JPS6063790A - Pseudo static memory - Google Patents
Pseudo static memoryInfo
- Publication number
- JPS6063790A JPS6063790A JP58172533A JP17253383A JPS6063790A JP S6063790 A JPS6063790 A JP S6063790A JP 58172533 A JP58172533 A JP 58172533A JP 17253383 A JP17253383 A JP 17253383A JP S6063790 A JPS6063790 A JP S6063790A
- Authority
- JP
- Japan
- Prior art keywords
- node
- field effect
- source
- effect transistor
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Electronic Switches (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は擬似スタティックメモリに関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to pseudo-static memory.
半導体メモリは、近年微細加工技術の進歩によって高集
積化が進んでいる。特にダイナミックRAMではメモリ
セルの構造が簡単であるため大容蓋化が進んでいる。と
ころがスタンバイ時にもメモリセルのテータ保持のリフ
レッシュをする必要があり外部コントロールが複雑にな
るという欠点がある。この欠点を解消するためのタイマ
回路。Semiconductor memories have become highly integrated due to advances in microfabrication technology in recent years. In particular, dynamic RAMs are becoming increasingly large-capacity because the memory cell structure is simple. However, there is a drawback that it is necessary to refresh the data held in the memory cells even during standby, making external control complicated. A timer circuit is designed to eliminate this drawback.
内部アドレスカウンタ及び内部リフレッシュコントロー
ルクロック発生回路からなる内部リフレッシュ回路を内
蔵し、スタンバイ時に自動的にリフレッシュを行なう擬
似スタティックメモリの開発が行なわれるようになって
きた。Pseudo-static memory has been developed which incorporates an internal refresh circuit consisting of an internal address counter and an internal refresh control clock generation circuit and automatically refreshes during standby.
従来の内部リフレッシュ回路に用いられているタイマ回
路の一例を第1図に示す。このタイマ回路は、pチャン
ネルMO8)ランジスタ(以下、pMO8Tという。)
Q3のソースを電源VDDにゲートをプリチャージ信号
φPにドレインを節点N2にそれぞれ接続し、nチャン
ネルMO8)9ンジスタ(以下、nMO8Tという。)
Q2のドレインを節点N2にゲートを接地電位にノース
を節点N。An example of a timer circuit used in a conventional internal refresh circuit is shown in FIG. This timer circuit is a p-channel MO8) transistor (hereinafter referred to as pMO8T).
The source of Q3 is connected to the power supply VDD, the gate is connected to the precharge signal φP, and the drain is connected to the node N2, respectively, to form an n-channel MO8)9 transistor (hereinafter referred to as nMO8T).
The drain of Q2 is at node N2, the gate is at ground potential, and the north is at node N.
にそれぞれ接続し、コンデンサC1の一方を入力信号φ
INに他方を節点N1にそれぞれ接続し、nMOS T
Q、のドレイ/とゲートを節点N1にソースを接地電
位にそれぞれ接続し、コンデンサC2の一方を節点N2
に他方を接地電位にそれぞれ接続し、pMO8TQ、の
ドレインを出力信号φ。UTにゲートを節点N2にソー
スを電源vDDr(それぞれ接続し、nMO8TQsの
ドレインを出力信号φotrrにゲートを節点N2にソ
ースを接地電位にそれぞれ接続する事から構成される。and connect one of the capacitors C1 to the input signal φ
IN and the other to node N1, respectively, and nMOS T
Connect the drain/gate of capacitor C2 to node N1 and the source to ground potential, and connect one side of capacitor C2 to node N2.
and the other is connected to the ground potential, and the drain of pMO8TQ is connected to the output signal φ. It consists of connecting the gate to the UT, the source to the node N2, and the power supply vDDr (respectively), the drain of nMO8TQs to the output signal φotrr, the gate to the node N2, and the source to the ground potential.
p M OS T Q 4とnMO8TQsとは、0M
O8のインバータlを構成している。ここで、nMO8
TQ6の電流能力はpMO8TQ4の電流能力よりずっ
と大きいものとする。pMOS TQ 4 and nMO8TQs are 0M
It constitutes the inverter l of O8. Here, nMO8
It is assumed that the current capability of TQ6 is much larger than that of pMO8TQ4.
次に、第2図に示す動作タイミング図を用いて、第1図
のタイマ回路の動作を説明する。Next, the operation of the timer circuit shown in FIG. 1 will be explained using the operation timing diagram shown in FIG.
時刻tlでプリチャージ信号φPがゝゝ0″レベルにな
り、コンタク+jC2が充電され節点N2が91“レベ
ル(ここでは”DDレベル)になシ、出力信号φ11.
□が“0“レベルになる。At time tl, the precharge signal φP goes to the ``0'' level, the contact +jC2 is charged, the node N2 goes to the 91'' level (here, the DD level), and the output signal φ11.
□ becomes “0” level.
時刻t2で入力信号φINが′″0“レベルになるとコ
ンタク−TC+のカップリングによって節点N。At time t2, when the input signal φIN goes to the ``0'' level, the coupling of the contactor -TC+ causes the input signal φIN to reach the node N.
が負電位になりnMO8TQtがオンし、nMO8Tの
しきい値電圧VT’eVTNとすると、コンデンサC2
からコンデンサC1に電荷が流れ節点N1の電位は(→
VTNとなる。このとき、pMO8Tのしきい値電圧v
T をVTPとすると、節点N2の電位がVDD l
vTP +より低いレベルになり、インバータ1を構成
するpMO8TQ4 、nMO8TQ5が共にオンする
。このためインバータ1に電源VDD yj・らpMO
8TQ4 、nMO8TQs k介し接地電位に電流I
(以下、オン−オン電流という。)が流れる。becomes a negative potential, nMO8TQt turns on, and when the threshold voltage of nMO8T is VT'eVTN, capacitor C2
Charge flows from to capacitor C1, and the potential at node N1 is (→
It becomes VTN. At this time, the threshold voltage v of pMO8T
If T is VTP, the potential of node N2 is VDD l
The level becomes lower than vTP +, and both pMO8TQ4 and nMO8TQ5, which constitute inverter 1, are turned on. Therefore, the power supply VDD yj・rapMO is applied to inverter 1.
8TQ4, nMO8TQs k to ground potential through current I
(hereinafter referred to as on-on current) flows.
時刻t3で入力信号φINが51″レベルになりコンデ
ンサC1のカップリングによ少節点N、がゝ′1“レベ
ルになるが、nMO8TQ3がオンし節点N、の電位は
”THになる。At time t3, the input signal φIN reaches the 51" level and the coupling of the capacitor C1 causes the node N to reach the "1" level, but nMO8TQ3 is turned on and the potential at the node N becomes "TH".
時刻t4で入力信号φINが10″レベルになると1時
刻t2のときと同様にコンデンサC2からコンデンサC
Iに電荷が流れ、節点N2の電位が”TN以下となる。When the input signal φIN reaches the 10'' level at time t4, the voltage from capacitor C2 to capacitor C is the same as at time t2.
Charge flows into I, and the potential at node N2 becomes less than TN.
このためインバータ1のn M 08TQ5がオフし、
I)MO8TQ4によって出力信号φ。IJTはゝゝ1
“レベルになる。Therefore, nM08TQ5 of inverter 1 is turned off,
I) Output signal φ by MO8TQ4. IJT is ゝゝ1
“Get to the level.
以上説明したように、従来例のタイマ回路では、時刻t
2から時刻t4迄の期間インバータ1にオン−オン電流
Iが流れタイマ回路の平均動作電流を大きくするという
欠点があった。As explained above, in the conventional timer circuit, the time t
2 to time t4, an on-on current I flows through the inverter 1, increasing the average operating current of the timer circuit.
本発明の目的は、上記欠点を除去することにより、オン
−オン電流を小さくシ、平均動作電流の削減されたタイ
マ回路を有する擬似スタティックメモリを提供する事に
ある。SUMMARY OF THE INVENTION An object of the present invention is to provide a pseudo-static memory having a timer circuit in which the on-on current is reduced and the average operating current is reduced by eliminating the above-mentioned drawbacks.
本発明の擬似スタティックメモリは、第1の電界効果ト
ランジスタのドレインとゲートを第1の節点にソースを
第1の電源にそれぞれ接続し、第1のコンデンサの一方
を第1の入力信号に他方を前記第1の節点にそれぞれ接
続し、−導電型の第2の電界効果トランジスタのドレイ
ンを第2の節点にゲートを前記第1の電源にソースを前
記第1の節点にそれぞれ接続し、逆導電型の第3の電界
効果トランジスタのドレインを前記第2の節点にゲート
を第2の入力信号にソースを第2の電源にそれぞれ接続
し、第2のコンデンサの一方を前記第2の節点に他方を
前記第1の電源にそれぞれ接続し、逆導電型の第4の電
界効果トランジスタのドレインを第3の節点にゲートを
前記第2の節点にソースを前記第2の電源にそれぞれ接
続し、逆導電型の第5のトランジスタのドレインを第4
の節点にゲートを第3の入力信号にソースを前記第3の
節点にそれぞれ接続し、−導電型の第6の電界効果トラ
ンジスタのドレインを前記第4の節点にゲートを出力信
号にソースを第5の節点にそれぞれ接続し、−導電型の
第7の電界効果トランジスタのドレインを前記第5の節
点にゲートe前記第2の節点にソースを前記第1の電源
にそれぞれ接続し、逆導電型の第8の電界効果トランジ
スタのドレインを前記第4の節点にゲートヲ前記出力信
号にソースを前記第2の電源にそれぞれ接続し、逆導電
型の第9の電界効果トランジスタのドレインを前記出力
信号にゲ←′トを前記第4の節点にソースを前記第2の
電源にそれぞれ接続し、−導電型の第10の電界効果ト
ランジスタのドレインを第6の節点にゲートを前記第4
の節点にソースを前記第1の電源にそれぞれ接続し、逆
導電型の第11の電界効果トランジスタのドレインを前
記出力信号にゲートを第4の入力信号にソースを前記第
2の電源にそれぞれ接続し、−導電型の第12の電界効
果トランジスタのドレインを前記出力信号にゲートを前
記第4の入力信号にソースを前記第6の節点に接続して
なるタイマ回路を含む事から構成される。In the pseudo-static memory of the present invention, the drain and gate of the first field effect transistor are connected to the first node, the source is connected to the first power supply, and one of the first capacitors is connected to the first input signal, and the other is connected to the first input signal. the drain of a second field effect transistor of -conductivity type is connected to the second node, the gate is connected to the first power supply, the source is connected to the first node, and a second field effect transistor of negative conductivity type is connected to the first node. The drain of a third field effect transistor of the type is connected to the second node, the gate is connected to the second input signal, and the source is connected to the second power supply, respectively, and one of the second capacitors is connected to the second node, the other is connected to the second node. are connected to the first power source, and the drain of a fourth field effect transistor of opposite conductivity type is connected to the third node, the gate is connected to the second node, and the source is connected to the second power source, respectively. The drain of the fifth conductivity type transistor is connected to the fourth transistor.
The gate of a sixth field effect transistor of conductivity type is connected to the fourth node, the gate is connected to the third input signal, the source is connected to the third node, the gate is connected to the fourth node, and the source is connected to the output signal. - a drain of a seventh field effect transistor of conductivity type is connected to the fifth node, a gate e is connected to the second node and a source is connected to the first power source, and a seventh field effect transistor of opposite conductivity type is connected to the first power source. The drain of the eighth field effect transistor is connected to the fourth node, the gate is connected to the output signal, and the source is connected to the second power supply, and the drain of the ninth field effect transistor of the opposite conductivity type is connected to the output signal. The gate is connected to the fourth node, the source is connected to the second power supply, the drain of the - conductivity type tenth field effect transistor is connected to the sixth node, and the gate is connected to the fourth node.
The sources of the eleventh field effect transistors of opposite conductivity type are connected to the output signal, the gates thereof are connected to the fourth input signal, and the sources of the eleventh field effect transistors of opposite conductivity type are respectively connected to the second power source. and a timer circuit formed by connecting a drain of a twelfth field effect transistor of -conductivity type to the output signal, a gate to the fourth input signal, and a source to the sixth node.
以下、本発明の実施例について図面を参照して説明する
。Embodiments of the present invention will be described below with reference to the drawings.
第3図は本発明の一実施例に用いられるタイマ回路の回
路図である。FIG. 3 is a circuit diagram of a timer circuit used in one embodiment of the present invention.
本実施例に用いられるタイマ回路は、r+MO8TQ3
1のドレインとゲートを節点N31にソースを接地電位
にそれぞれ接続し、コンデン+jC3Iの一方を入力信
号φ工、に他方を節点1’Jstにそれぞれ接続し、n
MO8TQszのドレインを節点N32にゲートを接地
電位にソースを節点N31にそれぞれ接続し、I)MO
8TQ33のドレインを節点N32にゲートをプリチャ
ージ信号φ、にソースt−電源Va。The timer circuit used in this example is r+MO8TQ3
The drain and gate of 1 are connected to the node N31, and the source is connected to the ground potential, and one of the capacitors +jC3I is connected to the input signal φ, and the other is connected to the node 1'Jst.
The drain of MO8TQsz is connected to node N32, the gate is connected to ground potential, and the source is connected to node N31, and I) MO
The drain of 8TQ33 is connected to the node N32, the gate is connected to the precharge signal φ, and the source is connected to the power source Va.
にそれぞれ接続し、コンデンサC32の一方を節点N3
Hに他方を接地電位にそれぞれ接続し、pMO8TQ3
4のドレインを節点N33にゲートを節点N32にソー
スを電源VDDにそれぞれ接続し、pMO8TQssの
ドレインを節点N!4にゲートヲパワーカット信号φ。and connect one side of capacitor C32 to node N3.
H and the other to ground potential, pMO8TQ3
The drain of pMO8TQss is connected to node N33, the gate to node N32, and the source to power supply VDD, and the drain of pMO8TQss is connected to node N! 4 is the gate power cut signal φ.
にソースを節点N33にそれぞれ接続し、nMO8TQ
sgのドレインを節点N34にケートを出力信号φ。U
Tにソースを節点N35にそれぞれ接続し、nMO8T
Q、1.のドレインを節点N3Sにゲートを節点N11
2にソースを接地電位にそれぞれ接続しs pM OS
T Qssのドレインを節点N34にゲートを出力信
号石質 にソースを電源VDDにそれぞれ接続し、I)
MO8TQ39のドレインを出力信号iにゲートを節点
N34にソースを電源VDDにそれぞれ接続し、n M
OS T Q40のドレイΦ
ン節点1’lsaにゲートを節点N114にソースを接
地電位にそれぞれ接続し11)M08TQ41のドレイ
ンを出力信号6iにゲートをリセット信号φRにソース
を電源VSEIにそれぞれ接続し、nMO8TQ 42
のドレインを出力信号6iにゲートをリセット信号φR
にソースを節点N3(+に接続する事から構成される。The sources are connected to node N33 respectively, and nMO8TQ
Output signal φ from the drain of sg to node N34. U
T sources are connected to node N35, respectively, and nMO8T
Q.1. The drain of is connected to node N3S and the gate is connected to node N11.
2, connect the sources to the ground potential, and connect the spM OS
Connect the drain of TQss to node N34, the gate to the output signal source, and the source to the power supply VDD, respectively, I)
The drain of MO8TQ39 is connected to the output signal i, the gate is connected to the node N34, and the source is connected to the power supply VDD, and n M
Connect the drain Φ of OS T Q40 to the node 1'lsa, the gate to the node N114, and the source to the ground potential, 11) Connect the drain of M08TQ41 to the output signal 6i, the gate to the reset signal φR, and the source to the power supply VSEI, nMO8TQ 42
The drain of the output signal 6i and the gate of the reset signal φR
It consists of connecting the source to node N3 (+).
なお、ここで第1の電源は接地電位となっているが一般
的にはソース電源VSSである。又、p M OS ’
If’ Qas ! Q41とn M O,S T Q
401Q42は0MO8−NAND回路2を構成する。Although the first power supply is at ground potential here, it is generally the source power supply VSS. Also, p M OS'
If' Qas! Q41 and n M O, S T Q
401Q42 constitutes the 0MO8-NAND circuit 2.
そいものとする。I'll take it as a gift.
次に、第4図に示す動作タイミング図を参照して%第3
図のタイマ回路の動作を説明する。Next, refer to the operation timing chart shown in FIG.
The operation of the timer circuit shown in the figure will be explained.
時刻131で、プリチャージ信号φ2がゝ0“レベルに
なるとpMO8TQasがオンしてコンデンサC82を
充電し節点N32はゝゝ1″レベル(ここではvDD)
になる。At time 131, when the precharge signal φ2 reaches the "0" level, pMO8TQas turns on and charges the capacitor C82, and the node N32 goes to the "1" level (here, vDD).
become.
時刻tszで、入力信号φINが“O”レベルにななる
とコンデンサCS+のカップリングによって節点N31
が負電位になジnMO8TQHがオンしコンデンサC3
2からコンデンサC31に電荷が流れ節点N31はOV
TNになる。このため、節点N32はVDD IVrp
l以下(DVレベルfxKj pMO8TQs<がオン
する。しかし、pMO8TQssは)切−カット信号φ
Cがゝゝ1“レベルのためオフし、電源VDDからpM
O8T Q10 + Qssとn MOS T Qse
。At time tsz, when the input signal φIN becomes "O" level, the coupling of the capacitor CS+ causes the node N31 to
becomes a negative potential, the voltage nMO8TQH turns on, and the capacitor C3
Charge flows from 2 to capacitor C31, and node N31 becomes OV
Become TN. Therefore, node N32 is VDD IVrp
l or less (DV level fxKj pMO8TQs< is turned on. However, pMO8TQss is off) - cut signal φ
C is turned off because it is at ``1'' level, and pM is removed from the power supply VDD.
O8T Q10 + Qss and nMOS T Qse
.
Quを介して接地電位にオン−オン電流■は流れない。The on-on current (2) does not flow to the ground potential via Qu.
n M OS T Qsaは出力信号φOUTがゝゝl
“−レベルのためオンしておシ、節点N34はゝゝ0”
レベルを維持する。nM OS T Qsa is output signal φOUT is ゝゝl
“Turn it on because it is at - level, node N34 is ゝゝ0.”
maintain the level.
時刻t3Bで、入力信号φINが゛0″レベルから11
“に変るとき、パワーカット信号φCを短時間の間ゝ゛
0″0″レベル。この場合、電源VDDからpMOS
T Qs4r Qssとn M OS T Qss 、
Q37を介し接地電位にオン−オン電流■が流れるが
、p M OS T Q34 、Qasの電流能力に対
しn M OST Q36 、Q87の電流能力が十分
大きいため節点N5aBゝゝ0”レベルを維持する。At time t3B, the input signal φIN changes from the "0" level to 11
", the power cut signal φC is at the "0" level for a short period of time. In this case, the power supply VDD is
T Qs4r Qss and n M OS T Qss,
An on-on current ■ flows to the ground potential through Q37, but the current capacity of nMOSTQ36 and Q87 is sufficiently large compared to the current capacity of pMOSTQ34 and Qas, so the node N5aB'0'' level is maintained. .
時刻ta4で、入力信号φXNが“0”レベルになると
、節点Nj2が”TN以下のレベルにfz9、nM08
’J’Qsrがオフする。At time ta4, when the input signal φXN goes to the "0" level, the node Nj2 goes to the level below "TN", fz9, nM08.
'J'Qsr turns off.
時刻tssになると、ノ切−カット信号φ。75五一時
的にゝゝO“レベルになりp MOS T Qss f
i”オンすると、節点hh4がpMO8TQs4.Qa
sを通して充電される。p M OS T Q34 +
Qssの電流能力が低いため節点N34の電位上昇に
は時間75E d−#≧る。At time tss, the cut signal φ is turned on. 755 temporarily becomes ゝゝO“ level p MOS T Qss f
i", node hh4 becomes pMO8TQs4.Qa
It is charged through s. p M OS T Q34 +
Since the current capacity of Qss is low, it takes time 75E d-#≧ for the potential of node N34 to rise.
しかし、節点N34の電位VTN以上になるとNAND
回路2の出力信号Gが10“レベルになり、PMO8T
Q311がオンしnMO8TQ、6がオフする。このた
め節点N34はp M OS T Q10 、Qssよ
り電流能力のあるp MOS T Qa@を通して充電
され高速にVDDレベルになる。However, when the potential of node N34 exceeds VTN, NAND
The output signal G of circuit 2 becomes 10" level, and PMO8T
Q311 turns on and nMO8TQ,6 turns off. Therefore, the node N34 is charged through the pMOS T Qa@, which has a higher current capacity than the pMOS T Q10 and Qss, and reaches the VDD level more quickly.
時刻136でリセット信号φ8が00“レベルになりp
M 08 T QJtがオンして出力信号6が′1“
レベルになる。At time 136, the reset signal φ8 goes to the 00" level and p
M 08 T QJt turns on and output signal 6 becomes '1''
become the level.
以上説明したように、本実施例に用いたタイマ回路のオ
ン−オン電流は、ノ(ワーカツ)(M号φC布”0〃レ
ベルになっている期間だけしか流れないためタイマ回路
の平均動作電流をl」・さくできる−という効果がある
。As explained above, since the on-on current of the timer circuit used in this embodiment flows only during the period when the M No. φC cloth is at the 0 level, the average operating current of the timer circuit is It has the effect of being able to reduce the amount of
なお、以上の説明はMOSトランジスタについて行った
が、他の絶縁ゲート型電界効果トランジスタにも本発明
が適用できる事は言うまでもない。Although the above explanation has been made regarding MOS transistors, it goes without saying that the present invention can be applied to other insulated gate field effect transistors.
以上、詳細に説明したとお91本発明の擬似スタティッ
クメモリは、上記の構成からなるタイマ回路を有してい
るので、従来のタイマ回路でオン−オン電流が流れる期
間において、ノくワーカット信号が一時的にゝゝ0“レ
ベルになりている僅力・の期間しかオン−オン電流が流
れないので、タイマ回路の平均動作電流を小さくできる
と言う効果を有している。As described above in detail, the pseudo-static memory of the present invention has a timer circuit having the above configuration, so that the power cut signal is temporarily suppressed during the period in which an on-on current flows in a conventional timer circuit. Since the on-on current flows only during a short period when it is at the "0" level, it has the effect that the average operating current of the timer circuit can be reduced.
第1図は従来の擬似スタティックメモリの一例に用いら
れるタイマ回路の回路図、第2図はその動作タイミング
図、第3図は本発明の一実施グリに用いられるタイプ回
路の回路図、第4図はその動作タイミング図である。
1・・・・・・CMOSインバータ回路、2・・・・・
・0MO8−NAND回路1Qr r Q4 + C3
1+ Qaa + Qss +Q3G + C41・・
・・・・pチャネルMO8)ランジスタ、Q21Q31
Q51Q321Q331Q361Q371Q401Q4
□・・・・・・nチャネルMO8)ランジスタ、NI+
N 2 + N 31−N86・・・・・・節点、C1
,C2,C3□。
C32・・・・・・コンデンサ、φIN lφ2 、φ
。、φ8・・・・・・信号、VDD・・・・・・電源、
■・・・・°オンーオン電流・第1図
第2図FIG. 1 is a circuit diagram of a timer circuit used in an example of a conventional pseudo-static memory, FIG. 2 is an operation timing diagram thereof, FIG. 3 is a circuit diagram of a type circuit used in an embodiment of the present invention, and FIG. The figure is an operation timing diagram. 1...CMOS inverter circuit, 2...
・0MO8-NAND circuit 1Qr r Q4 + C3
1+ Qaa + Qss +Q3G + C41...
... p channel MO8) transistor, Q21Q31
Q51Q321Q331Q361Q371Q401Q4
□・・・・・・n channel MO8) transistor, NI+
N 2 + N 31-N86...Node, C1
, C2, C3□. C32... Capacitor, φIN lφ2, φ
. , φ8...signal, VDD...power supply,
■・・・°On-on current・Fig. 1 Fig. 2
Claims (2)
ンとゲートを第1の節点にソースを第1の電源にそれぞ
れ接続し、第1のコンデンサの一方を第1の入力信号に
他方を前記第1の節点にそれぞれ接続し、−導電型の第
2の電界効果トランジスタのドレインを第2の節点にゲ
ートを前記第1の電源にソースを前記第1の節点にそれ
ぞれ接続し、逆導電型の第3の電界効果トランジスタの
ドレインを前記第2の節点にゲートを第2の入力信号に
ソースを第2の電源にそれぞれ接続し、第2のコンデン
サの一方を前記第2の節点に他方を前記第1の電源にそ
れぞれ接続し、逆導電型の第4の電界効果トランジスタ
節点にソースを前記第2の電源にそれぞれ接続し、逆導
電型の第5のトランジスタのドレインを第4の節点にゲ
ートを第3の入力信号にソースを前記第3の節点にそれ
ぞれ接続し、−導電型の第6の電界効果トランジスタの
ドレインを前記第4の節点にゲートを出力信号にソース
を第5の節点にそれぞれ接続し、−導電型の第7の電界
効果トランジスタのドレインを前記第5の節点にゲート
を前記第2の節点にソースを前記第1の電源にそれぞれ
接続し、逆導電型の第8の電界効果トランジスタのドレ
インを前記第4の節点にゲートを前記出力信号にソース
を前記第2の電源にそれぞれ接続し、逆導電型の第9の
電界効果トランジスタのドレインを前記出力信号にゲー
トを前記第4の節点にソースを前記第2の電源にそれぞ
れ接続し、−導電型の第1Oの電界効果トランジスタの
ドレインt″第6の節点にゲートを前記第4の節点にソ
ースを前記第1の電源にそれぞれ接続し、逆導電型の第
出力信号にゲートを第4の入力信号にソースを前記第2
の電源にそれぞれ接続し、−導電型の第12の電界効果
トランジスタのドレインを前記出力信号にゲートを前記
第4の入力信号にソースを前記第6の節点に接続してな
るタイマ回路を含む事を特徴とする擬似スタティックメ
モリ。(1) - The drain and gate of a first field effect transistor of conductivity type are connected to a first node, and the source is connected to a first power supply, and one of the first capacitors is connected to a first input signal and the other is connected to the first node. a drain of a second field effect transistor of - conductivity type is connected to the second node, a gate is connected to the first power supply, a source is connected to the first node, and a second field effect transistor of opposite conductivity type is connected to the first node; The drain of a third field effect transistor is connected to the second node, the gate is connected to the second input signal, and the source is connected to the second power supply, and one of the second capacitors is connected to the second node, the other is connected to the second node. A fourth field effect transistor of opposite conductivity type is connected to the first power source, a source thereof is connected to the second power source, and a drain of a fifth field effect transistor of opposite conductivity type is connected to the fourth node. The gate is connected to the third input signal, the source is connected to the third node, and the drain of the sixth field effect transistor of -conductivity type is connected to the fourth node, and the gate is connected to the output signal and the source is connected to the fifth node. A seventh field effect transistor of negative conductivity type has its drain connected to the fifth node, its gate connected to the second node, and its source connected to the first power supply, and an eighth field effect transistor of opposite conductivity type connected to The drain of a ninth field effect transistor of opposite conductivity type is connected to the fourth node, the gate is connected to the output signal, and the source is connected to the second power supply, and the drain of a ninth field effect transistor of the opposite conductivity type is connected to the output signal, and the gate is connected to the output signal. A source is connected to the fourth node to the second power source, a drain t'' of a first O field effect transistor of -conductivity type, a gate is connected to the sixth node, and a source is connected to the fourth node. the gate is connected to the second output signal of the opposite conductivity type, and the source is connected to the fourth input signal of the opposite conductivity type.
a timer circuit, the drain of a twelfth field effect transistor of - conductivity type being connected to the output signal, the gate being connected to the fourth input signal, and the source being connected to the sixth node; Pseudo-static memory characterized by
対し第6.第7.第8の電界効果トランジスタの電流能
力が十分に大きく、かつ第9の電界効果トランジスタの
電流能力に対し、縦続接続された第1O2第12の電界
効果トランジスタの電流能力が十分に大きく設けられて
なる特許請求の範囲第(1)項記載の擬似スタティック
メモリ。(2) Fourth. The current capacity of the fifth field effect transistor is the same as that of the sixth field effect transistor. 7th. The current capacity of the eighth field effect transistor is sufficiently large, and the current capacity of the cascade-connected first O2 and twelfth field effect transistors is provided sufficiently large relative to the current capacity of the ninth field effect transistor. A pseudo-static memory according to claim (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58172533A JPS6063790A (en) | 1983-09-19 | 1983-09-19 | Pseudo static memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58172533A JPS6063790A (en) | 1983-09-19 | 1983-09-19 | Pseudo static memory |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6063790A true JPS6063790A (en) | 1985-04-12 |
JPH0237037B2 JPH0237037B2 (en) | 1990-08-22 |
Family
ID=15943669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58172533A Granted JPS6063790A (en) | 1983-09-19 | 1983-09-19 | Pseudo static memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6063790A (en) |
-
1983
- 1983-09-19 JP JP58172533A patent/JPS6063790A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0237037B2 (en) | 1990-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100718429B1 (en) | Semiconductor memory device having normal and standby modes, semiconductor integrated circuit and mobile electronic unit | |
US4682306A (en) | Self-refresh control circuit for dynamic semiconductor memory device | |
JP2003178582A (en) | Word line driving system for dynamic memory | |
KR0153847B1 (en) | A semiconductor memory device | |
JPH0786916A (en) | Semiconductor integrated circuit | |
JPS62165794A (en) | Memory cell for associative storage | |
US7512908B2 (en) | Method and apparatus for improving SRAM cell stability by using boosted word lines | |
US6917536B1 (en) | Memory access circuit and method for reading and writing data with the same clock signal | |
US6292418B1 (en) | Semiconductor memory device | |
US5841718A (en) | Use of voltage equalization in signal-sensing circuits | |
US5446694A (en) | Semiconductor memory device | |
KR960013401B1 (en) | Static random access memory | |
US4451908A (en) | Address Buffer | |
KR0136894B1 (en) | Buffer circuit of a semiconductor memory device | |
US6377078B1 (en) | Circuit to reduce charge sharing for domino circuits with pulsed clocks | |
JP3255159B2 (en) | Semiconductor integrated circuit | |
JPS6063790A (en) | Pseudo static memory | |
JP3224712B2 (en) | Logic & level conversion circuit and semiconductor device | |
JP3255158B2 (en) | Semiconductor integrated circuit | |
JP2005032404A (en) | Semiconductor memory, semiconductor integrated circuit device and portable device | |
US4435791A (en) | CMOS Address buffer for a semiconductor memory | |
US6046949A (en) | Semiconductor integrated circuit | |
KR970004997B1 (en) | A row address decoder in dram | |
JPH02156498A (en) | Refresh function incorporating dynamic type semiconductor memory device | |
JPH02146188A (en) | Synchronous static random access memory |