JPS6063417A - Measuring device - Google Patents

Measuring device

Info

Publication number
JPS6063417A
JPS6063417A JP17145883A JP17145883A JPS6063417A JP S6063417 A JPS6063417 A JP S6063417A JP 17145883 A JP17145883 A JP 17145883A JP 17145883 A JP17145883 A JP 17145883A JP S6063417 A JPS6063417 A JP S6063417A
Authority
JP
Japan
Prior art keywords
light
wavelength
analyzer
filter
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17145883A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ida
井田 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17145883A priority Critical patent/JPS6063417A/en
Publication of JPS6063417A publication Critical patent/JPS6063417A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To prevent variance of the optical loss in an optical fiber to improve the precision of measurement by transmitting multiplexed lights with one optical fiber in wavelength multiplex and branching the exit light of the optical fiber to wavelengths of two vertical polarized components with a branching filter and subjecting them to photoelectric conversion. CONSTITUTION:One component of the light made incident to a polarizing beam splitter 17 is transmitted through the plane of polarization and a filter 21 as shown by a solid line and is converted to a prescribed wavelength and exit to a microlens 8. The other is reflected on the plane of polarization and strikes a reflective mirror 24 and is turned at 180 deg. as shown by a broken line. Meanwhile, the light made incident to a polarizing beam splitter 18 is converted to a prescribed wavelength by the filter 21, and one component is transmitted through the plane of polarization and exits to the lens 8. The other is reflected on the plane of polarization and is returned in the incidence direction. This light is branched to two vertical polarized components by an analyzer 25, and they are converted to wavelengths different from each other and are multiplexed in wavelength multiplex, and the multiplexed light is condensed by the lens 8 and is transmitted by one optical fibe 10 and is branched to two vertical polarized components by a branching filter 26, and they are subjected to photoelectric conversion by optical receivers 12 and 13. They are preocessed by an operator so that a ratio of the difference to the sum of these electric outputs is operated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は光の偏光を応用した計測装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a measuring device that applies polarization of light.

〔従来技術〕[Prior art]

第1図は従来の光の偏光を応用した計測装置を示す図で
、(1)は光源、(2ンは光ファイノ<、(3)はマイ
クロレンズ、(4)は偏光子、(5)は光弾性素子、(
6)はIA波長板、(7)は垂直な偏光二成分に分岐し
て射出する検光子、(8)、(9)はマイクロレンズ、
QO、(11)は光ファイバ、(12)、 (13)は
光受信機、α4)は加算器、05)は減算器、06)は
割算器である0上記04)〜(16)で演算器が構成さ
れる。
Figure 1 shows a conventional measurement device that applies polarization of light. (1) is a light source, (2) is an optical fiber, (3) is a microlens, (4) is a polarizer, (5) is a photoelastic element, (
6) is an IA wavelength plate, (7) is an analyzer that splits and emits vertically polarized light into two components, (8) and (9) are microlenses,
QO, (11) is an optical fiber, (12) and (13) are optical receivers, α4) is an adder, 05) is a subtracter, and 06) is a divider. A computing unit is configured.

このように構成されたものは、光源(1)から出射され
た光は、光ファイノ((2)を通ってマイクロレンズ(
3)で平行ビームにされ、偏光子(4)で直線偏光の光
に変換される。光弾性素子(5)は、その−面に被測定
圧力がかけられるようにしてあシ、その加えられた圧力
によシ複屈折現象が生じる。例えば、光弾性素子(5)
が等方性媒体であるとすると、圧力方向の屈折率と、そ
れと垂直な二方向に屈折率が異なるように彦る。したが
って、圧力方向に電界成分をもつ光と、それに垂直な電
界成分をもつ光が、光弾性素子(5)に同時に入射され
ると、その出力端では位相差を生じる。例えば偏光子(
4)の出力の直線偏光された光が、それらの軸に対して
450の角度で光弾性素子(5)に入射されると、この
光弾性素子(5)の出力は圧力に応じて楕円偏光になる
With this configuration, the light emitted from the light source (1) passes through the optical fin (2) and passes through the microlens (2).
3), the light is made into a parallel beam, and the polarizer (4) converts the light into linearly polarized light. The photoelastic element (5) is configured such that a pressure to be measured is applied to its negative surface, and the applied pressure causes a birefringence phenomenon. For example, photoelastic element (5)
If it is an isotropic medium, the refractive index in the pressure direction and the two directions perpendicular to it will be different. Therefore, when light having an electric field component in the pressure direction and light having an electric field component perpendicular thereto are simultaneously incident on the photoelastic element (5), a phase difference occurs at the output end. For example, a polarizer (
When the linearly polarized light of the output of 4) is incident on the photoelastic element (5) at an angle of 450 with respect to their axes, the output of this photoelastic element (5) becomes elliptically polarized depending on the pressure. become.

この楕円偏光された光に1/4波長板(6)でさらに9
0゜の位相差を与えて光学バイアスをかけ、検光子(7
)で互いに直角な偏光二成分に分岐し、それぞれの成分
の光をマイクロレンズ(8)、(9)で各々非光し、光
ファイバQQ 、 (11)を通して、光受信機(12
) 、 (13)で光電変換する。これらの電気出力の
和と差を加算器(14)と減算器の)で行い、和と差両
者の割算を割算器06)で処理することによシ、光源(
1)の変動の影響を受けず、圧力に応じた電気出力を取
フ出される。これによって、光弾性素子(5)に加えら
れた圧力が、電気出力として測定される。
This elliptically polarized light is further processed by a 1/4 wavelength plate (6).
Apply a phase difference of 0° and apply an optical bias to the analyzer (7
) is split into two polarized components at right angles to each other, the light of each component is de-lighted by microlenses (8) and (9), and passed through optical fibers QQ and (11) to an optical receiver (12).
), (13) performs photoelectric conversion. By performing the sum and difference of these electrical outputs in an adder (14) and a subtracter (), and processing the division of both the sum and difference in a divider (06), the light source (
It is not affected by the fluctuations in 1) and generates electrical output according to the pressure. Thereby, the pressure applied to the photoelastic element (5) is measured as an electrical output.

ところで、従来の計測装置は、以上のように(3)〜(
9)で構成される光センサから、2本の光ファイバで、
光変調された二成分の光を伝送するので、2本の光フア
イバ間での光損失の変動が測定誤差の原因となっていた
。このため、測定精度の向上が困難であるという欠点が
あった。
By the way, the conventional measuring device performs (3) to (3) as described above.
9) from the optical sensor consisting of two optical fibers,
Since two optically modulated components of light are transmitted, variations in optical loss between the two optical fibers have caused measurement errors. For this reason, there was a drawback that it was difficult to improve measurement accuracy.

〔発明の概要〕[Summary of the invention]

この発明は上記欠点を解消するためになされたもので、
検光子を、通過した光をそれぞれ垂直な偏光二成分に分
岐し両偏光二成分をそれぞれ波長域が異なる波長に変換
して合波するように構成し、合波した光を1本の光ファ
イバで波長多1で伝送し、光ファイバの出射光を分波器
で垂直な偏光二成分の波長に分波して光電変換するよう
にして、光ファイバでの光損失の変化を防止することに
より、泪10自結麻を而 トナスよらπL奇針氾11乾
信を粗供する。
This invention was made to eliminate the above drawbacks.
The analyzer is configured to split the passing light into two perpendicularly polarized components, convert the two polarized components into wavelengths with different wavelength ranges, and combine them.The combined light is then connected to a single optical fiber. By transmitting the light at a multiple wavelength of 1, the output light from the optical fiber is split into wavelengths of two perpendicularly polarized components using a demultiplexer, and photoelectrically converted, thereby preventing changes in optical loss in the optical fiber. , tears 10 self-contained hemp and Tonas offers πL odd needle flood 11 kanshin.

〔発明の実施例〕[Embodiments of the invention]

第2図はこの発明の一実施例を示す構成図で、(1)〜
(6) 、 (8) 、 I)(J 、 Q2)〜06
)は従来のものと全く同一で、(25)はV4波長板(
6)から受けた光を垂直な偏光二成分に分岐するととも
に、互いに異なる波長に変換して合波する検光子、(2
6)は光ファイノ(αQで伝送された光を検光子(25
)から出射された偏光二成分の各波長に分波する分波器
である0ここで、検光子(25)を第3図によって説明
する0図において、(1っけ第1の偏光ビームスプリッ
タ、(]8)は第2の偏光ビームスプリッタ、各偏光ビ
ームスプリッタ(17)(18)は、それぞれ一対の直
角プリズムを長辺が対向するように合せた対向間に偏光
面が配置され、各偏光面が直角となるように西−一され
ている。(1のは各偏光ビームスプリッタ07)(18
)間に配置されたIA波長板、(20)は辿光板で、I
A波長板09)の端部に配置されている0(21)は各
偏光ビームスプリッタQ7)(18)の所定の面に配置
された第1のフィルタで、透過する光を所定の波長に変
換する。(22)は第2のフィルタで、第1の偏光スプ
リッタ(17)のV4波長板09)と対向した面に配置
され、透過する光の波長を第1のフィルタ(21)を透
過した波長と異なる波長に変換する。
FIG. 2 is a configuration diagram showing an embodiment of the present invention, (1) to
(6), (8), I) (J, Q2) ~06
) is exactly the same as the conventional one, and (25) is a V4 wave plate (
an analyzer that splits the light received from
6) The light transmitted by the optical fiber (αQ) is passed through the analyzer (25
) is a demultiplexer that separates each wavelength of the two polarized light components emitted from the analyzer (25). , (]8) is a second polarizing beam splitter, and each polarizing beam splitter (17) and (18) has a polarizing plane arranged between a pair of right-angled prisms that are aligned so that their long sides face each other. The planes of polarization are aligned at right angles to each other. (1 is each polarizing beam splitter 07) (18
) is placed between the IA wave plate, (20) is a tracing plate, and
0 (21) placed at the end of the A wavelength plate 09) is a first filter placed on a predetermined surface of each polarizing beam splitter Q7) (18), which converts the transmitted light into a predetermined wavelength. do. (22) is a second filter, which is arranged on the surface facing the V4 wavelength plate 09) of the first polarization splitter (17), and sets the wavelength of the transmitted light to the wavelength transmitted through the first filter (21). Convert to a different wavelength.

(23)は1A波長板で、第2のフィルタ(22)と対
向して配置されている。(24)は反射鏡で、い波長板
(23)と対向して配置されている。上記07)〜(2
4)で検光子(25)が構成される。
(23) is a 1A wavelength plate, which is placed facing the second filter (22). (24) is a reflecting mirror, which is placed opposite to the wavelength plate (23). Above 07)~(2
4) constitutes an analyzer (25).

このような検光子(25)は、い波長板(6)の出射光
が第1と第2の偏光ビームスプリッタ(17)(18)
にほぼ均等に入射されるように配置され、検光子(25
)の出射光をほぼ均等にマイクロレンズ(8)へ入射す
るように調整されている。
In such an analyzer (25), the light emitted from the wavelength plate (6) is transmitted to the first and second polarizing beam splitters (17) and (18).
The analyzer (25
) is adjusted so that the emitted light almost uniformly enters the microlens (8).

つぎに検光子(25)の動作を第3図によって説明する
。図示上方からIA波長板(6)の出射光が入射される
と、IA波長板(1のを境にしてほぼ均等に第1と第2
の偏光ビームスプリッタ(17)Q8)に入射される。
Next, the operation of the analyzer (25) will be explained with reference to FIG. When the output light of the IA wave plate (6) is incident from above in the figure, the first and second wave plates (6) are distributed almost equally across the IA wave plate (1).
is incident on the polarizing beam splitter (17) Q8).

このとき、1μ波長板0のの厚さ方向に入射された光は
、遮光板((9)によって入射方向に返され乙。
At this time, the light incident in the thickness direction of the 1μ wavelength plate 0 is returned to the incident direction by the light shielding plate ((9).

第1の偏光ビームスプリッタ07)に入射された光の一
方の成分は、図示実線のように偏光面と第1のフィルタ
(21)を透過し、所定の波長に変換されてマイクロレ
ンズ(8)へ出射される。また、残シの成分は、図示破
線のように、偏光面で反射し第2のフィルタ(22) 
、x/e波長板(23)を通って反射鏡(24)に轟っ
てIBcP向きを変える。この間に光の波長が第2のフ
ィルタ(22)で変換されるとともに、光の位相が90
°変化するため、第1の偏光ビームスプリッタ(1θの
偏光面を100チ通過してい波長板(19)を透過する
。これによって位相がさらに9dl)変化するため、第
2の偏光ビームスプリッタ(18)の偏光面で100%
反射されて角度を90°変え、マイクロレンズ(8)へ
出射される。一方、ツ2の偏光ビームスプリッタ(18
)に入射された光は、第1のフィルタ(21)で所定の
波長に変換され、一方の成分が偏光面を透過してマイク
ロレンズ(3)へ出射される。このとき、残シの成分は
偏光面で反射され、入射方向に返される。
One component of the light incident on the first polarizing beam splitter 07) passes through the polarization plane and the first filter (21) as shown by the solid line in the figure, is converted into a predetermined wavelength, and is sent to the microlens (8). It is emitted to. In addition, the remaining components are reflected by the polarization plane and sent to the second filter (22), as shown by the broken line in the figure.
, passes through the x/e wave plate (23) and reaches the reflector (24) to change the direction of the IBcP. During this time, the wavelength of the light is converted by the second filter (22), and the phase of the light is changed to 90
degree, the first polarizing beam splitter (passes through the 1θ polarization plane 100 times and passes through the wave plate (19). This causes the phase to change by an additional 9 dl), so the second polarizing beam splitter (18 ) 100% on the polarization plane
It is reflected, changes its angle by 90 degrees, and is emitted to the microlens (8). On the other hand, the polarizing beam splitter (18
) is converted into a predetermined wavelength by the first filter (21), and one component is transmitted through the polarization plane and output to the microlens (3). At this time, the remaining component is reflected by the polarization plane and returned to the incident direction.

したがって、検光子(25)で垂直な偏光二成分に分岐
され、互いにP々る波長に変換されて波長多重に合波さ
れた光は、マイクロレンズ(3)で集光されて1本の光
ファイバαQで伝送され、分波器(26)で垂直な偏光
二成分に分波されて、それぞれの光受信機(12)(1
3)で光電変換される。この各電気出力の和と差の比を
とるように演算器で処理されることは従来と同様である
Therefore, the light that is split into two vertically polarized components by the analyzer (25), converted into P wavelengths, and combined in wavelength multiplexing is condensed by the microlens (3) and becomes one light beam. It is transmitted through the fiber αQ, split into two vertically polarized components by the splitter (26), and sent to the respective optical receivers (12) (1
3) is photoelectrically converted. As in the past, processing is performed by a computing unit to calculate the ratio of the sum and difference of each electrical output.

第4図は光源の波長スペクトルとフィルタ特性を示すも
ので、発光ダイオード(r、xD )等を光源とすると
、第4−a図のように、所定の波長を中心に分布する連
続スペクトルである。この光源の波長域内で、できるだ
け中心波長に近い域に第4−す図に示すよう力狭帯域フ
ィルタを、互いに透過波長が重ならないようにしておく
と、例えば、検光子としての一方の偏光成分が(局の波
長の光となり、他方の互いに直角な偏光成分は(B)の
波長の光となる。また、第4−0図のように、光源の波
長の中心波長を境にして、一方のフィルタは短波長域の
光を透過させ、他方のフ、イルタは長波長域の光を透過
させるようにし、それぞれの波長が重ならないようにす
ると、直角な偏光二成分の光を波長分離の形で分離でき
る。
Figure 4 shows the wavelength spectrum and filter characteristics of a light source.If a light source such as a light emitting diode (r, . Within the wavelength range of this light source, if you install a narrow band filter as shown in Figure 4 in the region as close as possible to the center wavelength so that the transmission wavelengths do not overlap with each other, it is possible to use one polarized light component as an analyzer. becomes the light with the wavelength of (B), and the other mutually perpendicular polarized component becomes the light with the wavelength of (B).Also, as shown in Figure 4-0, one side with the center wavelength of the light source as the border, The filter allows light in the short wavelength range to pass through, and the other filter allows light in the long wavelength range to pass through, and by making sure that the wavelengths do not overlap, it is possible to wavelength-separate the two orthogonally polarized light components. Can be separated by shape.

上記実施例においては、検出素子が光弾性素子で被測定
物理量が圧力の場合について説明したが、ファラデー素
子やポッケルス素子を用いるト、磁界や電界の測定も可
能である。
In the above embodiment, a case has been described in which the detection element is a photoelastic element and the physical quantity to be measured is pressure, but it is also possible to measure a magnetic field or an electric field using a Faraday element or a Pockels element.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、検光子を入射
された光を垂直な午光二成分に分岐するとともに、各偏
光成分を互いに異なる波長に変換し、波長多重に合波す
るように構成し、検光子の出射光を1本の光ファイバで
伝送し、光ファイバの出射光を垂直な偏光二成分に分岐
して光電変換するようにしたので、光伝送部での光損失
変化を防止することができる。これによって測定精度を
向上する効果が得られる。
As explained above, according to the present invention, the analyzer is configured to split the incident light into two perpendicular meridional light components, convert each polarized light component to a different wavelength, and combine the light into wavelength multiplexers. However, the output light from the analyzer is transmitted through a single optical fiber, and the output light from the optical fiber is split into two vertically polarized components for photoelectric conversion, thereby preventing changes in optical loss in the optical transmission section. can do. This has the effect of improving measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の測定装置の構成図、第2図はこの発明の
一実旅例を示す構成図、第3図は検光子の詳細図、第4
図はフィルタの特性図である。図において、(1)は光
源、(2)は第1の光ファイバ、(3)はマイクロレン
ズ、(4)は偏光子、(5)は検出素子、(8)はマイ
クロレンズ、頭は第2の光ファイバ、(12)(1,1
)は光受信器、04)〜(坤は演算器、(26)は検光
子、(26)は分波器である。 なお各図中同一符号は同−又は相当部分を示す。 代理人 大岩 増雄 第1図 第4図
Fig. 1 is a block diagram of a conventional measuring device, Fig. 2 is a block diagram showing an example of the present invention, Fig. 3 is a detailed diagram of an analyzer, and Fig. 4 is a block diagram of a conventional measuring device.
The figure is a characteristic diagram of the filter. In the figure, (1) is the light source, (2) is the first optical fiber, (3) is the microlens, (4) is the polarizer, (5) is the detection element, (8) is the microlens, and the head is the first optical fiber. 2 optical fibers, (12) (1,1
) is an optical receiver, 04) to (kon are arithmetic units, (26) is an analyzer, and (26) is a demultiplexer. The same reference numerals in each figure indicate the same or equivalent parts. Agent: Oiwa Masuo Figure 1 Figure 4

Claims (1)

【特許請求の範囲】 (1)一つの光源、この光源の光を伝送する第1の光フ
ァイバ、この第1の光7アイパの出射光を平行ビームに
する第1のマイクロレンズ、この第1のマイクロレンズ
の平行ビームの偏波面を一定にする偏光子、被測定物理
量によル光学特性が変化する検出素子、この検出素子を
通過した光をそれぞれ垂直な偏光二成分に分岐し両便光
二成分をそれぞれ波長域が異なる波長に変換して合波す
る検光子、この検光子からの出射光を集光する一つの第
2のマイクロレンズ、この第2のマイクロレンズの出射
光を伝送する第2の光ファイバ、この第2の光ファイバ
の出射口に配置され上記検光子からの垂直な偏光二成分
を波長分離する分波器、この分波器の出射光を光電変換
する光受信機、この光受信機の各電気出力の和と差の比
をとるようKした演算器を備えた計測1L (2)検光子は、それぞれ偏光面を有する一対の偏光ビ
ームスプリッタを74波長板を介して並列に配置し、両
便光スプリッタの所定の位置に入射された光の一方の成
分を所定の波長に変換する第1のフィルタをそれぞれ配
置し、他方の成分を一方の成分と異なる波長に変換する
第2のフィルタと位相を変換する1昨波長板及び光を反
射する反射鏡が設けられていることを特徴とする特許請
求の範囲第1項記載の計測装置。 (8)第1と第2のフィルタは光源の波長域内でそれぞ
れ波長域が異なる狭帯域フィルタであることを特徴とす
る特許請求の範囲第2項記載の計測装置。 (4)第1と第2のフィルタは光源の中心波長を境にし
て一方が中心波長よシ長波長域を通し他方は中心波長よ
シ短波長域を通すフィルタであることを特徴とする特許
請求の範囲第2項記載の計測装置。 (5)第1と第2のフィルタは干渉膜フィルタで検光子
の所定の面にそれぞれ蒸着されていることを特徴とする
特許請求の範囲第2項記載の計測装置0 (6)反射鏡は金属を検光子に蒸着したものであること
を特徴とする特許請求の範囲第2項記載の計測装置。
[Claims] (1) One light source, a first optical fiber that transmits the light of this light source, a first microlens that converts the output light of the first light beam into a parallel beam, this first A polarizer that keeps the plane of polarization of the parallel beam of the microlens constant, a detection element whose optical characteristics change depending on the physical quantity to be measured, and a detection element that splits the light that has passed through this detection element into two perpendicularly polarized components. An analyzer that converts the components into wavelengths with different wavelength ranges and combines them, a second microlens that collects the light emitted from this analyzer, and a second microlens that transmits the light emitted from this second microlens. a second optical fiber, a demultiplexer disposed at the exit of the second optical fiber for wavelength-separating the two vertically polarized components from the analyzer, an optical receiver for photoelectrically converting the light emitted from the demultiplexer; (2) The analyzer is equipped with a calculation unit designed to take the ratio of the sum and difference of each electrical output of this optical receiver. A first filter is arranged in parallel and converts one component of the light incident on a predetermined position of both optical splitters into a predetermined wavelength, and the other component is converted into a wavelength different from that of the one component. 2. The measuring device according to claim 1, further comprising: a second filter for converting the signal, a first wavelength plate for converting the phase, and a reflecting mirror for reflecting the light. (8) The measuring device according to claim 2, wherein the first and second filters are narrow band filters having different wavelength ranges within the wavelength range of the light source. (4) A patent characterized in that the first and second filters are filters, with the center wavelength of the light source serving as a boundary, one of which passes through a wavelength range longer than the center wavelength, and the other filter which passes a wavelength range shorter than the center wavelength. A measuring device according to claim 2. (5) The measuring device according to claim 2, wherein the first and second filters are interference film filters deposited on predetermined surfaces of the analyzer. (6) The reflecting mirror is 3. The measuring device according to claim 2, wherein a metal is vapor-deposited on the analyzer.
JP17145883A 1983-09-16 1983-09-16 Measuring device Pending JPS6063417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17145883A JPS6063417A (en) 1983-09-16 1983-09-16 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17145883A JPS6063417A (en) 1983-09-16 1983-09-16 Measuring device

Publications (1)

Publication Number Publication Date
JPS6063417A true JPS6063417A (en) 1985-04-11

Family

ID=15923475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17145883A Pending JPS6063417A (en) 1983-09-16 1983-09-16 Measuring device

Country Status (1)

Country Link
JP (1) JPS6063417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142840A (en) * 2018-09-18 2019-01-04 江门市新会区炎泰电子有限公司 A kind of current measuring method and its all -fiber leakage current protector based on dual wavelength

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109142840A (en) * 2018-09-18 2019-01-04 江门市新会区炎泰电子有限公司 A kind of current measuring method and its all -fiber leakage current protector based on dual wavelength
CN109142840B (en) * 2018-09-18 2023-07-25 江门市新会区炎泰电子有限公司 Current measurement method and all-fiber leakage current protector thereof

Similar Documents

Publication Publication Date Title
JP3457548B2 (en) Polarization independent reflectometry and polarization independent reflectometer
EP0321252B1 (en) Optical fiber sensor
WO2003075018A1 (en) Current measuring device
CN110441032A (en) A kind of method of interferometer and measurement polarization maintaining optical fibre and polarizer polarization coupled
US5410917A (en) Optical force sensor for high density planar electrical interconnects
KR900000659B1 (en) Optical measuring apparatus
JPS6235222A (en) Photoelastic type measurement transducer
US5589931A (en) System to determine environmental pressure and birefringent-biased cladded optical sensor for use therein
JPS6063417A (en) Measuring device
JPH02118416A (en) Optical sensor
US20220390281A1 (en) Providing polarization diversity and reducing polarization dependent loss (pdl) in a grating-based optical spectrum analyzer (osa)
GB2117132A (en) Interferometer
JPH024864B2 (en)
JPS59166873A (en) Optical applied voltage and electric field sensor
JPS6134128B2 (en)
RU2069839C1 (en) Device determining lateral displacements
JP2977926B2 (en) Optical circulator
JPS61223821A (en) Optical measuring instrument
JP2023012760A (en) electric field sensor
JPS6061894A (en) Measuring apparatus
JP2507790B2 (en) Semiconductor laser FM modulation characteristic measuring device
SU1672245A1 (en) Piezooptical transducer
JPS61223822A (en) Optical measuring instrument
JPH03249569A (en) Optical voltage/electric field sensor
JPS6063418A (en) Measuring device