JPS6063919A - Surface treating device - Google Patents

Surface treating device

Info

Publication number
JPS6063919A
JPS6063919A JP17279883A JP17279883A JPS6063919A JP S6063919 A JPS6063919 A JP S6063919A JP 17279883 A JP17279883 A JP 17279883A JP 17279883 A JP17279883 A JP 17279883A JP S6063919 A JPS6063919 A JP S6063919A
Authority
JP
Japan
Prior art keywords
substrate
discharge
electrode
plasma
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17279883A
Other languages
Japanese (ja)
Inventor
Takashi Hiraga
隆 平賀
Atsushi Sekiguchi
敦 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp, Anelva Corp filed Critical Canon Anelva Corp
Priority to JP17279883A priority Critical patent/JPS6063919A/en
Publication of JPS6063919A publication Critical patent/JPS6063919A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32596Hollow cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce impact damages of a substrate and to enable a high-quality treatment thereof by exposing the substrate to be treated to the floating electric potential state in the discharge plasma. CONSTITUTION:A cylindrical substrate 1a is fixed to a container 8 through an insulator 10 but not to one of the electrodes. A cylindrical electrode 80 is provided to be connected to the container 8, and a heater 5 is wound around the electrode, whereby a typical hollow-cathode-discharge-type device is provided. A floating potential shield plate 29 inhibits electric discharge from being generated between the upper end of the electrode 2 and the upper interior surface of the container 8 so that the electric discharge is uniformed. Since the electric potential of the substrate is conformed to the potential of the plasma around the substrate, the charged particles in the plasma are not accelerated and impact damages can be reduced. Further, no shadows or barriers are made around the substrate 1a, which assures a uniform surface treatment for the whole peripheral surface of an either conductor or insulator substrate 1a having an optional shape without any rotary or reciprocal movement of the substrate.

Description

【発明の詳細な説明】 本発明は所定の気体を放電によシ分解・活性化し、基板
表面で薄膜の作成9食刻、清浄化1表面改質などの固体
表面処理を行う気体放電装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a gas discharge device for decomposing and activating a predetermined gas by electrical discharge, and performing solid surface treatments such as forming a thin film on the surface of a substrate, cleaning and surface modification. Regarding improvements.

以下図を用いて説明する。This will be explained below using figures.

第1図は、同筒状基板に膜堆積2食刻、清浄化。Figure 1 shows two etchings of film deposited on the same cylindrical substrate and cleaning.

表面改質などの処理(以下では膜堆積で代表させる)に
用いられる従来の装置の概念図である。被処理基板1は
接地されて真空容器8に電気的に接続されておシ、その
外側に円筒状の高電圧印加電極2が配置されている。反
応気体導入系3によシ所定の気体を導入し、排気系4に
より排気して。
1 is a conceptual diagram of a conventional apparatus used for processing such as surface modification (represented by film deposition below). The substrate 1 to be processed is grounded and electrically connected to a vacuum container 8, and a cylindrical high voltage applying electrode 2 is arranged on the outside thereof. A predetermined gas is introduced into the reaction gas introduction system 3 and exhausted through the exhaust system 4.

反応室内を所定の圧力に設定する。Set the inside of the reaction chamber to a predetermined pressure.

被処理基板1は7を加熱電源とする加熱用ヒーター5に
よシ加熱される。電極1,2に電源6よ、9DC,AC
又はRFの高電圧を印加すると両電極間に放電が発生し
、導入気体が分解され活性化して基板1上に堆積する。
The substrate 1 to be processed is heated by a heating heater 5 using a heating power source 7. Power supply 6, 9DC, AC to electrodes 1 and 2
Alternatively, when a high RF voltage is applied, a discharge occurs between the two electrodes, the introduced gas is decomposed and activated, and is deposited on the substrate 1.

この際、基板1は電極の一方であるため、その表面に対
して荷電粒子の激しい流入・出があシ、基板はこれによ
って衝撃損傷を受ける。この衝撃損傷を低減するには投
入電力殊に電圧を小さくすればよいのであるが、成膜速
度を大きくするには、投入電力を太きくしなければなら
ない。損傷と成膜速度とは互に相矛盾する関係にある。
At this time, since the substrate 1 is one of the electrodes, charged particles violently enter and exit the surface of the substrate 1, and the substrate is thereby damaged by impact. In order to reduce this impact damage, it is sufficient to reduce the applied power, particularly the voltage, but in order to increase the film formation rate, the applied power must be increased. Damage and film formation rate have a mutually contradictory relationship.

また、均一な膜質、膜厚を得るためには、基板1を回転
又は往復動させる必要がちシ、基板への電力印加、基板
の温度測定等を困難にし、装置を徒らに複雑高価にして
いた。
In addition, in order to obtain uniform film quality and thickness, it is necessary to rotate or reciprocate the substrate 1, which makes it difficult to apply power to the substrate, measure the temperature of the substrate, etc., and makes the device unnecessarily complicated and expensive. Ta.

本発明は、この問題の解決を目的とする。即ち。The present invention aims to solve this problem. That is.

無損傷の表面処理を高速に行なう装置の提供を目的とす
る。
The purpose of this invention is to provide a device that can perform damage-free surface treatment at high speed.

本発明はまた。被処理物が導電体、絶縁物の何れの場合
でも、更にまた基板が如何なる形状であろうとも、これ
に均一で高品質の表面処理を行うことのできる新規の装
置の提供を目的とする。
The present invention also includes: The object of the present invention is to provide a new apparatus capable of uniformly and high-quality surface treatment on a substrate, regardless of whether the object to be treated is a conductor or an insulator, and regardless of the shape of the substrate.

第2図は本発明の実施例の前者同様の図である。FIG. 2 is a diagram similar to the former embodiment of the present invention.

図中同符号は同部材を示す。第2図が第1図と異なる点
は円筒状基板1aが電極の一方ではなくなυ、絶縁物1
0を介して容器8に固定されξこと\、容器8に接続す
る円筒状電極80が設けられて、ヒーター5がその周囲
に巻かれたことである。
The same reference numerals in the figures indicate the same members. The difference between FIG. 2 and FIG. 1 is that the cylindrical substrate 1a is no longer one of the electrodes, υ, and the insulator 1 is
A cylindrical electrode 80 is provided which is fixed to the container 8 via a cylindrical electrode 80 and connected to the container 8 via a cylindrical electrode 80, and the heater 5 is wound around the cylindrical electrode 80.

このため装置は典型的な中空陰極放電型装置となってい
る。新設された浮遊電位遮蔽板29は、電次 極2の上端部と容器8の上側内面の間に枚電の発生する
のを抑止し、放電を均一にする働きをする。
Therefore, the device is a typical hollow cathode discharge type device. The newly installed floating potential shielding plate 29 serves to suppress the generation of electrical charges between the upper end of the electrode 2 and the upper inner surface of the container 8, and to make the discharge uniform.

基板1aの電位は放電プラズマの中に浮遊するようにな
っている。斯くするときは、基板集の電位は周辺のプラ
ズマの電位に追随した電位をとるため、プラズマ中の荷
電粒子の加速はなくなシ、衝撃損傷は大いに軽減する。
The potential of the substrate 1a is such that it floats in the discharge plasma. In this case, since the potential of the substrate collector follows the potential of the surrounding plasma, there is no acceleration of charged particles in the plasma, and impact damage is greatly reduced.

また、基板1aの周辺に電位の影ないし障壁を生じない
ため基板の回転。
Further, the substrate is rotated so that no potential shadow or barrier is generated around the substrate 1a.

往復動なしでも任意形状の導体、絶縁体の基板1aに対
しその全周辺に一様な表面処理を行うという効果を生ず
る。即ち前述した問題は一挙に解決される。第4図には
本装置で基板la上に作成した水素化アモルファスシリ
コン膜の赤外吸収スペクトルを示す。基板温度は250
℃、ガスにはシラン、ジシランを用いている。S iH
2結合の少い良質の水素化アモルファスシリコン膜V得
られることがわかる。なおこの膜の膜厚の分布は充分に
均一で絶縁抵抗は高くその空間的なバラツキも従来に比
し極めて小さいものであった。従来の装置と較べると約
3倍の電力印加によって10倍以上の成膜速度を得てい
る。なお、真空容器8の外側に磁場発生用コイル30を
設置することでプラズマ密度を一層上げることができる
Even without reciprocation, the effect of uniform surface treatment on the entire periphery of a conductor or insulator substrate 1a having an arbitrary shape is produced. That is, the above-mentioned problems are solved all at once. FIG. 4 shows an infrared absorption spectrum of a hydrogenated amorphous silicon film formed on a substrate la using this apparatus. The substrate temperature is 250
°C, and silane and disilane are used as gases. SiH
It can be seen that a high quality hydrogenated amorphous silicon film V with fewer 2 bonds can be obtained. The thickness distribution of this film was sufficiently uniform, the insulation resistance was high, and its spatial variation was extremely small compared to the conventional film. Compared to conventional equipment, the film formation rate is more than 10 times faster by applying about three times as much power. Note that by installing the magnetic field generating coil 30 outside the vacuum vessel 8, the plasma density can be further increased.

第3図には本発明の他の実施例を示す0薄円板数 状の基板1b、lc、ld・・・・・・は復路の絶縁性
の支持柱9a、9b、・・・・・・の凹溝11を利用し
て適宜の間隔12をもって積み上げられておシ9反応ガ
ス及びプラズマはこの間隔12内に自由に出、入シでき
るようになっている。接地電極苧Oの外側に加熱用ヒー
ター5が配置される。このようにすると同筒80内の温
度分布はほぼ均一となる。円筒状電極2と真空容器80
間に高電圧を印加すると。
FIG. 3 shows another embodiment of the present invention, in which thin disk-shaped substrates 1b, lc, ld, . . . are insulating support columns 9a, 9b, . The trays 9 are piled up at appropriate intervals 12 using grooves 11, so that the reaction gas and plasma can freely exit and enter within these intervals 12. A heating heater 5 is arranged outside the ground electrode 苧O. In this way, the temperature distribution within the cylinder 80 becomes substantially uniform. Cylindrical electrode 2 and vacuum container 80
When a high voltage is applied between.

中空陰極放電が円筒状電極2の内部空間に発生し。Hollow cathode discharge occurs in the internal space of the cylindrical electrode 2.

放電分解されたプラズマによって基板1b、lc。The substrates 1b and lc are exposed to the discharge-decomposed plasma.

・・・・・・が表面処理される。間隔12の大きさを適
当にするとき表面処理は基板の両面において同時に。
... is surface treated. When the distance 12 is appropriately sized, the surface treatment is carried out simultaneously on both sides of the substrate.

かつ均一に進行する。この場合の基板1b、lc。and progress evenly. The substrates 1b, lc in this case.

・・・・・・も導電体、絶縁物の何れでもよい。. . . may be either a conductor or an insulator.

なお、上記は実施例として円筒状電極の場合をか\げた
が、平行平板状電極の場合も本発明は有効に実施できる
Although the above example uses a cylindrical electrode, the present invention can also be effectively implemented in the case of a parallel plate electrode.

本発明の装置は以上の通シであって、被処理基板を放電
プラズマの中に浮遊電位の状態に置くことをその特徴と
するものである。これによって基板の衝撃損傷は大巾に
軽減し高品質の処理を行なうことができる。被処理基板
が凹凸の複雑な形状の場合も表面の処理の均一性が高(
、tA3図の実施例のように小容績の装置の中に従来よ
りもはるかに多量の基板を投入することができる。しか
も高電力による高速処理が可能である。
The apparatus of the present invention has the above structure, and is characterized in that the substrate to be processed is placed in a state of floating potential in discharge plasma. As a result, impact damage to the substrate can be greatly reduced and high-quality processing can be performed. Even when the substrate to be processed has a complex shape with uneven surfaces, the surface processing is highly uniform (
As shown in the embodiment shown in FIG. Moreover, high-speed processing with high power is possible.

本発明の装置が半導体製造等の工業に寄与するところは
大きく、極めて有用な発明ということができる。
The apparatus of the present invention greatly contributes to industries such as semiconductor manufacturing, and can be said to be an extremely useful invention.

【図面の簡単な説明】 第1図は従来の円筒基板成膜装置であシ、第2図はこれ
を改良した本発明の円筒基板成膜装置。 第3図は9円筒基板以外の成膜1表面処理に用いる装置
である。第4図は第2図の装置で1Uられた水素化アル
モファスシリコン膜の赤外吸収スペクトルの図。 1、la、lb、lc、・・・基板 2・・・高電圧印
加電極 3・・・反応気体導入系 4・・・排気装置 
5・・・基板加熱ヒーター 6・・・電極7・・・加熱
電源 8・・・真空容器 8o・・・8に接続される電
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a conventional cylindrical substrate film forming apparatus, and FIG. 2 shows an improved cylindrical substrate film forming apparatus of the present invention. FIG. 3 shows an apparatus used for surface treatment of film forming 1 on substrates other than 9 cylindrical substrates. FIG. 4 is an infrared absorption spectrum of a hydrogenated amorphous silicon film prepared by 1U using the apparatus shown in FIG. 1, la, lb, lc,...substrate 2...high voltage application electrode 3...reactive gas introduction system 4...exhaust device
5... Substrate heating heater 6... Electrode 7... Heating power source 8... Vacuum container 8o... Electrode connected to 8

Claims (2)

【特許請求の範囲】[Claims] (1)所定の気体を放電にょ勺分離・活性化し、基板表
面に所定の処理を施す装置であって、該基板を該放電で
生ずるプラズマ空間内に、基板電位を浮遊せしめて置い
たことを特徴とする表面処理装置。
(1) A device that separates and activates a predetermined gas in a discharge and performs a predetermined treatment on the surface of a substrate, in which the substrate is placed in a plasma space generated by the discharge with a floating substrate potential. Characteristic surface treatment equipment.
(2)該装置が中空陰極放電型装置である第1項記載の
表面処理装置。
(2) The surface treatment apparatus according to item 1, wherein the apparatus is a hollow cathode discharge type apparatus.
JP17279883A 1983-09-17 1983-09-17 Surface treating device Pending JPS6063919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17279883A JPS6063919A (en) 1983-09-17 1983-09-17 Surface treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17279883A JPS6063919A (en) 1983-09-17 1983-09-17 Surface treating device

Publications (1)

Publication Number Publication Date
JPS6063919A true JPS6063919A (en) 1985-04-12

Family

ID=15948557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17279883A Pending JPS6063919A (en) 1983-09-17 1983-09-17 Surface treating device

Country Status (1)

Country Link
JP (1) JPS6063919A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247030U (en) * 1988-09-26 1990-03-30
US5336326A (en) * 1990-09-14 1994-08-09 Balzers Aktiengesellschaft Method of and apparatus for a direct voltage arc discharge enhanced reactive treatment of objects
US5580384A (en) * 1989-09-22 1996-12-03 Balzers Aktiengesellschaft Method and apparatus for chemical coating on opposite surfaces of workpieces

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247030U (en) * 1988-09-26 1990-03-30
US5580384A (en) * 1989-09-22 1996-12-03 Balzers Aktiengesellschaft Method and apparatus for chemical coating on opposite surfaces of workpieces
US5336326A (en) * 1990-09-14 1994-08-09 Balzers Aktiengesellschaft Method of and apparatus for a direct voltage arc discharge enhanced reactive treatment of objects

Similar Documents

Publication Publication Date Title
US5534070A (en) Plasma CVD process using a very-high-frequency and plasma CVD apparatus
JPS61164219A (en) Apparatus for manufacturing thin-film transistor array
JP3501668B2 (en) Plasma CVD method and plasma CVD apparatus
JP4017796B2 (en) Plasma processing equipment
KR100249548B1 (en) Plasma processing system
JPS6063919A (en) Surface treating device
JPS6369981A (en) Method and apparatus for forming layer by plasma chemical treatment
JP2590534B2 (en) Thin film formation method
WO2001083852A1 (en) Method and apparatus for distributing gas within high density plasma process chamber to ensure uniform plasma
JPH06342764A (en) Plasma cvd method and device by use of ultrashort wave
JPH04157164A (en) Plasma treating device
JP3501669B2 (en) Method of forming deposited film by plasma CVD method, high-frequency electrode for plasma generation, and plasma CVD apparatus composed of the electrode
JPH09252047A (en) Electrostatic attraction electrode
JP2001196309A (en) Plasma treater
JPH0445580B2 (en)
JPS58100430A (en) Plasma processor
US11031214B2 (en) Batch type substrate processing apparatus
JP3793034B2 (en) Plasma CVD equipment
JPS62180747A (en) Electric discharge reaction device
JPH09256160A (en) Plasma cvd device and deposited film forming method by plasma cvd
JPH08176818A (en) Sputtering device
JPS63274148A (en) Microwave plasma processing device
JPS62238370A (en) Device for cvd by plasma
JPS58212129A (en) Manufacture of amorphous semiconductor film
JPH01279757A (en) Plasma treatment apparatus