JPS6064302A - Optical retroreflector - Google Patents

Optical retroreflector

Info

Publication number
JPS6064302A
JPS6064302A JP17368183A JP17368183A JPS6064302A JP S6064302 A JPS6064302 A JP S6064302A JP 17368183 A JP17368183 A JP 17368183A JP 17368183 A JP17368183 A JP 17368183A JP S6064302 A JPS6064302 A JP S6064302A
Authority
JP
Japan
Prior art keywords
refractive index
film
glass
retroreflector
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17368183A
Other languages
Japanese (ja)
Other versions
JPH0411002B2 (en
Inventor
Masanobu Tomita
富田 正信
Takashi Ida
孝 井田
Shinichi Morimoto
真一 森本
Shuzo Itotani
糸谷 秀三
Hideji Hirose
広瀬 秀司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNITIKA SUPAAKURAITO KK
Unitika Sparklite Ltd
Original Assignee
UNITIKA SUPAAKURAITO KK
Unitika Sparklite Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNITIKA SUPAAKURAITO KK, Unitika Sparklite Ltd filed Critical UNITIKA SUPAAKURAITO KK
Priority to JP17368183A priority Critical patent/JPS6064302A/en
Publication of JPS6064302A publication Critical patent/JPS6064302A/en
Publication of JPH0411002B2 publication Critical patent/JPH0411002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/126Reflex reflectors including curved refracting surface
    • G02B5/128Reflex reflectors including curved refracting surface transparent spheres being embedded in matrix

Abstract

PURPOSE:To improve resilience and visibility including colors in the nighttime by using small glass balls having >=1.9 refractive index and coating concentrical semispherical shell-like transparent resin film having 0.01-5mu thickness on the front exposed surface of the small glass balls of a reflector. CONSTITUTION:Small high index glass balls 3 having 80mu diameter and 2.25 refractive index are tentatively embedded at 50% rate of embedment by 3min of heating in a 20mu thick PE film 2 laminated on a polyester film 1. Aluminum having about 800Angstrom thickness is deposited by metal evaporation on the exposed surface of the small glass balls 3 to form a reflecting layer 4 and a stucking binder layer 5 is coated thereon to 30mu thickness and thereafter said layer is laminated to the film 5 by heating for 3min at 100 deg.C, by which the layer is fixed. The laminates 1, 2 embedded tentatively with the small glass balls are stripped to expose the half parts of the small glass balls into air. The semi-processed good of the optical retroreflector is thus obtd.

Description

【発明の詳細な説明】 本発明は、従来発見され用いられていなかった光再帰性
反射器ρ構造に係るものである。詳しく、・は、使用す
る高屈折率ガラス小球とガラス小球前部露出面側に該露
出面を覆うように形成した同心楕円半球殻状の無色ある
いは透明の薄い樹脂膜(以下被膜という)と、更にガラ
ス小球後部露出面上に直接反射層(例えば金属蒸着膜等
)を設けることによって得られる高輝度の光再帰性反射
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a previously discovered and unused optical retroreflector ρ structure. In detail, * refers to the high refractive index glass sphere used and the colorless or transparent thin resin film (hereinafter referred to as coating) in the shape of a concentric elliptical hemispherical shell formed on the front exposed surface side of the glass sphere so as to cover the exposed surface. The present invention also relates to a high-intensity optical retroreflector obtained by directly providing a reflective layer (for example, a metal vapor-deposited film) on the rear exposed surface of the glass bulb.

本発明品の性能はオープンタイプとクローズドタイプと
に区分けして使用されてきた従来の光再帰性反射器の双
方の特徴を活かし、それぞれの欠点を補なった革新的な
光再帰性反射器の構造を有していて、その性能を充分に
発揮するものである。
The performance of the product of the present invention is based on an innovative optical retroreflector that takes advantage of the characteristics of both open and closed types of conventional optical retroreflectors and compensates for the shortcomings of each. It has a structure that fully demonstrates its performance.

従来のオープンタイプ光再帰性反射器は、第1図に示す
ように屈折率1,9以下の中屈折率及び低屈抵率のガラ
ス小球(3)を使用し、該小球前部を空気中に露出させ
後部半球面部分には直接に反射層(4)を9次いで結合
剤15)を設けたのち、支持体(6)を貼りUけた44
4造を有していた。このものは反射輝紫が高く1反射の
角度特性に優れ更に構造が簡単で。
As shown in Fig. 1, the conventional open type optical retroreflector uses a glass sphere (3) with a medium refractive index and low refractive index of 1.9 or less, and the front part of the sphere is After exposing the rear hemisphere to the air, a reflective layer (4) was directly applied, followed by a binder (15), and then a support (6) was applied.
It had four structures. This product has a high reflective purple color, excellent single reflection angle characteristics, and a simple structure.

目付が小さく薄いため可縫性に優れた衣料用光再帰性反
射器2なり得るという特性を持っていた。
Since it has a small basis weight and is thin, it has the characteristics that it can be used as a light retroreflector 2 for clothing with excellent sewability.

しかしながらその反面1重大な欠点も持っている。However, on the other hand, it also has one serious drawback.

すなわち1例えばこのオープンタイプの光再帰性反射器
の表面KM出するガラス小球前部の半球面部分に透明樹
脂とか水等の光学的屈折率を有する物質が被覆するとガ
ラス小球のレンズ作用が変化して光再帰性反射器の再帰
反射機能が減少して著しい輝度低下を引き起こすもので
ある。又、オープンタイプの光再帰性反射器を着色する
場合、ガラス小球のレンズ作用を妨害しないように第1
図の如くガラス小球(3)とガラス小球(3)′を連結
する結合剤部分(5)を着色して着色層とし、必要な外
観色を付与するという方法が行われている。
That is, 1. For example, if the hemispherical part of the front part of the glass sphere that appears on the surface KM of this open type light retroreflector is coated with a substance having an optical refractive index such as transparent resin or water, the lens action of the glass sphere will be affected. As a result, the retroreflection function of the light retroreflector decreases, causing a significant decrease in brightness. In addition, when coloring an open type retroreflector, it is important to
As shown in the figure, a method is used in which the binder portion (5) connecting the glass spheres (3) and glass spheres (3)' is colored to form a colored layer to impart a necessary external color.

しかしながら、このような着色方法では日中散乱光下で
は色彩が鮮明であっても、夜間の照明光3− 線(は・写集束光)下で見ると該光線が光再帰性反射器
で反射される際9着色層が光の入射帰還系路に存在しな
いことによって全くその色彩が認められない。又、上述
のようにガラス小球前部露出半球面部分に透明樹脂が被
覆するとレンズ作用が変化するので、印刷等をオープン
タイプ光再帰性反射器の表面に施すことは全くできない
。加えてガラス小球結合剤部分に耐水性を持たせなげれ
ばガラス小球の後部半球部分に水分の浸透が起こって結
合剤を劣化させ、ガラス小球の脱落及び反射層劣化によ
る輝度低下等の不都合が起とる。更に屋外で使用される
時、光再帰性反射器表面のガラス小球露出面に塵埃、泥
、煤煙等が付着すると除去が困難で輝度の低下や外観不
良を招き易い。
However, with this coloring method, even if the colors are clear under scattered light during the day, when viewed under three-ray illumination light (convergent light) at night, the light rays are reflected by the light retroreflector. When the coloring layer 9 is not present in the incident and return path of the light, no color is recognized at all. Further, as described above, if the exposed hemispherical portion of the front portion of the glass bulb is coated with transparent resin, the lens action changes, so printing or the like cannot be applied to the surface of the open type light retroreflector at all. In addition, if the bonding agent part of the glass bulb is not made water resistant, water will penetrate into the rear hemisphere of the glass bulb, degrading the bonding agent, causing the glass bulb to fall off, and reducing brightness due to deterioration of the reflective layer. Inconvenience will occur. Furthermore, when used outdoors, if dust, dirt, soot, etc. adhere to the exposed surface of the glass bulb on the surface of the light retroreflector, it is difficult to remove and tends to cause a decrease in brightness and poor appearance.

以上のような欠点を補うために該オープンタイプ光再帰
性反射器のガラス小球前部露出面側に。
In order to compensate for the above drawbacks, the front exposed surface of the glass bulb of the open type light retroreflector is placed on the exposed surface side.

第2図r示すような空気層(+4)を介して透明な薄板
(12)が付設され、ガラス小球レンズを保護するよう
な方法が採られてきた。そして、この透明薄板(1功の
表面に着色あるいは印刷を施して全天候型高輝4一 度光再帰性反射器として使用されているのである。
A method has been adopted in which a transparent thin plate (12) is attached via an air layer (+4) as shown in FIG. 2r to protect the glass ball lens. The surface of this transparent thin plate is colored or printed and used as an all-weather, high-brightness 4-degree retroreflector.

しかしながら、このようなものは該空気層04)が必要
条件であるので、ガラス小球面と透明薄板02)との接
着部分(13)は可能な限り接着面積を小さくしなけれ
ばならない。しかし1反射能と接着力でもある当該面積
とのバランスをとるのが極めて困難で。
However, since the air space 04) is a necessary condition for such a device, the bonding area (13) between the glass small sphere surface and the transparent thin plate 02) must be made as small as possible. However, it is extremely difficult to balance the reflectivity with the surface area, which is also adhesive strength.

その結果、従来しばしば屋外使用中に接着部分の剥離が
起こり透明薄板のひび割れを惹起、シ、雨水。
As a result, the adhesive often peels off during outdoor use, causing cracks in the transparent thin plate, as well as moisture and rainwater.

露等が浸透することにより光再帰性反射器の性能喪失と
いう事故が起こっている。加えてこれは構造が複雑であ
るので、交通標識あるいは衣料用として使用する時透明
薄板(121が損傷しないように取扱いには充分な注意
を払うことが必要である。
Accidents have occurred in which the optical retroreflector loses its performance due to penetration of dew, etc. In addition, since the structure is complex, it is necessary to take sufficient care in handling the transparent thin plate (121) so as not to damage it when used as a traffic sign or for clothing.

又他方、クローズドタイプ光再帰性反射器においては、
屈折率2.0以上の高屈折ガラス小球を使用し、第3図
のように該ガラス小球前部半球面には平滑な透明樹脂表
面層(151が、同じく後部半球面にはガラス小球の中
心に対し同心半球殻状の透明樹脂バインダ一層(16)
があり、更にバインダ一層の後部には金属蒸着による反
射層(4)が設けられていて。
On the other hand, in a closed type optical retroreflector,
A high refractive glass sphere with a refractive index of 2.0 or more is used, and as shown in Fig. 3, a smooth transparent resin surface layer (151) is formed on the front hemisphere of the glass sphere, and a glass sphere is also formed on the rear hemisphere. One layer of transparent resin binder in the shape of a hemispherical shell concentric to the center of the sphere (16)
Furthermore, a reflective layer (4) made of metal vapor deposition is provided behind the binder layer.

5− 光再帰性反射機能が得られるようになっている。5- Optical retroreflection function is now available.

このようにガラス小球の前部半球部と後部半球部にはそ
れぞれ表面樹脂05)とバインダー樹脂の層([6)が
あるため光の透過損失が非常に大きく、クローズドタイ
プ光再帰性反射器の輝度値は前述のオープンタイプ光再
帰性反射器の1/4〜115程度でしかない。そして、
ガラス小球を取り巻く上述の積層樹脂に柔軟性に富むも
のを使用すると衣料用の反射器が得られるが、このよう
に構成される衣料用クローズドタイプ光再帰性反射器は
縫製の際。
In this way, the front hemisphere and the rear hemisphere of the glass sphere have a layer of surface resin 05) and a layer of binder resin ([6), respectively, so the transmission loss of light is extremely large, making it difficult to use a closed type optical retroreflector. The brightness value is only about 1/4 to 115 of that of the open type optical retroreflector described above. and,
Reflectors for clothing can be obtained by using the above-mentioned laminated resin that surrounds the glass globules with high flexibility, but closed type retroreflectors for clothing constructed in this way are difficult to sew.

表面の樹脂が柔軟なためミシンの押え金具の滑りを阻害
すること及び積層が多いので目付が増え。
The resin on the surface is flexible, which prevents the sewing machine's presser foot from slipping, and the large number of layers increases the fabric weight.

比較的厚いものしか得られないことにより、所謂可縫性
に劣り、風合が非常に悪く、構成材料が多いため製造原
価が高くなるという欠点があった。
Since only a relatively thick product can be obtained, the so-called sewability is poor, the texture is very poor, and the manufacturing cost is high due to the large amount of constituent materials.

本発明の光再帰性反射器はこのような両タイプの光再帰
性反射器の長所を活かし、欠陥を補うものである。
The optical retroreflector of the present invention takes advantage of the advantages of both types of optical retroreflectors and compensates for their deficiencies.

すなわち1本発明の光再帰性反射器の目的とするところ
は、柔軟性に富み、夜間2色彩を含む視6− 認性に優れた高輝度品を得ることであって、そのために
は屈折率1.9以上、好捷しくけ20以上の高屈折率ガ
ラス小球を使用し、該反射器のガラス小球前部露出面に
は極めて薄い厚さ001μ〜5μ程度の、該露出面を覆
うような同心清円半球殻状透明樹脂層を塗付するか、又
は回状の着色透明I樹脂層を印刷により形成することに
よって高輝度を有し。
That is, the object of the optical retroreflector of the present invention is to obtain a high-luminance product that is highly flexible and has excellent visibility including two colors at night. Use a high refractive index glass sphere with a refractive index of 1.9 or higher and a good index of 20 or higher. High brightness can be achieved by coating a transparent resin layer in the form of a concentric hemispherical shell, or by printing a circular colored transparent I resin layer.

柔軟かつ任意に着色できることを特徴とするものである
It is characterized by being flexible and able to be colored arbitrarily.

この場合、該透明樹脂に柔軟性に富んだ樹脂を用いるこ
とにより、樹脂層が薄いことと相まって極めて柔軟で可
縫性に優れ、昼夜を問わず任意の反射色が得られる高輝
度の衣料用光再帰性反射器の製造が可能となる。
In this case, by using a resin with high flexibility as the transparent resin, the resin layer is extremely flexible and has excellent sewability, combined with the thinness of the resin layer, and can be used for high-brightness clothing that can obtain any reflective color regardless of day or night. It becomes possible to manufacture optical retroreflectors.

捷だ1本発明の反射器の表面にはガラス小球が露出しな
いために耐汚染性に優れ、泥とか煤煙が付着しても雑巾
等で容易に拭い取り清浄にすることができる。又、ガラ
ス小球の脱落は完全に防ぐことができ9反射器の内部へ
水が侵入しなくなるめで性能低下がなくなり、使用耐久
年数が伸びる。
Since no glass spheres are exposed on the surface of the reflector of the present invention, it has excellent stain resistance, and even if dirt or soot adheres to it, it can be easily wiped clean with a rag or the like. In addition, drop-off of the glass spheres can be completely prevented and water will not enter the interior of the reflector, thereby eliminating performance deterioration and extending the service life.

更に従来のオープンタイプ光再帰性反射器に起こった水
濡れによる性能低下は完全に防止することができる。
Furthermore, the deterioration in performance due to water wetting that occurs in conventional open type optical retroreflectors can be completely prevented.

このように性能の優れた本発明の光再帰性反射器は次に
述べるように驚くべき不思議な反射機構を備えているの
である。すなわち従来、光再帰性反射器はガラス小球の
屈折率と直径によって焦点距離が定まるが、直径は反射
器製造上の技術的制約のためいずれの場合もほぼ同程度
に限定されるので屈折率約1.9のガラスピーズはオー
プンタイプに、屈折率約20のものはクローズドタイプ
に使用されてきた。
The optical retroreflector of the present invention, which has such excellent performance, is equipped with a surprising and mysterious reflection mechanism as described below. In other words, conventionally, the focal length of a retroreflector is determined by the refractive index and diameter of the glass sphere, but the diameter is limited to approximately the same degree in all cases due to technical constraints in manufacturing the reflector, so the refractive index Glass beads with a refractive index of about 1.9 have been used for open types, and glass beads with a refractive index of about 20 have been used for closed types.

本発明の光再帰性反射器はガラス小球の屈折率が大きい
(約2.0 ) Kもかかわらず反射膜の位置(即ちレ
ンズの焦点位置)がガラス小球面上にあり、即ちオープ
ンタイプ型反射機構をとるという新規な発明なのである
。更に詳しく述べるならば従来、屈折率20以上の高屈
折率ガラス小球を使用する場合は所謂クローズドタイプ
の構造(第3図参照)にするのが一般的である。ところ
が本発明の光再帰性反射器の構造は高屈折率ガラス小球
を使用してその後部半球面に直接金属蒸着するか。
In the optical retroreflector of the present invention, the position of the reflective film (i.e., the focal position of the lens) is on the surface of the glass sphere despite the large refractive index of the glass sphere (approximately 2.0), that is, the open type. This is a novel invention that uses a reflection mechanism. More specifically, conventionally, when using high refractive index glass beads having a refractive index of 20 or more, it is common to have a so-called closed type structure (see FIG. 3). However, the structure of the optical retroreflector of the present invention uses a high refractive index glass sphere and directly deposits metal on its rear hemisphere.

あるいはアルミニウム粉末等の光反射性物質の混入樹脂
層による反射層を設けた後、該ガラス小球前部半球面に
厚さ0.四〜5μの透明被膜を凹レンズ状に密着被覆さ
せることにより再帰性反射機能を付与したものであって
、これは従来使用されている単に屈折率2.0以上の高
屈折率ガラス小球の使用方法とは全く異なっている。他
方、オープンタイプ光再帰性反射器に使用される低屈折
率あるいは中屈折率のガラス小球では本発明品と同じ構
造を有する反射器を製造するとしても、再帰性反射性能
が著しく低いものしか得られない。又、屈折率20以上
の高屈折率ガラス小球を用いてもガラス小球前部半球面
を被覆する透明被膜が10μ程度に厚くかつ空気と接す
る面が殆んど平坦な面である場合には充分な反射性能が
得られない。更にガラス小球後部にバインダ一層9次い
で反射層を設けた場合にはガラス小球前部半球面を被覆
する透明被膜が本発明どうりの膜形状を有しても全く再
帰9− 性反射機能が得られないのである。
Alternatively, after providing a reflective layer made of a resin layer mixed with a light-reflective substance such as aluminum powder, a thickness of 0.5 mm is provided on the front hemispherical surface of the glass sphere. A retroreflective function is imparted by closely covering a concave lens with a 4 to 5 micron transparent film, and this is achieved by simply using conventionally used high refractive index glass spheres with a refractive index of 2.0 or more. The method is completely different. On the other hand, even if a reflector with the same structure as the product of the present invention is manufactured using glass beads with a low or medium refractive index used in an open type optical retroreflector, the retroreflection performance is extremely low. I can't get it. Furthermore, even if a high refractive index glass sphere with a refractive index of 20 or more is used, if the transparent coating covering the front hemispherical surface of the glass sphere is as thick as about 10μ and the surface in contact with air is almost flat, cannot obtain sufficient reflective performance. Furthermore, in the case where a layer of binder and a reflective layer are provided at the rear of the glass bulb, no retroreflection function is achieved even if the transparent coating covering the front hemispherical surface of the glass bulb has the film shape of the present invention. is not obtained.

このように、高屈折率ガラス小球の前部に被覆する透明
被膜の膜厚及び形状、そして該ガラス小球後部に反射層
が密接することが本発明の再帰反射機能を導き出す重要
な点であることが判る。詳細な再帰性反射機能について
は不明であるが、該透明被膜の凹レンズ効果によるガラ
ス小球のレンズ作用の変化によるものと推定される。現
在その原因は定かではないが、従来何人も予想すること
ができなかった全く驚くべき現象であるということがで
きる。
As described above, the thickness and shape of the transparent coating coated on the front part of the high refractive index glass sphere, and the closeness of the reflective layer to the rear part of the glass sphere are important points for deriving the retroreflection function of the present invention. It turns out that there is something. Although the detailed retroreflection function is unknown, it is presumed that it is due to a change in the lens action of the glass sphere due to the concave lens effect of the transparent coating. Although the cause is currently unknown, it can be said that this is a completely surprising phenomenon that no one could have ever predicted.

更にこれを詳細に述べると、ガラス小球前部半球面に被
覆密着させた被膜の厚さは、該ガラス小球の直径により
支配され、直径が一定の場合該被膜の厚さの増減により
反射性能が変化する。従って、被膜に最も適した厚さの
存在することが判った。そして、この適性な被膜を電子
顕微鏡等で観察するとその形状はガラス小球に対して同
心楕円半球殻状に被覆しており、かつその厚さはガラス
小球の直径500μ以下の時には厚さ0.01〜5μの
10− 範囲であった。しかも、ガラス小球の直径が大きい程被
覆する該被膜の厚さは増加する。
To explain this in more detail, the thickness of the coating tightly adhered to the front hemispherical surface of the glass sphere is controlled by the diameter of the glass sphere, and if the diameter is constant, the reflection will change depending on the increase or decrease in the thickness of the coating. Performance changes. Therefore, it was found that there is a most suitable thickness for the coating. When this suitable coating is observed using an electron microscope, it is found that it covers the glass sphere in the form of a concentric elliptical hemispherical shell, and its thickness is 0 when the diameter of the glass sphere is 500 μm or less. It was in the 10- range of .01 to 5μ. Moreover, the thickness of the coating increases as the diameter of the glass sphere increases.

このように1本発明の光再帰性反射器は既存の屈折率1
.9以上の高屈折率ガラス小球を使用し、その前面に同
心楕円半球殻状の被膜を、後部面に反射層を密着して設
けてやればよく、従来既知の手段を組合せることによっ
て作ることができる。
In this way, the optical retroreflector of the present invention has a refractive index of 1
.. A glass ball with a high refractive index of 9 or more is used, and a concentric elliptical hemispherical shell-shaped coating is provided on the front surface of the glass sphere, and a reflective layer is closely attached to the rear surface.This can be done by combining conventionally known means. be able to.

次に本発明を実施例と図面を用いて9本発明の作用効果
を更に詳細に説明するが9本発明はこれらに限定される
ものではない。
Next, the effects of the present invention will be explained in more detail using examples and drawings, but the present invention is not limited thereto.

第4図は本発明の光再帰性反射器の半製品の断面図を示
し、その詳細な説明は半製品製造法の実施例で述べる。
FIG. 4 shows a cross-sectional view of a semi-finished product of the optical retroreflector of the present invention, the detailed description of which will be given in the embodiment of the semi-finished product manufacturing method.

第5図は第4図のポリエステル−ポリエチレンラミネー
ト品(Ij、 (2+を剥離してガラス小球(3)を空
気中に露出させた光再帰性反射器の半製品(7)(以下
半製品という)のガラス小球(3)の前部半球面に同心
楕円半球殻状の透明あるいは着色透明樹脂被膜(8)を
被覆密着したものの断面図である。第6図は本発明の光
再帰性反射器のガラス小球(3)の前部に同心楕円半球
殻状の樹脂被膜(8)を。
Figure 5 shows a semi-finished product (7) (hereinafter referred to as semi-finished product) of a light retroreflector made of the polyester-polyethylene laminate (Ij, (2+) shown in Figure 4, which is peeled off to expose the glass sphere (3) in the air. Fig. 6 is a cross-sectional view of a glass sphere (3) in which a transparent or colored transparent resin coating (8) in the form of a concentric elliptical hemispherical shell is closely adhered to the front hemispherical surface of the glass sphere (3). A concentric elliptical hemispherical shell-shaped resin coating (8) is placed on the front of the glass sphere (3) of the reflector.

同後部に反射膜(4)を設けた時の外部からの光の径路
と反射機構を推定したものである。すなわち。
This is an estimation of the path and reflection mechanism of light from the outside when a reflective film (4) is provided at the rear. Namely.

入射光線(9)は先ず被膜(8)の表面でガラス小球の
中心方向に屈折し侵入するが、ガラス小球の表面で再度
屈折し、こめ二度の屈折における空気と透明樹脂、・透
明樹脂とガラスのそれぞれの屈折率と厚さの適度な組合
せによりガラス小球のレンズの焦点がその後部半球面上
の点(10)VC位置するよウニなると密接する反射層
(4)により焦点(10)で入射光線(9)は反射され
、再びガラス小球より透明樹脂を経て反射光線(11)
となり、入射光線(9)と平行で逆方向に光の反射が起
こる(それぞれ矢印の方向で示す)。
The incident light ray (9) is first refracted toward the center of the glass sphere at the surface of the coating (8) and enters the glass sphere, but is refracted again at the surface of the glass sphere, and in the second refraction, the air and transparent resin are separated. Due to the appropriate combination of the refractive index and thickness of resin and glass, the focal point of the lens of the glass sphere is located at point (10) VC on its rear hemisphere. 10), the incident light ray (9) is reflected, and the reflected light ray (11) passes through the transparent resin from the glass sphere again.
, and reflection of light occurs in a direction parallel to and opposite to the incident ray (9) (respectively indicated by the direction of the arrow).

それぞれの作用、効果については実施例において更に詳
述する。
The respective functions and effects will be explained in further detail in Examples.

半製品製造法の実施例 第4図に示すように、ポリエステルフィルム(1)とこ
れにラミネートされた20μの厚さのポリエチレンフィ
ルム(2)に直径80μ、屈折率2.25の高屈折率ガ
ラス小球(3)を110℃、3分間の加熱によって埋没
率50チで仮埋没させる。次にガラス小球(3)の露出
面に約800オングストロームの厚さのアルミニウムを
金属蒸着して反射層(4)とし、更にこの上に固着バイ
ンダ一層(5)を厚さ30μになるよう塗布した後、支
持体であるフィルム(6)と100c、3分間熱ラミネ
ートして固定し9次いでガラス小球を仮W 没したポリ
エステル−ポリエチレンラミネート品(11,(21を
剥離して埋没ガラス小球の半部を空気中に露出させて光
再帰性反射器の半製品を得た。
Example of semi-finished product manufacturing method As shown in Figure 4, a polyester film (1) and a 20μ thick polyethylene film (2) laminated thereon are coated with high refractive index glass having a diameter of 80μ and a refractive index of 2.25. The small sphere (3) is temporarily buried by heating at 110° C. for 3 minutes at a burial rate of 50 cm. Next, on the exposed surface of the glass sphere (3), aluminum with a thickness of about 800 angstroms is metal-deposited to form a reflective layer (4), and a layer of adhesive binder (5) is applied on top of this to a thickness of 30 μm. After that, the support film (6) and 100c were fixed by heat lamination for 3 minutes, and then the glass spheres were temporarily immersed in a polyester-polyethylene laminate (11, (21) was peeled off to form the embedded glass spheres. A semi-finished product of a retroreflector was obtained by exposing half of the product to the air.

その他、ガラス小球の屈折率の異なるもの、すなわち1
..5] 、 1.92及び2.1の三種類を用いて同
様な方法にて半製品三点を作成した。
In addition, glass globules with different refractive index, i.e. 1
.. .. 5], 1.92, and 2.1, three semi-finished products were created in the same manner.

実施例1〜4 第4図で示したような上述の半製品(7)のガラス小球
露出面に次の組成の透明樹脂を被膜の厚さが2μとなる
よう塗布したのち、130℃、3分間熱風乾燥処理を行
って第5図の樹脂被膜(8)を有する試料を作成した。
Examples 1 to 4 A transparent resin having the following composition was applied to the exposed surface of the glass sphere of the semi-finished product (7) as shown in FIG. A sample having the resin coating (8) shown in FIG. 5 was prepared by performing a hot air drying process for 3 minutes.

組成 メタアクリル酸アルキルエステル重合m脂 10
0部メラミン硬化剤 5部 計 135部 各試料の光再帰性反射性能(輝度値)とガラス小球の屈
折率との関係を下記第1表の実施例番号1〜4で明らか
にする。
Composition Methacrylic acid alkyl ester polymerized resin 10
0 parts Melamine curing agent 5 parts Total 135 parts The relationship between the light retroreflection performance (brightness value) of each sample and the refractive index of the glass spheres is clarified in Example Nos. 1 to 4 in Table 1 below.

第 1 表 輝度値は一定入射光量に対する反射光量を示すもので、
値の大きい程反射器の性能が優れていることを示す。第
1表の結果から、ガラス小球の屈折率の高い程高い輝度
値の得られることが確認できた。
The brightness values in Table 1 indicate the amount of reflected light for a constant amount of incident light.
The larger the value, the better the reflector performance. From the results in Table 1, it was confirmed that the higher the refractive index of the glass sphere, the higher the brightness value obtained.

実施例5 実施例1〜4で得た結果の如く高屈折率ガラス小球を用
いると、ガラス小球前部に被覆する透明14− 被膜とガラス小球のlメンズ作用がマツチして高輝度値
の得られることが判った。更てガラス小球に被覆する被
膜の厚さとガラス小球の直径との関係は下記のようにな
った。すなわち、屈折率225゜直径80μのガラス小
球を用いた前述の半製品においてガラス小球露出面に次
のような着色透明樹脂を、付着量を変えて塗布し2種々
の厚さの樹脂被膜(8)を形成し輝度値を測定した。
Example 5 When a high refractive index glass sphere is used as in the results obtained in Examples 1 to 4, the transparent 14-coat coated on the front part of the glass sphere and the lactic effect of the glass sphere match, resulting in high brightness. It turns out that the value can be obtained. Furthermore, the relationship between the thickness of the coating coated on the glass sphere and the diameter of the glass sphere was as follows. That is, in the aforementioned semi-finished product using glass spheres with a refractive index of 225° and a diameter of 80μ, the following colored transparent resins were applied in varying amounts on the exposed surface of the glass spheres to form resin coatings of two different thicknesses. (8) was formed and the brightness value was measured.

組 成 メラミンホルマリン重合樹脂 100部計 1
15部 その結果、該被膜の厚さと輝度値との間には第7図に示
すような一定の関係があり、高輝度の反射性能を得るた
めにはガラス小球の直径に対して適性の厚さの範囲が存
在することが判った。
Composition Melamine formalin polymer resin 100 parts total 1
Part 15 As a result, there is a certain relationship between the thickness of the coating and the brightness value as shown in Figure 7, and in order to obtain high brightness reflection performance, an appropriate value must be set for the diameter of the glass sphere. It was found that a range of thicknesses exists.

この実施例で作成した試料中最高の輝度値を示すものを
電子顕微鏡でみたところ、被膜の形状はガラス小球に対
し同心楕円半球殻状(8)であり、膜厚は第7図に示す
ようにガラス小球の露出面の頂点付近が約01μで、裾
野の部分は5μ、平均2.5μ程度であった。
When the sample showing the highest brightness value among the samples prepared in this example was observed using an electron microscope, the shape of the coating was a concentric elliptical hemispherical shell (8) with respect to the glass sphere, and the coating thickness was as shown in Figure 7. As shown, the exposed surface of the glass sphere had a diameter of about 01μ near the top, and 5μ at the base, with an average diameter of about 2.5μ.

以上の如く1反射器の反射性能、すなわち輝度は使用す
るガラス小球の屈折率が高い程優れているが、被覆する
被膜の厚さは屈折率とは直接関係せず、むしろガラス小
球の大きさ、すなわち直径に対して最適値をとるような
関係が認められる。
As mentioned above, the reflective performance of a reflector, that is, the brightness, is better as the refractive index of the glass sphere used is higher, but the thickness of the coating is not directly related to the refractive index, but rather the thickness of the glass sphere. A relationship is recognized that takes the optimum value for the size, that is, the diameter.

従って、ガラス小球の直径は本来任意ではあるが。Therefore, the diameter of the glass globules is essentially arbitrary.

該被膜の形状を同心楕円殻状に形成する技術上の制約か
ら500μ以下が適当となる。
Due to technical constraints in forming the film into a concentric elliptical shell shape, a thickness of 500 μm or less is appropriate.

実施例6〜9.比較例1〜4 本発明の光再帰性反射器の半製品を作る時に。Examples 6-9. Comparative examples 1 to 4 When making a semi-finished product of the optical retroreflector of the present invention.

支持体をナイロン製編物トリコットにすると衣料用半製
品が作られる。そして、該半製品のガラス小球露出面に
次のような印刷インクを塗布して同心楕円半球殻状の被
膜を形成すると1色合が良く昼夜を問わずその反射色が
変らない高輝度の衣料用光再帰性反射器が得られた。
When the support is made of nylon knitted tricot, semi-finished clothing products can be produced. Then, by applying the following printing ink to the exposed surface of the glass globules of the semi-finished product to form a concentric elliptical hemispherical shell-like coating, high-brightness clothing with a good color match and whose reflected color does not change day or night can be created. A light retroreflector for use was obtained.

インクの組成 一液型ウレタンスクリーンインク透明液 100部顔料
 30部 メチルエチルケトン 10部 計 140部 上記の顔料にベンジジン系黄色顔料、ペリレン系赤色顔
料、シアニン系青色顔料及びシアニン系緑色顔料を用い
てそれぞれ黄、赤、青、緑の印刷インクを作製し1次い
で220メツシユのポリエステA411のスクリーンで
スクリーン印刷した後。
Ink Composition One-part urethane screen ink Transparent liquid 100 parts Pigment 30 parts Methyl ethyl ketone 10 parts Total 140 parts In addition to the above pigments, a benzidine-based yellow pigment, a perylene-based red pigment, a cyanine-based blue pigment, and a cyanine-based green pigment were used to create yellow pigments. , after preparing red, blue and green printing inks and then screen printing with a 220 mesh polyester A411 screen.

120℃、5分間熱風乾燥を行い、約3μの厚さの被膜
を屈折率2.25.平均直径80μのガラス小球の露出
面に形成し、第2表のような反射性能、すなわち輝度値
を得た。比較として日本工業規格JIS−Z−9117
に規定されている反射材の輝度値を併記したが、明らか
に各色共に格段に優れた反射性17− 得られた衣料用反射器は非常に上品な色合でソフトな手
触りと柔軟性を有し、可縫性の良好なものであった。
After drying with hot air at 120°C for 5 minutes, a film with a thickness of about 3μ was formed with a refractive index of 2.25. It was formed on the exposed surface of a glass sphere having an average diameter of 80 μm, and the reflection performance, ie, the brightness value, as shown in Table 2 was obtained. For comparison, Japanese Industrial Standard JIS-Z-9117
The brightness values of the reflective material stipulated in 17-2 are also listed, and it is clear that each color has significantly superior reflectivity. , and had good sewability.

【図面の簡単な説明】[Brief explanation of the drawing]

本発明の光再帰性反射器の構造の一例を模式的18− に示したものである。第1図は従来のオープンタイプ光
再帰性反射器の断面図、第2図は空気層を有する改良型
オープンタイプ反射器の断面図、第3図は従来のクロー
ズドタイプ光再帰性反射器の断面図である。第4図は本
発明の光再帰性反射器の半製品の断面図、第5図はガラ
ス小球前部に同心楕円半球殻状の透明あるいは着色透明
樹脂被膜を被覆密着した本発明の光再帰性反射器の断面
図である。第6図はガラス小球を同心半球殻状に被覆し
たものについて外部からの光の入射及び反射径路を推定
した断面図であり、第7図は被膜の平均厚さと輝度値の
関係を示した実験図であって。 観測条件として正面輝度値の観測角02°、入射角−4
°である。 図中、(1)はポリエステルフィルム、(2)はポリエ
チレン層、(3)はガラス小球、(4)は反射層、(5
)は固着バインダ一層、(6)は支持体、(7)は+3
1. (4)、 (51,(6)を総称した光再帰性反
射器の半製品、r8)は同心楕円半球殻状の被膜、(9
)は入射光線、 +10)は焦点、 (II)は反射光
a、O2)は透明薄板、 (13)は接着部分、(1(
イ)は空気層を示す。 特許出願人 ユニチカスパークライト株式会社代理人 
児 玉 雄 三
An example of the structure of the optical retroreflector of the present invention is schematically shown in 18-. Figure 1 is a cross-sectional view of a conventional open type optical retroreflector, Figure 2 is a cross-sectional view of an improved open type reflector with an air layer, and Figure 3 is a cross-sectional view of a conventional closed type optical retroreflector. It is a diagram. FIG. 4 is a sectional view of a semi-finished product of the light retroreflector of the present invention, and FIG. 5 is a light retroreflector of the present invention in which a transparent or colored transparent resin coating in the form of a concentric elliptical hemispherical shell is coated and adhered to the front part of a glass sphere. FIG. 2 is a cross-sectional view of a sexual reflector. Figure 6 is a cross-sectional view estimating the incident and reflection paths of light from the outside for a glass sphere coated with a concentric hemispherical shell, and Figure 7 shows the relationship between the average thickness of the coating and the brightness value. It is an experimental diagram. Observation conditions are observation angle of front brightness value 02°, incident angle -4
°. In the figure, (1) is a polyester film, (2) is a polyethylene layer, (3) is a glass sphere, (4) is a reflective layer, and (5) is a polyester film.
) is a single layer of fixed binder, (6) is a support, (7) is +3
1. (4), (51, (6) are collectively referred to as semi-finished products of optical retroreflectors, r8) is a concentric elliptical hemispherical shell-shaped coating, (9
) is the incident ray, +10) is the focal point, (II) is the reflected light a, O2) is the transparent thin plate, (13) is the adhesive part, (1(
b) indicates an air layer. Patent applicant Unitika Sparklight Co., Ltd. Agent
Yuzo Kodama

Claims (3)

【特許請求の範囲】[Claims] (1)支持体に保持された固着バインダー樹脂層中に4
0〜80係の埋没率で直径500μ以下、屈折率1,9
以上、好ましくは2.0以上の高屈折率ガラス小球が埋
没され、該ガラス小球の後部埋没部分には1例えば金属
蒸着膜等の直接反射層が設けてあり、かつ該ガラス小球
の前部露出面側に該露出面を覆うよつ[同心楕円半球殻
状で厚さ0.01〜5μの無色あるいは着色透明樹脂の
被膜を該ガラス小球の屈折率と直径に対して一定の光学
的関係を維持するように形成することを特徴とする光再
帰性反射器。
(1) 4 in the fixed binder resin layer held on the support
Burial rate of 0 to 80, diameter 500μ or less, refractive index 1.9
As described above, a glass ball with a high refractive index, preferably 2.0 or more, is buried, and a direct reflection layer such as a metal vapor-deposited film is provided at the rear part of the buried part of the glass ball. A coating of a colorless or colored transparent resin having a thickness of 0.01 to 5 μm in the shape of a concentric elliptical hemispherical shell is placed on the front exposed surface side to cover the exposed surface. An optical retroreflector characterized in that it is formed to maintain an optical relationship.
(2)透明樹脂の被膜が合成重合樹脂もしくは印刷イン
クの膜であって、任意の着色された図柄が印刷された特
許請求の範囲第1項記載の光再帰性反射器。
(2) The light retroreflector according to claim 1, wherein the transparent resin film is a film of synthetic polymer resin or printing ink, and is printed with an arbitrary colored pattern.
(3)支持体が合成樹脂フィルム又は織物1編物もしく
は不織布からなる布帛である特許請求の範囲第1項記載
の光再帰性反射器。
(3) The light retroreflector according to claim 1, wherein the support is a synthetic resin film, a woven fabric, or a nonwoven fabric.
JP17368183A 1983-09-20 1983-09-20 Optical retroreflector Granted JPS6064302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17368183A JPS6064302A (en) 1983-09-20 1983-09-20 Optical retroreflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17368183A JPS6064302A (en) 1983-09-20 1983-09-20 Optical retroreflector

Publications (2)

Publication Number Publication Date
JPS6064302A true JPS6064302A (en) 1985-04-12
JPH0411002B2 JPH0411002B2 (en) 1992-02-27

Family

ID=15965125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17368183A Granted JPS6064302A (en) 1983-09-20 1983-09-20 Optical retroreflector

Country Status (1)

Country Link
JP (1) JPS6064302A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622206A (en) * 1985-06-27 1987-01-08 Unitika Supaakuraito Kk Light reflector
JPS6262301A (en) * 1985-09-12 1987-03-19 Ide Kogyo Kk Retroreflecting body
JPS62106161U (en) * 1985-12-24 1987-07-07
JPS6338902A (en) * 1986-08-01 1988-02-19 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− Reflective ability sheet
JPS63160501U (en) * 1987-04-09 1988-10-20
JPH10500230A (en) * 1994-05-12 1998-01-06 ミネソタ マイニング アンド マニュファクチャリング カンパニー Retroreflective product and method of manufacturing the same
US6963224B2 (en) 2003-08-08 2005-11-08 Olympus Corporation Reflexive optical screen, and viewing system incorporating the same
US7167307B2 (en) 2003-08-08 2007-01-23 Olympus Corporation Projection screen, and projection type display system
US7709417B2 (en) 2003-11-14 2010-05-04 Kiwa Chemical Industry Co., Ltd. Security sticker and method for manufacturing the same
US8003197B2 (en) 2003-11-14 2011-08-23 Kiwa Chemical Industry Co., Ltd. Retroreflective sheet for security and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567307A (en) * 1966-12-02 1971-03-02 Prismo Universal Corp Reflective markers
JPS55166603A (en) * 1979-06-14 1980-12-25 Meiwa Screen:Kk Recurrent reflecting body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567307A (en) * 1966-12-02 1971-03-02 Prismo Universal Corp Reflective markers
JPS55166603A (en) * 1979-06-14 1980-12-25 Meiwa Screen:Kk Recurrent reflecting body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622206A (en) * 1985-06-27 1987-01-08 Unitika Supaakuraito Kk Light reflector
JPS6262301A (en) * 1985-09-12 1987-03-19 Ide Kogyo Kk Retroreflecting body
JPS62106161U (en) * 1985-12-24 1987-07-07
JPS6338902A (en) * 1986-08-01 1988-02-19 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− Reflective ability sheet
JPS63160501U (en) * 1987-04-09 1988-10-20
JPH10500230A (en) * 1994-05-12 1998-01-06 ミネソタ マイニング アンド マニュファクチャリング カンパニー Retroreflective product and method of manufacturing the same
US6153128A (en) * 1994-05-12 2000-11-28 3M Innovative Properties Company Retroreflective article and method of making same
US6963224B2 (en) 2003-08-08 2005-11-08 Olympus Corporation Reflexive optical screen, and viewing system incorporating the same
US7167307B2 (en) 2003-08-08 2007-01-23 Olympus Corporation Projection screen, and projection type display system
US7709417B2 (en) 2003-11-14 2010-05-04 Kiwa Chemical Industry Co., Ltd. Security sticker and method for manufacturing the same
US8003197B2 (en) 2003-11-14 2011-08-23 Kiwa Chemical Industry Co., Ltd. Retroreflective sheet for security and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0411002B2 (en) 1992-02-27

Similar Documents

Publication Publication Date Title
US4153412A (en) Process for printing reflective sheet material
EP0039734B1 (en) Method for forming a retroreflective treatment on fabrics
US5207852A (en) Method for making permeable retroreflective sheeting
US4102562A (en) Retroreflective transfer sheet material
JP5248496B2 (en) Retroreflective material with iridescent reflected light
US2407680A (en) Reflex light reflector
US20030016368A1 (en) Visibly transparent retroreflective materials
KR100276007B1 (en) Permeable Retroreflective Seating and Manufacturing Method Thereof
JPS6064302A (en) Optical retroreflector
JP2503076B2 (en) Camouflage material
EP1949707B1 (en) Retroreflective materials
JP2004020736A (en) Color retroreflecting material
JPH073484B2 (en) Transparent spherical buried retroreflector
WO1997001776A1 (en) Rainbow sheeting having distinct color changes and/or hidden images
JPH05173008A (en) High-brightness reflection sheet having light accumulating property and production thereof
JP3498070B2 (en) Retroreflective sheet and manufacturing method thereof
JP3217164B2 (en) Retroreflective sheet and method of manufacturing the same
KR102438218B1 (en) Retroreflective material
JPH09304610A (en) Retroreflecting material
JPH10282912A (en) Retroreflective material
CN206856135U (en) A kind of colored total-light-reflection fabric
CA2106336A1 (en) Television visible hockey pucks
JPS61186902A (en) Optical reflector
JPS622206A (en) Light reflector
JP2005105222A (en) Fine sphere for retroreflection, retroreflective coating and retroreflective printed material