JPH0411002B2 - - Google Patents

Info

Publication number
JPH0411002B2
JPH0411002B2 JP58173681A JP17368183A JPH0411002B2 JP H0411002 B2 JPH0411002 B2 JP H0411002B2 JP 58173681 A JP58173681 A JP 58173681A JP 17368183 A JP17368183 A JP 17368183A JP H0411002 B2 JPH0411002 B2 JP H0411002B2
Authority
JP
Japan
Prior art keywords
glass sphere
glass
refractive index
retroreflector
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58173681A
Other languages
Japanese (ja)
Other versions
JPS6064302A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17368183A priority Critical patent/JPS6064302A/en
Publication of JPS6064302A publication Critical patent/JPS6064302A/en
Publication of JPH0411002B2 publication Critical patent/JPH0411002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/126Reflex reflectors including curved refracting surface
    • G02B5/128Reflex reflectors including curved refracting surface transparent spheres being embedded in matrix

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、従来発見され用いられていなかつた
光再帰性反射器の構造に係るものである。詳しく
は、使用する高屈折率ガラス小球とガラス小球前
部露出面側に該露出面を覆うように形成した同心
楕円半球殻状の無色あるいは透明の薄い樹脂膜
(以下被膜という)と、更にガラス小球後部露出
面上に直接反射層(例えば金属蒸着膜等)を設け
ることによつて得られる高輝度の光再帰性反射器
に関するものである。 本発明品の性能はオープンタイプとクローズド
タイプとに区分けして使用されてきた従来の光再
帰性反射器の双方の特徴を活かし、それぞれの欠
点を補なつた革新的な光再帰性反射器の構造を有
していて、その性能を充分に発揮するものであ
る。 従来のオープンタイプ光再帰性反射器は、第1
図に示すよう屈折率1.9以下の中屈折率及び低屈
折率のガラス小球3を使用し、該小球前部を空気
中に露出させ後部半球面部分には直接に反射層4
を、次いで結合剤5を設けたのち、支持体6を貼
り付けた構造を有していた。このものは反射輝度
が高く、反射の角度特性に優れ更に構造が簡単
で、目付が小さく薄いため可縫性に優れた衣料用
光再帰性反射器となり得るという特性を持つてい
た。しかしながらその半面、重大な欠点を持つて
いる。すなわち、例えばこのオープンタイプの光
再帰性反射器の表面に露出するガラス小球前部の
半球面部分に透明樹脂とか水等の光学的屈折率を
有する物質が被覆するとガラス小球のレンズ作用
が変化して光再帰性反射器の再帰反射機能が減少
して著しい輝度低下を引き起こすものである。
又、オープンタイプの光再帰性反射器を着色する
場合、ガラス小球のレンズ作用を妨害しないよう
に第1図の如くガラス小球3とガラス小球3′を
連結する結合剤部分5を着色して着色層とし、必
要な外観色を付与するという方法が行われてい
る。 しかしながら、このような着色方法では日中散
乱光下では色彩が鮮明であつても、夜間の照明光
線(ほぼ集束光)下で見ると該光線が光再帰性反
射器で反射される際、着色層が光の入射帰還系路
に存在しないことによつて全くその色彩が認めら
れない。又、上述のようにガラス小球前部露出半
球面部分に透明樹脂が被覆するとレンズ作用が変
化するので、印刷等をオープンタイプ光再帰性反
射器の表面に施すことは全くできない。加えてガ
ラス小球結合剤部分に耐水性を持たせなければガ
ラス小球の後部半球部分に水分の浸透が起こつて
結合剤を劣化させ、ガラス小球の脱落及び反射層
劣化による輝度低下等の不都合が起こる。更に屋
外で使用される時、光再帰性反射器表面のガラス
小球露出面に塵埃、泥、煤煙等が付着すると除去
が困難で輝度の低下や外観不良を招き易い。 以上のような欠点を補うために該オープンタイ
プ光再帰性反射器のガラス小球前部露出面側に、
第2図に示すような空気層14を介して透明な薄
板12が付設され、ガラス小球レンズを保護する
ような方法が採られてきた。そして、この透明薄
板12の表面に着色あるいは印刷を施して全天候
型高輝度光再帰性反射器として使用されているの
である。しかしながら、このようなものは該空気
層14が必要条件であるので、ガラス小球面と透
明薄板12との接着部分13は可能な限り接着面
積を小さくしなければならない。しかし、反射能
と接着力でもある当該面積とのバランスをとるの
が極めて困難で、その結果、従来しばしば屋外使
用中に接着部分の剥離が起こり透明薄板のひび割
れを惹起し、雨水、露等が浸透することにより光
再帰性反射器の性能喪失という事故が起こつてい
る。加えてこれは構造が複雑であるので、交通標
識あるいは衣料用として使用する時透明薄板12
が損傷しないように取扱いには充分な注意を払う
ことが必要である。 又他方、クローズドタイプ光再帰性反射器にお
いては、屈折率2.0以上の高屈折ガラス小球を使
用し、第3図のような該ガラス小球前部半球面に
は平滑な透明樹脂表面層15が、同じく後部半球
面にはガラス小球の中心に対し同心半球殻状の透
明樹脂バインダー層16があり、更にバインダー
層の後部には金属蒸着による反射層4が設けられ
ていて、光再帰性反射機能が得られるようになつ
ている。このようにガラス小球の前部半球部と後
部半球部にはそれぞれ表面樹脂15とバインダー
樹脂の層16があるため光の透過損失が非常に大
きく、クローズドタイプ光再帰性反射器の輝度値
は前述のオープンタイプ光再帰性反射器の1/4〜
1/5程度でしかない。そして、ガラス小球を取り
巻く上述の積層樹脂に柔軟性に富むものを使用す
ると衣料用の反射器が得られるが、このように構
成される衣料用クローズドタイプ光再帰性反射器
は縫製の際、表面の樹脂が柔軟なためミシンの押
え金具の滑りを阻害すること及び積層が多いので
目付が増え、比較的厚いものしか得られないこと
により、所謂可縫性に劣り、風合が非常に悪く、
構成材料が多いため製造原価が高くなるという欠
点があつた。 本発明の光再帰性反射器はこのような両タイプ
の光再帰性反射器の長所を活かし、欠陥を補うも
のである。 すなわち、本発明の光再帰性反射器の目的とす
るところは、柔軟性に富み、夜間、色彩を含む視
認性に優れた高輝度品を得ることであつて、その
ためには屈折率1.9以上、好ましくは2.0以上の高
屈折率ガラス小球を使用し、該反射器のガラス小
球前部露出面には極めて薄い厚さ0.01μ〜5μ程度
の、該露出面を覆うような同心楕円半球殻状透明
樹脂層を塗付するか、又は同状の着色透明樹脂層
を印刷により形成することによつて高輝度を有
し、柔軟かつ任意に着色できることを特徴とする
ものである。 この場合、該透明樹脂に柔軟性に富んだ樹脂を
用いることにより、樹脂層が薄いことと相まつて
極めて柔軟で可縫性に優れ、昼夜を問わず任意の
反射色が得られる高輝度の衣料用光再帰性反射器
の製造が可能となる。 また、本発明の反射器の表面にはガラス小球が
露出しないために耐汚染性に優れ、泥とか煤煙が
付着しても雑巾等で容易に拭い取り清浄にするこ
とができる。又、ガラス小球の脱落は完全に防ぐ
ことができ、反射器の内部へ水が侵入しなくなる
ので性能低下がなくなり、使用耐久年数が伸び
る。更に従来のオープンタイプ光再帰性反射器に
起こつた水濡れによる性能低下は完全に防止する
ことができる。 このように性能に優れた本発明の光再帰性反射
器は次に述べるように驚くべき不思議な反射機構
を備えているものである。すなわち従来、光再帰
性反射器はガラス小球の屈折率と直径によつて焦
点距離が定まるが、直径は反射器製造上の技術的
制約のためいずれかの場合もほぼ同程度に限定さ
れるので屈折率約1.9のガラスビーズはオープン
タイプに、屈折率約2.0のものはクローズドタイ
プに使用されてきた。 本発明の光再帰性反射器はガラス小球の屈折率
が大きい(約2.0)にもかかわらず反射膜の位置
(即ちレンズの焦点位置)がガラス小球面上にあ
り、即ちオープンタイプ型反射機構をとるという
新規な発明なのである。更に詳しく述べるならば
従来、屈折率2.0以上の高屈折率ガラス小球を使
用する場合は所謂クローズドタイプの構造(第3
図参照)にするのが一般的である。ところが本発
明の光再帰性反射器の構造は高屈折率ガラス小球
を使用してその後部半球面に直接金属蒸着する
か、あるいはアルミニウム粉末等の光反射性物質
の混入樹脂層による反射層を設けた後、該ガラス
小球前部半球面に厚さ0.01〜5μの透明被膜を凹レ
ンズ状に密着被覆させることにより再帰性煩瑣機
能を付与したものであつて、これは従来使用され
ている単に屈折率2.0以上の高屈折率ガラス小球
の使用方法とは全く異なつている。他方、オープ
ンタイプ光再帰性反射器に使用される低屈折率あ
るいは中屈折率のガラス小球では本発明品と同じ
構造を有する反射器を製造するとしても、再帰性
反射性能が著しく低いものしか得られない。又、
屈折率2.0以上の高屈折率ガラス小球を用いても
ガラス小球前部半球面を被覆する透明被膜が10μ
程度に厚くかつ空気と接する面が殆んど平坦な面
である場合には充分な反射性能が得られない。更
にガラス小球後部にバインダー層、次いで反射層
を設けた場合にはガラス小球前部半球面に被覆す
る透明被膜が本発明どうりの膜形状を有しても全
く再帰性反射機能が得られないのである。 このように、高屈折率ガラス小球の前部に被覆
する透明被膜の膜厚及び形状、そして該ガラス小
球後部に反射層が密接することが本発明の再帰反
射機能を導き出す重要な点であることが判る。詳
細な再帰性反射機能については不明であるが、該
透明被膜の凹レンズ効果によるガラス小球のレン
ズ作用の変化によるものと推定される。現在その
原因は定かではないが、従来何人も予想すること
ができなかつた全く驚くべき現象であるというこ
とができる。 更にこれを詳細に述べると、ガラス小球前部半
球面に被覆密着させた被膜の厚さは、該ガラス小
球の直径により支配され、直径が一定の場合該被
膜の厚さの増減により反射性能が変化する。従つ
て、被膜に最も適した厚さの存在することが判つ
た。そして、この適性な被膜を電子顕微鏡等で観
察するとその形状はガラス小球に対して同心楕円
半球殻状に被覆しており、かつその厚さはガラス
小球の直径500μ以下の時には厚さ0.01〜5μの範囲
であつた。しかも、ガラス小球の直径が大きい程
被覆する該被膜の厚さは増加する。 このように、本発明の光再器性反射帰は既存の
屈折率1.9以上の高屈折率ガラス小球を使用し、
その前面に同じ同心楕円半球殻状の被膜を、後部
面に反射層を密着して設けてやればよく、従来既
知の手段を組合せることによつて作ることができ
る。 次に本発明を実施例と図面を用いて、本発明の
作用効果を更に詳細に説明するが、本発明はこれ
らに限定されるものではない。 第4図は本発明の光再帰性反射器の半製品の断
面図を示し、その詳細な説明は半製品製造法の実
施例で述べる。第5図は第4図のポリエステル−
ポリエチレンラミネート品1,2を剥離してガラ
ス小球3を空気中に露出させた光再帰性反射器の
半製品7(以下半製品という)のガラス小球3の
前部半球面に同心楕円半球殻状の透明あるいは着
色透明樹脂被膜8を被覆密着したものの断面図で
ある。第6図は本発明の光再帰性反射器のガラス
小球3の前部に同心楕円半球殻状の樹脂被膜8
を、同後部に反射膜4を設けた時の外部からの光
の径路と反射機構を推定したものである。すなわ
ち、入射光線9は先ず被膜8の表面でガラス小球
の中心方向に屈折し侵入するが、ガラス小球の表
面で再度屈折し、この二度の屈折における空気と
透明樹脂、透明樹脂とガラスのそれぞれの屈折率
と厚さの適度な組合せによりガラス小球のレンズ
の焦点がその後部半球面上の点10に位置するよ
うになると密接する反射層4により焦点10で入
射光線9は反射され、再びガラス小球より透明樹
脂を経て反射光線11となり、入射光線9と平行
で逆方向に光の反射が起こる(それぞれ矢印の方
向で示す)。それぞれの作用、効果については実
施例において更に詳述する。 半製品製造法の実施例 第4図に示すように、ポリエステルフイルム1
とこれにラミネートされた20μの厚さのポリエチ
レンフイルム2に直径80μ、屈折率2.25の高屈折
率ガラス小球3を110℃、3分間の加熱によつて
埋没率50%で仮埋没される。次にガラス小球3の
露出面に約800オングストロームの厚さのアルミ
ニウムを金属蒸着して反射層4とし、更にこの上
に固着バインダー層5を厚さ30μになるよう塗布
した後、支持体であるフイルム6と100℃、3分
間熱ラミネートして固定し、次いでガラス小球を
仮埋没したポリエステル−ポリエチレンラミネー
ト品1,2を剥離して埋没ガラス小球の半部を空
気中に露出させて光再帰性反射器の半製品を得
た。その他、ガラス小球の屈折率の異なるもの、
すなわち1.51、1.92及び2.1の三種類を用いて同様
な方法にて半製品三点を作成した。 実施例 1〜4 第4図で示したような上述の半製品7のガラス
小球露出面に次の組成の透明樹脂を被膜の厚さが
2μとなるよう塗布したのち、130℃、3分間熱風
乾燥処理を行つて第5図の樹脂被膜8を有する試
料を作成した。 組成 メタクリル酸アルキルエステル重合樹脂
100部 メラミン硬化剤 5部 トルエン 30部 計 135部 各試料の光再帰性反射性能(輝度値)とガラス
小球の屈折率との関係を下記第1表の実施例番号
1〜4で明らかにする。
The present invention relates to a structure of an optical retroreflector that has not been previously discovered and used. Specifically, the high refractive index glass sphere used, a colorless or transparent thin resin film (hereinafter referred to as a coating) in the shape of a concentric elliptical hemispherical shell formed on the front exposed surface side of the glass sphere so as to cover the exposed surface; Furthermore, the present invention relates to a high-intensity optical retroreflector obtained by directly providing a reflective layer (for example, a metal vapor-deposited film or the like) on the rear exposed surface of a glass bulb. The performance of the product of the present invention is based on an innovative optical retroreflector that takes advantage of the characteristics of both open type and closed type conventional optical retroreflectors and compensates for the shortcomings of each type. It has a structure that fully demonstrates its performance. The conventional open type optical retroreflector is
As shown in the figure, a glass sphere 3 with a medium or low refractive index of 1.9 or less is used, the front part of the sphere is exposed to the air, and the rear hemispherical part is directly covered with a reflective layer 4.
It had a structure in which a binder 5 was then applied, and a support 6 was attached. This material has high reflective brightness, excellent reflection angle characteristics, and has a simple structure, and has a small basis weight and is thin, so it can be used as a light retroreflector for clothing with excellent sewability. However, on the other hand, it has serious drawbacks. That is, for example, if the hemispherical part of the front part of the glass sphere exposed on the surface of this open type light retroreflector is coated with a substance having an optical refractive index such as transparent resin or water, the lens action of the glass sphere will be affected. As a result, the retroreflection function of the light retroreflector decreases, causing a significant decrease in brightness.
In addition, when coloring an open type light retroreflector, the binder portion 5 that connects the glass spheres 3 and 3' is colored as shown in Figure 1 so as not to interfere with the lens action of the glass spheres. A method is used in which a colored layer is created by adding the required external color. However, with this coloring method, even if the colors are clear under scattered light during the day, when viewed under illumination light (almost convergent light) at night, when the light is reflected by the light retroreflector, the color will change. Since the layer is not present in the light input and return path, no color is discernible. Further, as described above, if the exposed hemispherical portion of the front portion of the glass bulb is coated with transparent resin, the lens action changes, so printing or the like cannot be applied to the surface of the open type light retroreflector at all. In addition, if the bonding agent part of the glass bulb is not made water resistant, moisture will penetrate into the rear hemisphere of the glass bulb, degrading the bonding agent and causing problems such as dropping of the glass bulb and reduction in brightness due to deterioration of the reflective layer. An inconvenience will occur. Furthermore, when used outdoors, if dust, dirt, soot, etc. adhere to the exposed surface of the glass bulb on the surface of the light retroreflector, it is difficult to remove and tends to cause a decrease in brightness and poor appearance. In order to compensate for the above-mentioned drawbacks, on the front exposed surface side of the glass bulb of the open type light retroreflector,
A method has been adopted in which a transparent thin plate 12 is attached via an air layer 14 as shown in FIG. 2 to protect the small glass lens. The surface of this transparent thin plate 12 is colored or printed and used as an all-weather high-intensity light retroreflector. However, since the air space 14 is a necessary condition for such a device, the bonding area 13 between the glass spherical surface and the transparent thin plate 12 must be made as small as possible. However, it is extremely difficult to strike a balance between the reflective ability and the surface area, which is also adhesive strength, and as a result, the adhesive part often peels off during outdoor use, causing cracks in the transparent thin plate, and rainwater, dew, etc. Accidents have occurred in which the optical retroreflector loses its performance due to penetration. In addition, since the structure is complicated, the transparent thin plate 12 is not suitable for use as a traffic sign or for clothing.
It is necessary to take sufficient care in handling to avoid damage. On the other hand, in a closed type light retroreflector, a high refractive glass sphere with a refractive index of 2.0 or more is used, and a smooth transparent resin surface layer 15 is provided on the front hemispherical surface of the glass sphere as shown in FIG. However, on the rear hemispherical surface, there is a transparent resin binder layer 16 in the shape of a hemispherical shell concentrically with respect to the center of the glass sphere, and furthermore, a reflective layer 4 made of metal vapor deposition is provided at the rear of the binder layer to provide light reflection. Reflective functions are now available. Since the front hemisphere and the rear hemisphere of the glass sphere have the surface resin layer 15 and the binder resin layer 16, respectively, the transmission loss of light is very large, and the brightness value of the closed type light retroreflector is 1/4~ of the aforementioned open type optical retroreflector
It's only about 1/5. Reflectors for clothing can be obtained by using a highly flexible laminated resin surrounding the glass globules, but closed-type retroreflectors for clothing constructed in this way are difficult to use during sewing. The resin on the surface is flexible, which prevents the sewing machine's presser foot from slipping, and the large number of layers increases the fabric weight, resulting in relatively thick products, resulting in poor sewability and a very poor texture. ,
The drawback was that manufacturing costs were high because of the large number of constituent materials. The optical retroreflector of the present invention takes advantage of the advantages of both types of optical retroreflectors and compensates for their deficiencies. That is, the purpose of the optical retroreflector of the present invention is to obtain a high-luminance product that is highly flexible and has excellent visibility including color at night. Preferably, a high refractive index glass sphere of 2.0 or more is used, and the front exposed surface of the glass sphere of the reflector is provided with an extremely thin concentric elliptical hemispherical shell with a thickness of about 0.01μ to 5μ that covers the exposed surface. By applying a shaped transparent resin layer or by printing a colored transparent resin layer of the same shape, it is characterized by high brightness, flexibility, and the ability to be colored arbitrarily. In this case, by using a resin with high flexibility as the transparent resin, the resin layer is thin, and together with it, it is extremely flexible and has excellent sewability, and high brightness clothing that can obtain any reflective color regardless of day or night. It becomes possible to manufacture optical retroreflectors for use. Further, since the glass beads are not exposed on the surface of the reflector of the present invention, it has excellent stain resistance, and even if dirt or soot adheres to the surface, it can be easily wiped clean with a rag or the like. In addition, drop-off of the glass beads can be completely prevented, and water will not enter the interior of the reflector, so there will be no deterioration in performance and the service life will be extended. Furthermore, the deterioration in performance due to water wetting that occurs in conventional open type optical retroreflectors can be completely prevented. The optical retroreflector of the present invention, which has such excellent performance, is equipped with a surprising and mysterious reflection mechanism as described below. In other words, conventionally, the focal length of a retroreflector is determined by the refractive index and diameter of the glass sphere, but the diameter is limited to approximately the same degree in each case due to technical constraints in manufacturing the reflector. Therefore, glass beads with a refractive index of approximately 1.9 have been used for open types, and those with a refractive index of approximately 2.0 have been used for closed types. In the light retroreflector of the present invention, the position of the reflective film (i.e., the focal position of the lens) is on the surface of the glass sphere even though the glass sphere has a large refractive index (approximately 2.0), that is, it has an open type reflection mechanism. This is a new invention that takes To explain in more detail, conventionally, when using high refractive index glass spheres with a refractive index of 2.0 or more, a so-called closed type structure (third type) was used.
(see figure). However, the structure of the optical retroreflector of the present invention uses a high refractive index glass sphere and uses metal vapor deposition directly on the rear hemispherical surface, or a reflective layer made of a resin layer mixed with a light reflective substance such as aluminum powder. After installation, a transparent coating with a thickness of 0.01 to 5 μm is tightly coated on the front hemispherical surface of the glass bulb in the shape of a concave lens, thereby imparting a reflexive function. This is completely different from the method of using high refractive index glass spheres with a refractive index of 2.0 or higher. On the other hand, even if a reflector with the same structure as the product of the present invention is manufactured using glass beads with a low or medium refractive index used in an open type optical retroreflector, the retroreflection performance is extremely low. I can't get it. or,
Even if a high refractive index glass sphere with a refractive index of 2.0 or more is used, the transparent coating covering the front hemispherical surface of the glass sphere is only 10 μm.
If the surface is relatively thick and the surface in contact with air is almost flat, sufficient reflective performance cannot be obtained. Furthermore, if a binder layer and then a reflective layer are provided at the rear of the glass bulb, no retroreflective function can be obtained even if the transparent coating covering the front hemispherical surface of the glass bulb has the film shape of the present invention. It cannot be done. As described above, the thickness and shape of the transparent coating coated on the front part of the high refractive index glass sphere, and the closeness of the reflective layer to the rear part of the glass sphere are important points for deriving the retroreflection function of the present invention. It turns out that there is something. Although the detailed retroreflection function is unknown, it is presumed that it is due to a change in the lens action of the glass sphere due to the concave lens effect of the transparent coating. Although the cause is currently unknown, it can be said that this is a completely surprising phenomenon that no one could have ever predicted. To explain this in more detail, the thickness of the coating tightly adhered to the front hemispherical surface of the glass sphere is controlled by the diameter of the glass sphere, and if the diameter is constant, the reflection will change depending on the increase or decrease in the thickness of the coating. Performance changes. Therefore, it was found that there is a most suitable thickness for the coating. When this suitable coating is observed with an electron microscope, it has a concentric elliptical hemispherical shell shape covering the glass sphere, and its thickness is 0.01 mm when the diameter of the glass sphere is 500μ or less. It was in the range of ~5μ. Moreover, the thickness of the coating increases as the diameter of the glass sphere increases. In this way, the optical re-reflection of the present invention uses existing high refractive index glass spheres with a refractive index of 1.9 or more,
The same concentric elliptical hemispherical shell-shaped coating may be provided on the front surface, and a reflective layer may be provided in close contact with the rear surface, and these can be produced by combining conventionally known means. Next, the effects of the present invention will be explained in more detail using Examples and drawings, but the present invention is not limited thereto. FIG. 4 shows a cross-sectional view of a semi-finished product of the optical retroreflector of the present invention, the detailed description of which will be given in the embodiment of the semi-finished product manufacturing method. Figure 5 shows the polyester shown in Figure 4.
An elliptical hemisphere concentric with the front hemisphere of the glass sphere 3 of a semi-finished product 7 of a light retroreflector (hereinafter referred to as a semi-finished product) in which the polyethylene laminates 1 and 2 are peeled off to expose the glass sphere 3 in the air. It is a cross-sectional view of a shell-like transparent or colored transparent resin film 8 coated closely. FIG. 6 shows a concentric elliptical hemispherical shell-shaped resin coating 8 on the front part of the glass sphere 3 of the light retroreflector of the present invention.
is an estimation of the path and reflection mechanism of light from the outside when a reflective film 4 is provided at the rear of the same. That is, the incident light ray 9 is first refracted toward the center of the glass sphere at the surface of the coating 8 and enters the glass sphere, but is refracted again at the surface of the glass sphere, and in this double refraction, air and transparent resin, transparent resin and glass When the focal point of the lens of the glass sphere is located at a point 10 on its rear hemisphere by a suitable combination of the refractive index and thickness of each of , the reflected light beam 11 passes through the transparent resin from the glass sphere again, and the light is reflected in a direction parallel to and opposite to the incident light beam 9 (respectively indicated by the direction of the arrow). The respective functions and effects will be explained in further detail in Examples. Example of semi-finished product manufacturing method As shown in Figure 4, polyester film 1
A high refractive index glass sphere 3 having a diameter of 80 μm and a refractive index of 2.25 is temporarily buried in a polyethylene film 2 having a thickness of 20 μm laminated thereon by heating at 110° C. for 3 minutes with a burial rate of 50%. Next, aluminum with a thickness of about 800 angstroms is metal-deposited on the exposed surface of the glass sphere 3 to form a reflective layer 4, and then a fixed binder layer 5 is applied to a thickness of 30 μm on top of this. A certain film 6 was fixed by heat lamination at 100°C for 3 minutes, and then the polyester-polyethylene laminates 1 and 2 in which the glass spheres were temporarily embedded were peeled off to expose half of the buried glass spheres to the air. A semi-finished product of a light retroreflector was obtained. In addition, glass globules with different refractive indexes,
That is, three semi-finished products were created using the same method using three types: 1.51, 1.92, and 2.1. Examples 1 to 4 A transparent resin having the following composition was coated on the exposed surface of the glass sphere of the semi-finished product 7 described above as shown in FIG.
After coating to a thickness of 2μ, a hot air drying treatment was performed at 130° C. for 3 minutes to prepare a sample having the resin coating 8 shown in FIG. Composition: Methacrylic acid alkyl ester polymer resin
100 parts Melamine curing agent 5 parts Toluene 30 parts Total 135 parts The relationship between the light retroreflection performance (brightness value) of each sample and the refractive index of the glass spheres was clarified with Example Nos. 1 to 4 in Table 1 below. do.

【表】 輝度値は一定入射定量に対する反射光量を示す
もので、値の大きい程反射器の性能が優れている
ことを示す。第1表の結果から、ガラス小球の屈
折率の高い程高い輝度値の得られることが確認で
きた。 実施例 5 実施例1〜4で得た結果の如く高屈折率ガラス
小球を用いると、ガラス小球前部に被覆する透明
被膜とガラス小球のレンズ作用がマツチして高輝
度値の得られることが判つた。更にガラス小球に
被覆する被膜の厚さとガラス小球の直径との関係
は下記のようになつた。すなわち、屈折率2.25、
直径80μのガラス小球を用いた前述の半製品にお
いてガラス小球露出面に次のような着色透明樹脂
を、付着量を変えて塗布し、種々の厚さの樹脂被
膜8を形成し輝度値を測定した。 組成 メラミンホルマリン重合樹脂 100部 ベンジジン系黄色顔料 15部 計 115部 その結果、該被膜の厚さと輝度値との間には第
7図に示すような一定の関係があり、高輝度の反
射性能を得るためにはガラス小球の直径に対して
適性の厚さの範囲が存在することが判つた。 この実施例で作成した試料中最高の輝度値を示
すものを電子顕微鏡でみたところ、被膜の形状は
ガラス小球に対し同心楕円半球殻状8であり、膜
厚は第7図に示すようにガラス小球の露出面の頂
点付近が約0.1μで、裾野の部分は5μ、平均2.5μ程
度であつた。 以上の如く、反射器の反射性能、すなわち輝度
は使用するガラス小球の屈折率が高い程優れてい
るが、被覆する被膜の厚さは屈折率とは直接関係
せず、むしろガラス小球の大きさ、すなわち直径
に対して最適値をとるような関係が認められる。
従つて、ガラス小球の直径は本来任意ではある
が、該被膜の形状を同心楕円殻状に形成する技術
上の制約から500μ以下が適当となる。 実施例6〜9、比較例1〜4 本発明の光再帰性反射器の半製品を作る時に、
支持体をナイロン製編物トリコツトにすると衣料
用半製品が作られる。そして、該半製品のガラス
小球露出面は次のような印刷インクを塗布して同
心楕円半球殻状の被膜を形成すると、色合が良く
昼夜を問わずその反射色が変らない高輝度の衣料
用光再帰性反射器が得られた。 インクの組成 一液型ウレタンスクリーンインク透明液 100部 顔 料 30部 メチルエチルケトン 10部 計 140部 上記の顔料にベンジジン系黄色顔料、ペリレン
系赤色顔料、シアニン系青色顔料及びシアニン系
緑色顔料を用いてそれぞれ黄、赤、青、緑の印刷
インクを作製し、次いで220メツシユのポリエス
テル繊維のスクリーンでスクリーン印刷した後、
120℃、5分間熱風乾燥を行い、約3μの厚さの被
膜を屈折率2.25、平均直径80μのガラス小球の露
出面に形成し、第2表のような反射性能、すなわ
ち輝度値を得た。比較として日本工業規格JIS−
Z−9117に規定されている反射材の輝度値を併記
したが、明らかに各色共に格段に優れた反射性能
のものであつた。
[Table] The brightness value indicates the amount of reflected light for a constant incident quantity, and the larger the value, the better the performance of the reflector. From the results in Table 1, it was confirmed that the higher the refractive index of the glass sphere, the higher the brightness value obtained. Example 5 As shown in the results obtained in Examples 1 to 4, when a high refractive index glass sphere is used, the transparent coating covering the front part of the glass sphere matches the lens action of the glass sphere, resulting in a high brightness value. It turned out that it was possible. Furthermore, the relationship between the thickness of the coating applied to the glass sphere and the diameter of the glass sphere was as follows. That is, the refractive index is 2.25,
In the aforementioned semi-finished product using glass globules with a diameter of 80μ, the following colored transparent resins were applied to the exposed surface of the glass globules in varying amounts to form resin coatings 8 of various thicknesses, and the brightness values were determined. was measured. Composition: Melamine-formalin polymer resin 100 parts Benzidine-based yellow pigment 15 parts Total 115 parts As a result, there is a certain relationship between the thickness of the film and the brightness value as shown in Figure 7, and high brightness reflection performance is achieved. It has been found that there is an appropriate thickness range for the diameter of the glass globules. When the sample showing the highest brightness value among the samples prepared in this example was observed using an electron microscope, the shape of the coating was a concentric elliptical hemispherical shell 8 with respect to the glass sphere, and the coating thickness was as shown in Figure 7. The exposed surface of the glass sphere had a thickness of about 0.1μ near the top, and 5μ at the base, with an average thickness of about 2.5μ. As mentioned above, the reflective performance of the reflector, that is, the brightness, is better as the refractive index of the glass sphere used is higher, but the thickness of the coating is not directly related to the refractive index, but rather the thickness of the glass sphere. A relationship is recognized that takes the optimum value for the size, that is, the diameter.
Therefore, although the diameter of the glass globules is essentially arbitrary, it is appropriate to have a diameter of 500 μm or less due to the technical constraints of forming the coating into a concentric elliptical shell shape. Examples 6 to 9, Comparative Examples 1 to 4 When making semi-finished products of the optical retroreflector of the present invention,
A semi-finished product for clothing can be produced by using a nylon knitted tricot as the support. When the exposed surface of the glass globules of the semi-finished product is coated with the following printing ink to form a concentric elliptical hemispherical shell-like coating, it is possible to create high-brightness clothing that has a good color and the reflected color does not change day or night. A light retroreflector for use was obtained. Ink Composition One-part urethane screen ink Transparent liquid 100 parts Pigment 30 parts Methyl ethyl ketone 10 parts Total 140 parts In addition to the above pigments, benzidine yellow pigment, perylene red pigment, cyanine blue pigment, and cyanine green pigment were used. After making yellow, red, blue and green printing inks and then screen printing with a 220 mesh polyester fiber screen,
By drying with hot air at 120℃ for 5 minutes, a film with a thickness of approximately 3μ was formed on the exposed surface of a glass sphere with a refractive index of 2.25 and an average diameter of 80μ, and the reflection performance, that is, the brightness value, as shown in Table 2 was obtained. Ta. For comparison, Japanese Industrial Standard JIS-
The luminance values of the reflective material specified in Z-9117 are also listed, and it is clear that each color has extremely excellent reflective performance.

【表】 得られた衣料用反射器は非常に上品な色合でソ
フトな手触りと柔軟性を有し、可縫性の良好なも
のであつた。
[Table] The obtained reflector for clothing had a very elegant color, was soft to the touch, had flexibility, and had good sewability.

【図面の簡単な説明】[Brief explanation of drawings]

本発明の光再帰性反射器の構造の一例を模式的
に示したものである。第1図は従来のオープンタ
イプ光再帰性反射器の断面図、第2図は空気層を
有する改良型オープンタイプ反射器の断面図、第
3図は従来のクローズドタイプ光再帰性反射器の
断面図である。第4図は本発明の光再帰性反射器
の半製品の断面図、第5図はガラス小球前部に同
心楕円半球殻状の透明あるいは着色透明樹脂被膜
を被覆密着した本発明の光再帰性反射器の断面図
である。第6図はガラス小球を同心半球殻状に被
覆したものについて外部からの光の入射及び反射
径路を推定した断面図であり、第7図は被膜の平
均厚さと輝度値の関係を示した実験図であつて、
観測条件として正面輝度値の観測角0.2°、入射角
−4°である。 図中、1はポリエステルフイルム、2はポリエ
チレン層、3はガラス小球、4は反射層、5は固
着バインダー層、6は支持体、7は3,4,5,
6を総称した光再帰性反射器の半製品、8は同心
楕円半球殻状の被膜、9は入射光線、10は焦
点、11は反射光線、12は透明薄板、13は接
着部分、14は空気層を示す。
1 schematically shows an example of the structure of the optical retroreflector of the present invention. Figure 1 is a cross-sectional view of a conventional open type optical retroreflector, Figure 2 is a cross-sectional view of an improved open type reflector with an air layer, and Figure 3 is a cross-sectional view of a conventional closed type optical retroreflector. It is a diagram. FIG. 4 is a sectional view of a semi-finished product of the light retroreflector of the present invention, and FIG. 5 is a light retroreflector of the present invention in which a transparent or colored transparent resin coating in the form of a concentric elliptical hemispherical shell is coated and adhered to the front part of a glass sphere. FIG. 2 is a cross-sectional view of a sexual reflector. Figure 6 is a cross-sectional view estimating the incident and reflection paths of light from the outside for a glass sphere coated with a concentric hemispherical shell, and Figure 7 shows the relationship between the average thickness of the coating and the brightness value. It is an experimental diagram,
The observation conditions are an observation angle of 0.2° for the front brightness value and an incident angle of -4°. In the figure, 1 is a polyester film, 2 is a polyethylene layer, 3 is a glass ball, 4 is a reflective layer, 5 is a fixed binder layer, 6 is a support, 7 is 3, 4, 5,
6 is a semi-finished product of a light retroreflector, 8 is a concentric elliptical hemispherical shell-like coating, 9 is an incident light beam, 10 is a focal point, 11 is a reflected light beam, 12 is a transparent thin plate, 13 is an adhesive part, and 14 is air. Show layers.

Claims (1)

【特許請求の範囲】[Claims] 1 支持体に保持された固着バインダー樹脂層中
に40〜80%の埋没率で直径500μ以下、屈折率1.9
以上の高屈折率ガラス小球が埋没され、該ガラス
小球の後部埋没部分には、直接反射層が設けてあ
り、かつ該ガラス小球の前部露出面側に該露出面
を覆うように同心楕円半球殻状で厚さ0.01〜5μの
無色あるいは着色透明樹脂の被膜を凹レンズ状に
形成してなることを特徴とする光再帰反射器。
1. Diameter 500 μ or less, refractive index 1.9 with 40 to 80% immersion rate in the fixed binder resin layer held on the support.
The above-mentioned high refractive index glass sphere is buried, and a reflective layer is provided directly on the buried rear part of the glass sphere, and a reflective layer is provided on the front exposed surface side of the glass sphere so as to cover the exposed surface. An optical retroreflector characterized by having a concentric elliptical hemispherical shell-like coating of a colorless or colored transparent resin having a thickness of 0.01 to 5 μm formed in the shape of a concave lens.
JP17368183A 1983-09-20 1983-09-20 Optical retroreflector Granted JPS6064302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17368183A JPS6064302A (en) 1983-09-20 1983-09-20 Optical retroreflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17368183A JPS6064302A (en) 1983-09-20 1983-09-20 Optical retroreflector

Publications (2)

Publication Number Publication Date
JPS6064302A JPS6064302A (en) 1985-04-12
JPH0411002B2 true JPH0411002B2 (en) 1992-02-27

Family

ID=15965125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17368183A Granted JPS6064302A (en) 1983-09-20 1983-09-20 Optical retroreflector

Country Status (1)

Country Link
JP (1) JPS6064302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048217A1 (en) * 2003-11-14 2005-05-26 Kiwa Chemical Industry Co., Ltd. Retroreflection sheet for security and process for producing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622206A (en) * 1985-06-27 1987-01-08 Unitika Supaakuraito Kk Light reflector
JPH073484B2 (en) * 1985-09-12 1995-01-18 久男 小木 Transparent spherical buried retroreflector
JPS62106161U (en) * 1985-12-24 1987-07-07
US4763985A (en) * 1986-08-01 1988-08-16 Minnesota Mining And Manufacturing Company Retroreflective sheet with enhanced brightness
JPS63160501U (en) * 1987-04-09 1988-10-20
EP0759179B1 (en) * 1994-05-12 2001-11-28 Minnesota Mining And Manufacturing Company Retroreflective article and method of making same
JP4050672B2 (en) 2003-08-08 2008-02-20 オリンパス株式会社 Recursive optical screen and observation apparatus using the same
JP2005062312A (en) 2003-08-08 2005-03-10 Olympus Corp Projection screen and projection type display device
EP1646023A4 (en) 2003-11-14 2009-04-29 Kiwa Chemical Ind Co Ltd Security sticker and process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567307A (en) * 1966-12-02 1971-03-02 Prismo Universal Corp Reflective markers
JPS55166603A (en) * 1979-06-14 1980-12-25 Meiwa Screen:Kk Recurrent reflecting body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567307A (en) * 1966-12-02 1971-03-02 Prismo Universal Corp Reflective markers
JPS55166603A (en) * 1979-06-14 1980-12-25 Meiwa Screen:Kk Recurrent reflecting body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048217A1 (en) * 2003-11-14 2005-05-26 Kiwa Chemical Industry Co., Ltd. Retroreflection sheet for security and process for producing the same

Also Published As

Publication number Publication date
JPS6064302A (en) 1985-04-12

Similar Documents

Publication Publication Date Title
US2407680A (en) Reflex light reflector
US20030016368A1 (en) Visibly transparent retroreflective materials
US2543800A (en) Reflex light reflector
JPH10170710A (en) Light retroreflective sheet
JPH0323402A (en) Reverse reflecting body using fine sphere, composition for coating forming reverse reflecting and variable contrast mark
JPH0411002B2 (en)
JP2011508265A (en) Retroreflective article and retroreflective element comprising a spherical core and two concentric optical interference layers
JP2017503209A (en) High reflectivity open bead method and material
JPS60205501A (en) Retroreflective sheet-like material having bright color and light accumulating property
US2379702A (en) Reflex light reflector
WO2015147161A1 (en) Retroreflective material
JPH073484B2 (en) Transparent spherical buried retroreflector
WO1997001776A1 (en) Rainbow sheeting having distinct color changes and/or hidden images
JP3498070B2 (en) Retroreflective sheet and manufacturing method thereof
JPH05173008A (en) High-brightness reflection sheet having light accumulating property and production thereof
JP3217164B2 (en) Retroreflective sheet and method of manufacturing the same
JP2003344624A (en) Recursive reflector
JP5766343B1 (en) Retroreflective material
JPH10282912A (en) Retroreflective material
JP3469689B2 (en) Lens type retroreflective sheet
JPH09304610A (en) Retroreflecting material
CN206856135U (en) A kind of colored total-light-reflection fabric
JPS61186902A (en) Optical reflector
CA2106336A1 (en) Television visible hockey pucks
JPH11326609A (en) Wide observation angle diffusion reflecting sheet