 1760cIn decreased, and the absorption due to the hydroxyl group of 344Qcm decreased.
An increase in absorption due to the O-hydroxyphenone structure of 1640 cm was observed, and it was confirmed that a hydrophilic polymer was generated due to 0-7 Lis rearrangement.

次にこのポリマーを1.1.2− )リクロロエタンに
溶解し10重量俤溶液とし、この溶液をスピンナーを用
いシリコン酸化膜が付いたシリコンウェハーに膜厚0.
5μmとなるように塗布し80〜90℃で15分間乾燥
した。これをマスクアライナ−(波長210〜300n
m)を用いて50 mJ/c4の照射エネルギーで解像
度テストチャートクロムマスクを通して画像を焼き付け
た。
Next, this polymer was dissolved in 1.1.2-) dichloroethane to make a 10 weight solution, and this solution was applied to a silicon wafer with a silicon oxide film using a spinner to a thickness of 0.
It was applied to a thickness of 5 μm and dried at 80 to 90° C. for 15 minutes. Apply this to a mask aligner (wavelength 210-300n)
The image was printed through a resolution test chart chrome mask using a 100 m) irradiation energy of 50 mJ/c4.

トルエンを現像液として用い現イ救(未照射部分を溶解
除去)したところ線幅1μmのパターンを解像し得た。
When the image was developed using toluene as a developer (unirradiated portions were dissolved and removed), a pattern with a line width of 1 μm could be resolved.

実施例3 ポリ(オキシカルボニルオキシ−1,4−フェニレンイ
ソプロピリデン−1,4フェニレン)(PC)として三
菱ガス化学工業(株)製、ニーピロンS 2000 (
GPCによシ測定したMn=16.000、Mw = 
53,000 ) ヲ用イ実TIt(flJ 1 ト同
様にして岩塩板上に塗布、光照射し、i Rスペクトル
によりポリマーの変化を調べたところジヒドロキンベン
ゾフェノン、構造にポリマー主鎖が7リース転位し親水
化ポリマーが生成していることが確認された。
Example 3 As poly(oxycarbonyloxy-1,4-phenyleneisopropylidene-1,4 phenylene) (PC), Nipiron S 2000 (manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used.
Mn = 16.000, Mw = measured by GPC
53,000) WO-USEIRI TIT (flJ 1) In the same manner as above, it was applied on a rock salt plate, irradiated with light, and changes in the polymer were investigated using an iR spectrum. Dihydroquine benzophenone was found to have a 7-Ries rearrangement in the main chain of the polymer. It was confirmed that a hydrophilic polymer was produced.

次に厚さ100μmのPCフィルムを平版版材としてそ
のまま用い該フィルム上にポジ型パターンマスクを1ね
実施例1と同様の低圧水銀灯を用い光照射し画像を焼付
けた後、この平版を用いて常法に従い平版印刷したとこ
ろ1万枚以上の耐刷力を有しかつ印字も鮮明であった。
Next, a 100 μm thick PC film was used as a lithographic plate material, and a positive pattern mask was placed on the film. After irradiating the film with light using the same low-pressure mercury lamp as in Example 1 and printing an image, this lithographic plate was used. When lithographic printing was carried out according to a conventional method, it had a printing durability of more than 10,000 sheets and the printing was clear.

特許出M+人 日本合成ゴム株式会社 代 理 人 弁理士 白 井 重 隆Patent issuer M+ person Japan Synthetic Rubber Co., Ltd. Representative Patent Attorney Takashi Shirai

Claims (1)

【特許請求の範囲】[Claims] 1、光フリース転位可能な高分子材料にパターンマスク
を介して波長210〜39Qnmの近紫外光乃至遠紫外
光を照射することによシ該高分子材料の少なくとも表面
に水駿基またはアミノ基を導入することを特徴とする高
分子材料の部分的親水化方法。
1. By irradiating a polymeric material capable of optical Fries rearrangement with near-ultraviolet light to far-ultraviolet light with a wavelength of 210 to 39 Qnm through a pattern mask, a water group or an amino group is added to at least the surface of the polymeric material. 1. A method for partially hydrophilizing a polymeric material, the method comprising:
JP17323383A 1983-09-21 1983-09-21 Partial impartment of hydrophilicity to polymeric material Pending JPS6065005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17323383A JPS6065005A (en) 1983-09-21 1983-09-21 Partial impartment of hydrophilicity to polymeric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17323383A JPS6065005A (en) 1983-09-21 1983-09-21 Partial impartment of hydrophilicity to polymeric material

Publications (1)

Publication Number Publication Date
JPS6065005A true JPS6065005A (en) 1985-04-13

Family

ID=15956613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17323383A Pending JPS6065005A (en) 1983-09-21 1983-09-21 Partial impartment of hydrophilicity to polymeric material

Country Status (1)

Country Link
JP (1) JPS6065005A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058598A (en) * 2012-09-14 2014-04-03 Showa Denko Kk Photosensitive resin for patterning
JP2014058599A (en) * 2012-09-14 2014-04-03 Showa Denko Kk Production method of member subject

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058598A (en) * 2012-09-14 2014-04-03 Showa Denko Kk Photosensitive resin for patterning
JP2014058599A (en) * 2012-09-14 2014-04-03 Showa Denko Kk Production method of member subject

Similar Documents

Publication Publication Date Title
KR930009567B1 (en) Photosensitive resin composition and process for forming photoresist pattern using the same
KR100271419B1 (en) Polymer for producing chemically amplified resist and resist composition containing same
US20010024765A1 (en) Novel process for preparing resists
KR100273854B1 (en) Negative resist material, pattern formation method using same, and semiconductor device manufacturing method
JPS63149640A (en) Photosensitive composition and photosensitive lithographic printing plate
JPH10130340A (en) Chemical amplification type resist composition
JP4268249B2 (en) Copolymer resin and manufacturing method thereof, photoresist and manufacturing method thereof, and semiconductor element
JP2686030B2 (en) Device manufacturing method
JP3835506B2 (en) Copolymer resin for photoresist, photoresist composition, method for forming photoresist pattern, and method for manufacturing semiconductor device
JPS63139343A (en) Resist composition
US4442196A (en) Photosensitive composition
JPH0990638A (en) Energy sensitive resist material and manufacture of device using energy sensitive resist material
JP3022412B2 (en) Negative photoresist material and pattern forming method using the same
JP2955545B2 (en) Polymer for producing chemically amplified positive photoresist and photoresist containing the same
JPH01201654A (en) Positive type photoresist material
JPS6065005A (en) Partial impartment of hydrophilicity to polymeric material
JPH07234504A (en) Photosensitive resin composition
JPH07219216A (en) Positive type radiation-sensitive resin composition and pattern formation using the same
US6326126B1 (en) Photocurable elastomeric mixture and recording material obtained therefrom for the production of relief printing plates
JP3699994B2 (en) Light wettability controlled film and method for producing the same
Nakano et al. Positive-type photopolyimide based on vinyl ether crosslinking and de-crosslinking
KR100265940B1 (en) Styren-acrylic copolymer for photoresist and chemical amplified positive photoresist composition containing the same
JPH0488346A (en) Resist composition
JPS5855926A (en) Formation of image using polyamide type linear polymer
JPH05331289A (en) Copolymer of sulfur dioxide and nuclear-substituted styrene deriv ative