JPS6063334A - Manufacture of niobium alloy - Google Patents

Manufacture of niobium alloy

Info

Publication number
JPS6063334A
JPS6063334A JP17118683A JP17118683A JPS6063334A JP S6063334 A JPS6063334 A JP S6063334A JP 17118683 A JP17118683 A JP 17118683A JP 17118683 A JP17118683 A JP 17118683A JP S6063334 A JPS6063334 A JP S6063334A
Authority
JP
Japan
Prior art keywords
niobium
alloy
reaction
chloride
halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17118683A
Other languages
Japanese (ja)
Other versions
JPH0536485B2 (en
Inventor
Itsuo Hirano
逸雄 平野
Hajime Sudo
一 須藤
Keiichiro Nishizawa
西沢 恵一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP17118683A priority Critical patent/JPS6063334A/en
Publication of JPS6063334A publication Critical patent/JPS6063334A/en
Publication of JPH0536485B2 publication Critical patent/JPH0536485B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture simply a high purity Nb alloy having a uniform composition by heating a niobium halide and other metallic halide together with metallic Al to reduce the halides. CONSTITUTION:A niobium halide such as niobium chloride or niobium bromide and other metallic halide such as the chloride or bromide of Ti, Zr or Hf are used in such a ratio as to give a desired alloy composition. They are reduced with metallic Al to obtain an alloy consisting of Nb and other metal such as Ti. The reduction begins at about 300 deg.C, and AlCl3 is produced as a by-product. It is, however, preferable that they are heated to about 600-1,500 deg.C when the reactivity, alloying action and the purity of the resulting alloy are taken into consideration. Chlorides are easily available as said halides, and an Nb-Ti alloy suitable for use as a superconductive material can be manufactured at a low cost by using niobium chloride and titanium chloride.

Description

【発明の詳細な説明】 本発明は、ニオブ系合金の製造法に関する。更に詳しく
は、ハロゲン化ニオブと他のハロゲン化金蝿の金jrA
アルミニウム航元によりニオブ系合金を製造することに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a niobium-based alloy. For more information, see niobium halides and other halogenated gold fly gold jrA.
The present invention relates to the production of niobium-based alloys using aluminum alloys.

超電導材料としては、Nb系合金、例えばNb5Ti会
金、 Nb3Sn 、 U3Ga等のA15型化合物が
開発され、すでに線材として実用化されている。
As superconducting materials, Nb-based alloys, such as A15 type compounds such as Nb5Ti alloy, Nb3Sn, and U3Ga, have been developed and have already been put into practical use as wire rods.

特に、Nb−Ti合金は安価で線材化がfM単であるこ
とより、現在、実用線材の大部分はNb−Ti合金より
製造される。
In particular, most practical wire rods are currently manufactured from Nb-Ti alloys because Nb-Ti alloys are inexpensive and can be made into wires with only fM.

一般に使用されているNb−Ti合金の組成は、Nb3
0〜6ow1.%のものであり、その製造法としては、
金属ニオブ、金属チタンの電子ビーム溶解又は消耗電極
式アーク溶解を二回繰返し行ない、合金組成を均一化し
たNt)−Ti合金を丸棒状に冷間加工する。この丸棒
を鋼管に入れ、複合材に圧延。
The composition of commonly used Nb-Ti alloys is Nb3
0~6ow1. %, and its manufacturing method is as follows:
Electron beam melting or consumable electrode type arc melting of metal niobium and metal titanium is repeated twice to make the alloy composition uniform, and the Nt)-Ti alloy is cold worked into a round bar shape. This round bar is placed in a steel tube and rolled into a composite material.

伸線刀ロエ2表面絶縁加工し単芯超電線材とする。Wire drawing knife Roe 2 The surface is insulated and made into a single core superconductor wire material.

この単芯線を数多く組合せて多芯化し、熱処理し、多芯
超電導線としている。縁材化加工を支障なく行なうため
には、Nb−Ti合金の純度が問題となり酸素、窒素、
炭素などの侵入型不純物や鉄、ニッケル、コバルト等の
磁性金属の混入も厳しく制限している。又、合金組成の
均一性も重要な条件であるため、前記したように、通常
二回溶解が行なわれている。
A large number of these single-core wires are combined into multi-core wires, heat treated, and made into multi-core superconducting wires. In order to process the edge material without any problems, the purity of the Nb-Ti alloy becomes an issue, and oxygen, nitrogen,
The inclusion of interstitial impurities such as carbon and magnetic metals such as iron, nickel, and cobalt is also strictly restricted. Furthermore, since uniformity of the alloy composition is also an important condition, melting is usually performed twice as described above.

本発明者らは、1klff単で純度の高いニオブ系合金
を得る方法をめて研究をした結果、ハロゲン化ニオブと
他のハロゲン化金/*3とを同時に金属アルミニウムを
用いて還元を行ない、ニオブと他の金属との合金を得る
方法を見い出し/TC発明を完成した。
The present inventors conducted research on a method for obtaining a highly pure niobium-based alloy using only 1 klff, and as a result, they simultaneously reduced niobium halide and other gold halide/*3 using metallic aluminum, Discovered a method to obtain an alloy of niobium and other metals and completed the TC invention.

本発明で用いるハロゲン化ニオブは、塩化ニオブ、臭化
ニオブ后である。又、ニオブと合金を形成スる他の金属
は、チタン、ジルコニウム、ハフニウム等で、これらの
塩化物、臭化物である。
The niobium halides used in the present invention include niobium chloride and niobium bromide. Other metals that form alloys with niobium include titanium, zirconium, hafnium, etc., and their chlorides and bromides.

次に、本発明を、ニオブ、チタンのJJ%−化物(以下
、コレらを夫々NbcLX、Tictxという)を用い
た場合について詳述する。
Next, the present invention will be described in detail with respect to the case where JJ%-compounds of niobium and titanium (hereinafter referred to as NbcLX and Tictx, respectively) are used.

NbC6xは、フェロ・ニオブ等の合金やニオブを含有
する鉱石の哩素化後、A’jJ製に」:す、又、Tlc
txもチタン合金やチタンを含有する鉱石のJt、A:
g化。
NbC6x is made by A'jJ after oxidation of alloys such as ferro-niobium and ores containing niobium.
tx is also Jt, A of titanium alloys and ores containing titanium:
g conversion.

精製によって得ることができる。It can be obtained by purification.

ニオフtM化物、チタン塙化物と金ノド元アルミニウム
との反応は、例えば、Nb045 、 TiCL、 の
場合で315 Nb0z、 +A4−+315 Nb 
+ALCL33/4 TiC!4 +A4−)3/A 
Ti +TiC!z4で表わされる反応がそれぞれ起こ
り、その後N’b−Ti合金が生成する。
For example, the reaction between a niobium tM compound, a titanium oxide, and a gold-plated aluminum is 315 Nb0z, +A4-+315 Nb in the case of Nb045, TiCL,
+ALCL33/4 TiC! 4 +A4-)3/A
Ti+TiC! Each reaction represented by z4 takes place, after which an N'b-Ti alloy is formed.

この除用いるAtff1は目標とするNb*Ti合金の
組成により変わるが、基本的には各式の化学伍論ii、
の合計量で十分である。
This removed Atff1 varies depending on the composition of the target Nb*Ti alloy, but basically it is
The total amount is sufficient.

これらの反応は約300℃から開始し、AtCl3が生
成するが、AtCl3はこの温度で反応系より昇華排出
される。その後、?1AEl”Z上昇とともに反応は進
み、Nb−Ti合金が生成するカベ副生Atct3すべ
て外遊するためhtct3によるNbaTi合金の純度
低下はない。
These reactions start at about 300° C. and AtCl3 is produced, but AtCl3 is sublimed and discharged from the reaction system at this temperature. after that,? The reaction progresses as 1AEl''Z increases, and all of the wall by-product Atct3 produced by the Nb-Ti alloy escapes, so there is no decrease in the purity of the NbaTi alloy due to htct3.

11bC1x、 TiC!txの反応系への供給方法や
反応方法は特に限定されないが、予めNbctX扮末と
Tic!4xとアルミニウム粉末とを混合し、反応を行
なっても、又、アルミニウム浴中にNbctx、Tlc
tXを液状で又はガス化して添加しても、粉末状で又は
ペレットにて添加して反応を行なってもよい。
11bC1x, TiC! The method of supplying tx to the reaction system and the reaction method are not particularly limited, but NbctX and Tic! Even if the reaction is carried out by mixing 4x and aluminum powder, Nbctx, Tlc
The reaction may be carried out by adding tX in liquid or gasified form, or by adding it in powder form or pellet form.

上記反応の反応雰囲気もしくは添加用キャリヤーガスと
しては、吸湿性の強い塩化物を取扱うため、水分含有コ
);コの少ない例えば、Ar 、He等を使用して行な
うのが好ましい。又、反応で副生するハロゲン化アルミ
ニウムを反応系から速やかに、又、完全に除去する目的
でキャリヤーガスは流通式で流すのが良い。しかし、原
料の損失を最小限にするようその流速を調節する必要が
ある。
As the reaction atmosphere for the above reaction or the carrier gas for addition, it is preferable to use a gas containing less water, such as Ar, He, etc., since chlorides with strong hygroscopic properties are handled. Further, in order to quickly and completely remove aluminum halide produced as a by-product of the reaction from the reaction system, it is preferable to flow the carrier gas in a flow-through manner. However, the flow rate needs to be adjusted to minimize raw material loss.

不発1月では、ALiは目的とする1(b−Ti−i金
の組成により変わるが、上記反応式に従った当か、で反
応を行なえば事実上良く、好ましくはAt溶溶状状態は
必要モル数の0.5倍以上、3倍以下、更に好ましくは
0,8〜2.0倍の範囲である。
In the unexploded January, ALi is the target 1 (b-Ti-i It varies depending on the composition of the gold, but it is practically sufficient to carry out the reaction according to the above reaction formula, and preferably an At-soluble state is required. The amount is in the range of 0.5 times or more and 3 times or less, more preferably 0.8 to 2.0 times the number of moles.

A4粉末状i7J’tで行なう場合では、そのモル数の
0.5倍以上、1.2倍以下、史に好ましくは0.8〜
1倍の範囲である。
When using A4 powder i7J't, it is 0.5 times or more and 1.2 times or less, preferably 0.8 to 1.2 times the number of moles thereof.
1 times the range.

At溶融状態で用いる」易会、モル数の0.8倍より少
では、NbC2X、TiCLXの損失が多くなり、5倍
より大では未反応A4の量が多くなり、Nb抽出時に多
おのアルカリ溶液が必要となる。
When used in the molten state of At, if it is less than 0.8 times the number of moles, the loss of NbC2X and TiCLX will increase, and if it is more than 5 times the number of moles, the amount of unreacted A4 will increase, and a large amount of alkali will be generated during Nb extraction. A solution is required.

At粉末を用いる場合もモル数の[15倍より少では、
塩化物の損失が多くなり、1.2倍より大では回収Nb
−Ti合金中の未反応A4が残留し、分P1+8処理工
程が必要となる。
When using At powder, if the number of moles is less than [15 times,
The loss of chloride increases, and if it is larger than 1.2 times, the recovered Nb
-Unreacted A4 in the Ti alloy remains, requiring a P1+8 treatment step.

本発明の別の特徴は、塩化ニオブ、塩化チタンとも低級
塩化物でも利用できることである。例えば、塩化−4プ
では、NbC!4.の他、N bOt4rNbOt3.
.8. Nb062,6.、 NbC12,1,、Nb
O12、塩化チタンでは、T i Ct4の他、Ti0
z3. TiO4のいずれも使用でき、反応方法、すな
わち、液状。
Another feature of the present invention is that lower chlorides of both niobium chloride and titanium chloride can be utilized. For example, in the case of -4 chloride, NbC! 4. In addition, NbOt4rNbOt3.
.. 8. Nb062,6. , NbC12,1,, Nb
O12, titanium chloride, in addition to T i Ct4, Ti0
z3. Any TiO4 reaction method can be used, i.e. in liquid form.

気状、固状のそれぞれの方法に応じて使い分けが可能で
ある。
It can be used depending on the method, gaseous or solid.

また、還元剤である金属アルミニウムについても、粉状
9粒、ベレット、塊、シートのいずれも利用でき、At
の形状に応じて反応方法を選べることが%徴である。
In addition, metal aluminum, which is a reducing agent, can be used in powder form, pellets, lumps, or sheets.
The advantage is that the reaction method can be selected depending on the shape of the material.

特に、At粉末を使用する場合は、同相反応にこれを用
いるのが一般的であり、塩化物との接触面積を増加させ
る意味でA4粉末は100メツシユ以下が好ましい。
In particular, when At powder is used, it is generally used for in-phase reactions, and the A4 powder is preferably 100 meshes or less in order to increase the contact area with chloride.

本発明の他の特徴に、還元反応時において塩化物の添加
量を」員宜変えることにより簡単に希望する組成の合金
が得られる点にある。不発明でAtによる還元反応の反
応温度は300℃以上であれば特に限定されないが、反
応性7合金化2合金純度等の点より600〜i s o
 o ’Cが好ま1−い。又、製品の歩留りを良くする
上で、同相での反応が良く、このためには比較的f、独
点の商いハロゲン化物を原料として用いることが好まし
い。
Another feature of the present invention is that an alloy having a desired composition can be easily obtained by changing the amount of chloride added during the reduction reaction. The reaction temperature of the reduction reaction with At is not particularly limited as long as it is 300°C or higher, but from the viewpoint of reactivity 7 alloying 2 alloy purity etc.
o 'C is preferred. In addition, in order to improve the yield of the product, it is preferable to use a halide as a raw material because the reaction is good in the same phase.

反応は、普通大気圧下にて行なうが、li:1の気密性
が保証されれば、減圧下、加圧下にても十分反応は可能
である。
The reaction is normally carried out under atmospheric pressure, but as long as the airtightness of li:1 is ensured, the reaction can be carried out satisfactorily even under reduced pressure or increased pressure.

反応容器の木材としては、金属系でもセラミックス系で
もカーボン系でも反応は可能である。
The reaction can be carried out using metal, ceramic, or carbon wood as the wood for the reaction vessel.

本発明は、ハロゲン化ニオブ、11ρのハロゲン化合ル
4の川を調節することにより合金姐成を自由に変えるこ
とができ、ニオブ不合@を簡単に、かつ高純度な形で得
られる。従って得られたニオブ系合金は均一な組成であ
るため、+lイ(’lti、−g用として用いられるN
b*Ti 陰金の例においても従来のように、二回溶融
するなどの処理が必要なく、高純度合金が得られる。
In the present invention, the alloy composition can be freely changed by adjusting the amount of niobium halide, halogen compound 4 of 11ρ, and niobium compound can be easily obtained in a highly pure form. Therefore, since the obtained niobium-based alloy has a uniform composition, the N
Even in the case of b*Ti negative gold, a high purity alloy can be obtained without the need for treatments such as twice melting as in the conventional method.

次に、実施例で更に詳74111に説明するが、不発明
はこれらに限定されるものではない。
Next, the present invention will be described in more detail with reference to Examples, but the invention is not limited thereto.

実施例1 ニオブ源としてはフェロ・二芽プを塩素化し蒸留等の塙
化物鞘製工程を経て精製Nb0z、を得た。
Example 1 As a niobium source, purified Nb0z was obtained by chlorinating ferro-niobium and passing through a process such as distillation to produce a ferrite sheath.

Nb0t、の組成としては、Nb:34.4wt%、 
ct:65.6wt%であった。
The composition of Nb0t is Nb: 34.4wt%,
ct: 65.6 wt%.

チタン源としては合成ルチルの塩素化、蒸留等の塩化物
lit j%工程を経て精製Ti0t4を得た。
As a titanium source, purified Ti0t4 was obtained through a chloride lit j% process such as chlorination and distillation of synthetic rutile.

T i c A4の組成としては、Ti:25.3wt
%、 azニア4.7vt%であった。
The composition of Ti c A4 is Ti: 25.3wt
%, az near 4.7vt%.

目標とするNb*Ti、合金は一般的に超電導用N b
 eT iとして用いられるNb 55wt%−Ti 
45wt%とした。
Target Nb*Ti, alloy is generally superconducting Nb
Nb 55wt%-Ti used as eTi
The content was set at 45 wt%.

目標Nb−Ti合金を得るため、Tict4 bay。Tict4 bay to obtain the target Nb-Ti alloy.

NbCl6 53.9 fを図−1に示す蒸発kA #
 Bに夫々別々に入れた。又、鉄製ルツボにはAt粒2
5y(必要A t:fn:iの1.63倍)を入れ、反
応系内をアルゴンにて十分置換後、コック(a)を閉じ
、蒸発器Bの方よりArを100献/Mの割で流しなカ
ーも反応゛容器のみ800°Cまで昇温した。
Evaporation kA # of NbCl6 53.9 f shown in Figure-1
I put them separately in B. In addition, there are 2 At grains in the iron crucible.
5y (1.63 times the required At:fn:i), the reaction system was sufficiently purged with argon, the cock (a) was closed, and Ar was added from evaporator B at a rate of 100 d/M. The temperature of only the reaction vessel was raised to 800°C.

反応容器を800℃に保j、ソしてからNb0z、 、
 TiC4の単位時開光りの蒸発量を合せるため、まず
、NbC1,の蒸発器Bを200℃まで60分かけ昇温
した。蒸発器Bを加熱して20分後、コック(a)を開
き、Arを1o oぺ4で流しながら、T i OA4
の蒸発器Aを90℃まで10分で昇温し、NbC’5*
Ticz4の蒸発量をほぼ同量にして3時間反応を11
.1よった。反応後Arを流したまま冷却した。
The reaction vessel was kept at 800℃, then Nb0z, ,
In order to match the evaporation amount of TiC4 per unit time, first, the temperature of NbC1 evaporator B was raised to 200° C. over 60 minutes. 20 minutes after heating the evaporator B, open the cock (a) and while flowing Ar at 1o 4, T i OA4
The temperature of evaporator A was raised to 90°C in 10 minutes, and NbC'5*
The reaction was carried out for 3 hours with approximately the same amount of evaporated Ticz4.
.. I got 1. After the reaction, the reactor was cooled while flowing Ar.

鉄製ルツボよりNb−Ti合金と未反応ALを4Jt’
ガストラツプよりhtat3 約c) s y IEI
収した。
4Jt' of Nb-Ti alloy and unreacted AL from an iron crucible.
htat3 from Gastrap approx. c) sy IEI
I got it.

回収Nb−Ti合金と未反応At混合物約43.25’
を粉砕し、40%水酸化ナトリウム溶液にて未反応At
だげ溶解し、Nb−Ti合金を回収した。
Recovered Nb-Ti alloy and unreacted At mixture approximately 43.25'
was ground and unreacted At was removed with 40% sodium hydroxide solution.
It was partially melted and the Nb-Ti alloy was recovered.

この合金はX線回折の結果、完全な形のNb・1゛1合
金を形成していることが判った。又、定が一分析の結果
、Nb:54.9wt%−T1:45.0wt%であり
、ガス成分も酸素5Qpyn、窒素8pμ、炭素511
111、全局成分も鉄25p戸、 At 15ppII
ど十分超電導用Ml)−Ti合金として使用できること
が判った。
As a result of X-ray diffraction, this alloy was found to form a complete Nb.1.1 alloy. In addition, as a result of one analysis, the constants are Nb: 54.9wt% - T1: 45.0wt%, and the gas components are also oxygen 5Qpyn, nitrogen 8pμ, carbon 511
111, total component is iron 25p, At 15ppII
It was found that the alloy can be used as a superconducting Ml)-Ti alloy.

実施例2 ニオブ源としては試薬のNbCl5と試薬のNb粉床と
QAr気流中にて反応させ得られたN b3c A8(
Nb :49.6 wt%、 C6:50.4 wt%
)を302、チタン源としては、試祭のTiCl2 (
Ti:31.0wt%、 at:69.0wt%)を3
9.2y、A4のスタンプ粉末を10.72(反応に必
要な化学h(−論量)各々をAr雰囲気のグローブボッ
クス内で十分混合後、ベレット化し、このペレットを石
英ガラス製ボートに入れ、このボートを更に石英ガラス
製反応管に入れた後、グローブボックスより取出した。
Example 2 As a niobium source, Nb3cA8(
Nb: 49.6 wt%, C6: 50.4 wt%
) is 302, and the titanium source is TiCl2 (
Ti: 31.0wt%, at: 69.0wt%)
After thoroughly mixing 9.2y and A4 stamp powders with 10.72 (chemical h (-stoichiometric amount) required for the reaction) in a glove box with an Ar atmosphere, pelletize the powder, and place the pellet in a quartz glass boat. This boat was further placed in a quartz glass reaction tube, and then taken out from the glove box.

700’Cに保持している横型゛屯気炉に装渚し、Ar
を100J/2.4で反応管中に流しながら2時間反応
させた後、炉外に取出しArを流したまま冷却した。
Installed in a horizontal tank air furnace maintained at 700'C, Ar
After reacting for 2 hours while flowing Ar into the reaction tube at 100 J/2.4, the reactor was taken out of the furnace and cooled while flowing Ar.

室温まで冷却後、石英ガラス製ボートを回収した結果、
ボート内にはNbeTi合金がベレットの形で生成して
いた。
After cooling to room temperature, the quartz glass boat was recovered.
Inside the boat, NbeTi alloy was formed in the form of a pellet.

定9分析の結果、目標としたNb:55wt%−T1’
;45wt%1合金に対してNb二55.1w伏−’l
”i:45.0wt%でその他の成分としてはFe 2
011FI 、 At25 ppi 。
As a result of constant 9 analysis, the target Nb: 55wt%-T1'
55.1w of Nb per 45wt%1 alloy
"i: 45.0 wt%, other components include Fe 2
011FI, At25 ppi.

Si、 511F、 030ppm、 C8pp+i、
 N 10ppmであった。
Si, 511F, 030ppm, C8pp+i,
N was 10 ppm.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は不発明の実施例1で用いた装置1父を示す図で
ある。 1:原料加熱部A 7:溶融アルミニウム2:原料装入
部 8ニルツボ 3:切1児コック(a)9:反1;6器4:原料加熱部
B 10:反応部加熱器5:原料装入部 1i : A
tct3抽集器6:切換コック(b) 12:熱電対 特許出願人 東洋曹達工業株式会社
FIG. 1 is a diagram showing the device 1 used in Example 1 of the invention. 1: Raw material heating section A 7: Molten aluminum 2: Raw material charging section 8 Nil crucible 3: Cutting cock (a) 9: Vertical 1; 6 vessel 4: Raw material heating section B 10: Reaction section heater 5: Raw material container Entry 1i: A
TCT3 extractor 6: Switching cock (b) 12: Thermocouple Patent applicant Toyo Soda Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、ハロゲン化ニオブ及びその他のハロゲン化金鵬なら
びに金属アルミニウムを刀口熱することを特徴とするニ
オブ系合金の製造法。 2 ニオブ及びその他の今加8のハロゲン化物として、
これらの塩化′吻を用いる!1ヶ許請求のiliα囲第
1項第1項記載。 五 ニオブ以外の金属としてチタンを用いる’l:J’
許請求のか′1)項第1又は2項記載の方法。
[Claims] 1. A method for producing a niobium-based alloy, which comprises heating niobium halides, other metal halides, and metal aluminum. 2. As niobium and other halides of Imaka 8,
Use these chloride proboscises! Item 1 of Section 1 of Section 1 of the request for permission. 5. 'l:J' using titanium as a metal other than niobium
1) The method according to claim 1 or 2.
JP17118683A 1983-09-19 1983-09-19 Manufacture of niobium alloy Granted JPS6063334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17118683A JPS6063334A (en) 1983-09-19 1983-09-19 Manufacture of niobium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17118683A JPS6063334A (en) 1983-09-19 1983-09-19 Manufacture of niobium alloy

Publications (2)

Publication Number Publication Date
JPS6063334A true JPS6063334A (en) 1985-04-11
JPH0536485B2 JPH0536485B2 (en) 1993-05-31

Family

ID=15918595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17118683A Granted JPS6063334A (en) 1983-09-19 1983-09-19 Manufacture of niobium alloy

Country Status (1)

Country Link
JP (1) JPS6063334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7219412B2 (en) * 2004-06-02 2007-05-22 Honeywell International Inc. Methods of forming titanium-containing superconducting compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7219412B2 (en) * 2004-06-02 2007-05-22 Honeywell International Inc. Methods of forming titanium-containing superconducting compositions

Also Published As

Publication number Publication date
JPH0536485B2 (en) 1993-05-31

Similar Documents

Publication Publication Date Title
US6958257B2 (en) Tantalum sputtering target and method of manufacture
US3825415A (en) Method and apparatus for the production of liquid titanium from the reaction of vaporized titanium tetrachloride and a reducing metal
US6409797B2 (en) Method of making metals and other elements from the halide vapor of the metal
US20080199348A1 (en) Elemental material and alloy
Seki et al. Reduction of titanium dioxide to metallic titanium by nitridization and thermal decomposition
JP4132526B2 (en) Method for producing powdered titanium
JPS60121207A (en) Manufacture of hyperfine particle
EP0360792A1 (en) Process for making zero valent titanium from an alkali metal fluotitanate
EP0204298A2 (en) Process for producing niobium metal of an ultrahigh purity
JPS6063334A (en) Manufacture of niobium alloy
US3839020A (en) Process for the production of alloy sponge of titanium or zirconium base metal by mixing a halide of the alloying metal with titanium or zirconium tetrachloride and simultaneously reducing
US5348723A (en) Synthesis of semiconductor grade tungsten hexafluoride
US20020152844A1 (en) Elemental material and alloy
US2753256A (en) Method of producing titanium
US3407031A (en) Process for the manufacture of inorganic chlorides
JPH0325492B2 (en)
JPH0192338A (en) High purity niobium-titanium alloy sponge and its manufacture
TW503218B (en) Tantalum sputtering target and method of manufacture
US3068066A (en) Process for the manufacture of double salts of niobium chloride and tantalum chloride
JP3564852B2 (en) Method for producing high purity metal ruthenium powder
KR101023225B1 (en) Method of preparing for metal powder
JPS6063333A (en) Manufacture of metallic niobium
JPS63262489A (en) Electrolytic production of nonmetal
JPS596245B2 (en) Manufacturing method of titanium nitride
Naslain Boron syntheses