JPS6063317A - Production of high-mn non-magnetic steel for extra-low temperature service - Google Patents

Production of high-mn non-magnetic steel for extra-low temperature service

Info

Publication number
JPS6063317A
JPS6063317A JP58170180A JP17018083A JPS6063317A JP S6063317 A JPS6063317 A JP S6063317A JP 58170180 A JP58170180 A JP 58170180A JP 17018083 A JP17018083 A JP 17018083A JP S6063317 A JPS6063317 A JP S6063317A
Authority
JP
Japan
Prior art keywords
aging treatment
steel
contg
cryogenic
extra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58170180A
Other languages
Japanese (ja)
Other versions
JPH0518887B2 (en
Inventor
Kiyohiko Nohara
清彦 野原
Tsunehiko Kato
加藤 恒彦
Shigeharu Suzuki
重治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58170180A priority Critical patent/JPS6063317A/en
Publication of JPS6063317A publication Critical patent/JPS6063317A/en
Publication of JPH0518887B2 publication Critical patent/JPH0518887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To develop a non-magnetic structural material having excellent toughness and yield strength at an extra-low temp. by subjecting an Mn steel contg. a specific amt. of V to hot working then to an aging treatment under specific conditions. CONSTITUTION:A raw material for an Mn steel contg. >0.10% C and >0.05% N in which <1.0% (C+2N), contg. 26-30% Mn and <10% Cr, contg. >=0.1% V and contg. the above-mentioned elements within the range of >=0.2(C%+0.5N%+ 0.05Cr%) and <=5(C%+0.5N%+0.05Cr%) is used as an extra-low temp. non- magnetic structural material for technology to utilize superconductivity including thermonuclear power generation and particularly a superconductive magnet. Such material is subjected to hot working at 600-900 deg.C finish temp. and >10% finish reduction ratio, then to an aging treatment. Otherwise the material is subjected to a soln. heat treatment and cold working at >=10% after hot working then to an aging treatment. The relation satisfying the equation (1) is maintained between the temp. T and the time (t) in the stage of such aging treatment.

Description

【発明の詳細な説明】 この発明は核融合発電をはじめとする超電導利用技術、
特に超電導磁石用極低温構造材料など、極低温で使用さ
れる非磁性構造材料に関するものである。
[Detailed Description of the Invention] This invention relates to superconductivity utilization technology including nuclear fusion power generation,
In particular, it relates to non-magnetic structural materials used at extremely low temperatures, such as cryogenic structural materials for superconducting magnets.

周知のように核融合発電や素粒子加速器、超電導電力貯
蔵などの各種の超電導利用技術においては、強大な磁界
を発生させたシ大容縫の永久電流を流すために超電導磁
石が用いられる。このような超電導磁石内には強大な′
電磁力が誘起され、しかも通常液体ヘリウムによシ約4
.2 Kという極低温に保持されるから、超電導磁石支
持構造用材料としては、約4.2になる極低温下で強大
な電磁力に耐えることが要求される。すなわち、超電導
磁石支持構造材料に要求される特性のうち、最も徂要な
特性は、42Kにおける降伏応力(耐力)が高いこと、
具体的には1001伺以上であることであシ、またこの
ほか極低温靭性が確保されること、具体的にはシャルピ
ー衝撃吸収エネルギー値で数ゆ・m以上であることも要
求される。−またこの種の構造材料には、常温における
機械加工性や溶接性もある程度良好であることも必要で
ちる。さらに超電導磁石支持構造材料は、磁界との相互
作用を生じないように非磁性であることが絶対条件であ
シ、また経済性の観点から可及的に安価であることが望
まれる。
As is well known, in various superconductor utilization technologies such as nuclear fusion power generation, elementary particle accelerators, and superconducting power storage, superconducting magnets are used to flow large persistent currents that generate strong magnetic fields. Inside such a superconducting magnet, there is a powerful
Electromagnetic forces are induced, and normally liquid helium
.. Since it is held at an extremely low temperature of 2 K, materials for superconducting magnet support structures are required to withstand strong electromagnetic force at an extremely low temperature of approximately 4.2 K. In other words, among the properties required for superconducting magnet support structure materials, the most important properties are a high yield stress (yield strength) at 42K;
Specifically, it is required to have a toughness of 1001 mm or more, and also to ensure cryogenic toughness, specifically, to have a Charpy impact absorption energy value of several Yum or more. - This type of structural material also needs to have some degree of good machinability and weldability at room temperature. Furthermore, it is absolutely necessary that the superconducting magnet support structure material be non-magnetic so as not to interact with the magnetic field, and from an economic standpoint, it is desirable that it be as inexpensive as possible.

ところで従来上述のような超電導磁石支持構造材料とし
て考えられていた材料としては、オーステナイト系ステ
ンレス鋼をはじめとして、高ニッケル鋼、アルミニウム
合金、チタン合金、さらにはFRPなどがある。しかし
ながらこれらのうち、オーステナイト系ステンレス鋼は
、最重要点である降伏応力がせいぜい7 Okiy4程
度に過ぎない。
By the way, materials conventionally considered as superconducting magnet support structure materials include austenitic stainless steel, high nickel steel, aluminum alloy, titanium alloy, and FRP. However, among these, austenitic stainless steels have a yield stress, which is the most important point, of only about 7°C.

また高Ni鋼は一部には降伏応力が100 ki!を超
すものもあるが、溶接割れを起し易く、かつ極めて高価
であるという難点があり、この点はチタン合金も同様で
ある。さらにアルミニウム合金は降伏応力が数10)ψ
−程度に過ぎず、またFRPは比重が小さくて扱い易い
利点を有するが、降伏応力は小さく、シかも高価である
。このように従来超電導磁石支持構造材の候補とされて
いた各種材料はいずれもその特性が不充分であシ、シた
がって前述のような要求特性を満足し得る新規な材料の
開発が強く望まれていた。
In addition, some high Ni steels have a yield stress of 100 ki! There are some materials that exceed this, but they have the drawbacks of being prone to weld cracking and being extremely expensive, and titanium alloys are also similar in this respect. Furthermore, aluminum alloy has a yield stress of several tens) ψ
Although FRP has the advantage of having a low specific gravity and being easy to handle, it has a low yield stress and is expensive. As described above, all of the various materials that have traditionally been considered candidates for superconducting magnet support structures have insufficient properties, and there is therefore a strong need for the development of new materials that can satisfy the above-mentioned required properties. It was rare.

この発明は以上の事情を背景としてなされたもので、超
電導磁石用支持構造材に適した特性を有する材料、すな
わち極低温における降伏応力が著しく高り、シかも極低
温靭性、常温における加工性、溶接性も良好であってな
おかつ安価な非磁性材を製造する方法を提供することを
目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and it is necessary to develop a material that has characteristics suitable for use as a support structure material for superconducting magnets, that is, it has a significantly high yield stress at cryogenic temperatures, poor cryogenic toughness, workability at room temperature, and It is an object of the present invention to provide a method for manufacturing a non-magnetic material that has good weldability and is inexpensive.

超電導磁石用の極低温構造材料としては前述のように種
々のものが考えられるが、本発明者等は、磁気的安定性
、降伏強度の諦度依存性、経済性等の観点から、高Mn
鋼が最も有望であると推察し、高Mn鋼の特性、特に極
低温強度(降伏強度)を従来の高Mn鋼よシ飛躍的に高
める手段を見出すべく種々実験・検討を重ねたところ、
■を添加することが有効でアシ、しかもその場合単にV
を添加するだけではなく、鋼中のC、N、およびCrの
含有量に応じてV含有量を規定すること、そして熱間も
しくは冷間の加工歪を残存せしめてV炭化物を微細に析
出させることが降伏強度の大幅な向上に効果的であるこ
とを新規に知見した。この点についてさらに詳細に述べ
れば、高Mn鋼の極低温降伏強度を高める方法としては
、■鋼中成分による固溶硬化を利用する、■炭化物、窒
化物、金属間化合物などによる析出硬化を利用する、■
冷間加工を利用する、などの方法が考えられるが、本発
明者等の詳細な実験によれば、極低温降伏強度を従来材
よシも大幅に向上させることは、これら■〜■の方法を
単純に応用しただけでは困難であり、C、N 、 Cr
などによる固溶硬化に加えて、これら3元素の含有量に
応じた量のVを添加し、しかも■の炭化物を析出させる
ための時効処理(析出硬化処理)に先立って、熱間もし
くは冷間によシ適切な加工歪を導入しておき、■添加量
に応じた温度、時間の析出硬化処理を施すことによって
、非磁性や靭性、常温加工性、常温溶接性を損うことな
く、低コストで極低温耐力を従来の通常の高層鋼よシも
著しく向上させることができることを見出し、この発明
をなすに至ったのである。
As mentioned above, various materials can be considered as cryogenic structural materials for superconducting magnets, but the present inventors have selected high-Mn materials from the viewpoints of magnetic stability, yield strength dependence, economic efficiency, etc.
We speculated that steel was the most promising material, and conducted various experiments and studies to find a way to dramatically improve the properties of high-Mn steel, especially the cryogenic strength (yield strength), compared to conventional high-Mn steel.
It is effective to add ■, and in that case, simply V
In addition to adding V, it is also necessary to specify the V content according to the C, N, and Cr contents in the steel, and to allow hot or cold working strain to remain to precipitate fine V carbides. We have newly found that this is effective in significantly improving yield strength. To explain this point in more detail, methods to increase the cryogenic yield strength of high Mn steel include: ■ Utilizing solid solution hardening with components in the steel; ■ Utilizing precipitation hardening with carbides, nitrides, intermetallic compounds, etc. do, ■
Methods such as using cold working can be considered, but according to detailed experiments by the present inventors, it is possible to significantly improve the cryogenic yield strength of conventional materials by using methods It is difficult to simply apply C, N, Cr
In addition to solid solution hardening, V is added in an amount corresponding to the content of these three elements, and prior to aging treatment (precipitation hardening treatment) to precipitate carbides in By introducing an appropriate processing strain and performing precipitation hardening treatment at a temperature and time depending on the amount added, it is possible to reduce the It was discovered that the cryogenic strength could be significantly improved at a lower cost than that of conventional high-rise steel, and this invention was achieved.

上述のような手段により非磁性、靭性、加工性、溶接性
などを損うことなく経済的に極低温高耐力化が図れる金
属学的理由は次の通シである。すなわち、C,N、Cr
量に応じた量のVを添加して、熱間もしくは冷間歪を与
えた後、熱処理(時効処理)を行えば、■の窒化物やC
rの炭窒化物の生成を最小限に抑えられた状態でVの炭
化物が結晶粒内に均一かつ微細に析出し、その結果極低
温変形に際してはとのVの炭化物が材料の降伏を大幅に
遅滞させて耐力の増大をもたらすからであシ、シかもこ
のような組織変化は非磁性、靭性、加工性、溶接性のい
ずれをも損うことがないのである。
The metallurgical reason why cryogenic strength can be achieved economically by the above-mentioned means without impairing nonmagnetism, toughness, workability, weldability, etc. is as follows. That is, C, N, Cr
If V is added in an appropriate amount and subjected to hot or cold strain, then heat treatment (aging treatment) is performed to form nitrides and C.
V carbides precipitate uniformly and finely within the crystal grains while the formation of R carbonitrides is minimized, and as a result, V carbides significantly reduce the yield of the material during cryogenic deformation. Although this structural change may be delayed and cause an increase in yield strength, it does not impair nonmagnetism, toughness, workability, or weldability.

具体的には、この発明の極低温用高Mn非磁性鋼の製造
方法は、CおよびNを、Cが010チ以上、Nが0.0
5チ以上でしかもC(饅)+2XN(係)が1.0チ以
下となる範囲で含み、かつMn 26〜30%およびC
r 10 %以下を含有し、さらにO1%以上でしかも
−H(C(%)+o、5xN(s)+o、osxcr(
%))以上、5 X (C(%) +〇、5 XN (
%)+0.05XCr(%))以下のVを含有する鋼を
素材とし、その鋼素材を、仕上温度600〜900℃か
つ仕上加工度10チ以上で熱間加工した後時効処理する
か、もしくは熱間加工後溶体化処理して10%以上の冷
間加工を施した後時効処理するにあたって、その時効処
理の温度(T)および時間(1)を、 (650−tooxv(%月℃≦T≦(650+100
XV優))℃10hr≦t≦100j+r で規定される範囲内とすることを特徴とするものである
Specifically, the method for producing a high Mn nonmagnetic steel for cryogenic use of the present invention includes C and N such that C is at least 0.010 cm and N is 0.0
5 chi or more, and C (rice cake) + 2
Contains r 10% or less, O 1% or more and -H(C(%)+o, 5xN(s)+o, osxcr(
%)) or more, 5 X (C(%) +〇, 5 XN (
%)+0.05XCr(%)) or less, the steel material is hot worked at a finishing temperature of 600 to 900°C and a finishing degree of 10 inches or more, and then subjected to aging treatment, or When performing aging treatment after solution treatment after hot working and cold working of 10% or more, the temperature (T) and time (1) of the aging treatment are determined as follows: ≦(650+100
XV Excellent)) The temperature is within the range defined by 10hr≦t≦100j+r.

以下にこの発明の製造方法についてさらに詳細に説明す
る。
The manufacturing method of the present invention will be explained in more detail below.

先ず素材成分の限定理由について説明する。First, the reason for limiting the material components will be explained.

CおよびN:これらはいずれも侵入型の固溶元素であっ
て、固溶硬化を生ぜしめるために必要であり、その効果
を得るためにはC0,101以上、N0905%以上が
必要であるが、C(%)+2N(%)が1.0%を越え
れば靭性の劣化を招くから、C(%)+ 2 N (%
)を1.0 %以下に規制する。
C and N: Both of these are interstitial solid solution elements and are necessary to cause solid solution hardening, and in order to obtain this effect, C0.101 or more and N0905% or more are required. , C (%) + 2 N (%) If it exceeds 1.0%, the toughness will deteriorate, so C (%) + 2 N (%)
) shall be regulated to 1.0% or less.

Mn:木調を特徴づける元素であシ、オーステナイト相
の安定化、すなわち磁気的安定性と、加工性確保のため
に26%以上が必要であシ、一方30%を越えれば靭性
および耐液性が劣化するから、26〜30%の範囲に限
定した。
Mn: An element that characterizes the wood tone, 26% or more is required to stabilize the austenite phase, that is, to ensure magnetic stability and workability, while if it exceeds 30%, it improves toughness and liquid resistance. Since the properties deteriorate, it was limited to a range of 26 to 30%.

Cr:固溶硬化を生ぜしめ、同時にある程度の耐誘性を
付与するために添加することが望ましいが、10チを越
えればオーステナイト相の安定性を阻害し、靭性や応力
腐食割れ感受性に悪影響を与えるから、添加量の上限を
10係とする。
Cr: It is desirable to add Cr to cause solid solution hardening and at the same time provide a certain degree of induction resistance, but if it exceeds 10 Cr, it inhibits the stability of the austenite phase and has a negative impact on toughness and stress corrosion cracking susceptibility. Therefore, the upper limit of the amount added is set to 10.

■=この発明を特徴づける元素であって、後述する熱処
理条件と組合せることによって著しく大きい極低温強度
をもたらす役割を果たす。そのためには少くとも0.1
係以上含有されなければならないが、さらにVの含有i
 v (%)は、C、N 、 Crの含有量、すなわち
C(%)、N(%) 、 Cr(%)に応じて、 IC(%)+0.5N(%) +〇、05Cr(%))
≦V(%)≦5(c(%)+0.5N(%)+0.05
 Cr (チ月 を満足する必要がある。その理由は、 −1(C(%)+o、5N(%)+o、oscr(%)
) 未満ではV炭化物の粒内微細均一析出が充分に起ら
ないため強度増加が不充分となり、一方5(C(%)+
0.5N(チ)+0.05 Cr (%))を越えれば
、固溶硬化およびV炭化物析出に要する以上のVが含有
されることになるため、延靭性の劣化と溶接性の低下を
招く。
(2) = An element that characterizes this invention, and plays a role in bringing about extremely high cryogenic strength when combined with the heat treatment conditions described below. For that purpose, at least 0.1
In addition, the content of V must be
v (%) is IC (%) + 0.5N (%) + 〇, 05Cr (%) depending on the content of C, N, Cr, i.e. C (%), N (%), Cr (%) ))
≦V(%)≦5(c(%)+0.5N(%)+0.05
Cr (It is necessary to satisfy Q. The reason is -1(C(%)+o, 5N(%)+o, oscr(%)
), the intragranular fine and uniform precipitation of V carbides will not occur sufficiently, resulting in insufficient strength increase;
If it exceeds 0.5N (chi) + 0.05 Cr (%)), more V will be contained than is required for solid solution hardening and V carbide precipitation, resulting in deterioration of ductility and weldability. .

なお上記各成分、すなわちC、N 、 Cr 、 Mn
 。
Note that each of the above components, namely C, N, Cr, Mn
.

■に対する残部は、Feおよび不可避的不純物とされる
The remainder to (1) is Fe and unavoidable impurities.

上述のように規定される成分を含有する高Mn鋼のスラ
ブに対して、この発明の方法では熱間圧延を行って時効
処理を施すか、まだは熱間圧延後溶体化処理して冷間加
工を施し、引続いて時効処理を施す。ここで前者の場合
、すなわち熱間圧延後溶体化処理を行なわない場合には
、熱間圧延工程における熱間仕上温度を600〜900
℃とし、かつ仕上加工度を10チ以上とする必要がある
In the method of the present invention, a slab of high Mn steel containing the components specified above is either hot rolled and subjected to aging treatment, or if it is not yet hot rolled, it is solution treated and then cold rolled. Processing and subsequent aging treatment. In the former case, that is, when solution treatment is not performed after hot rolling, the hot finishing temperature in the hot rolling process is set at 600 to 900.
℃, and the degree of finishing must be 10 inches or more.

熱間仕上温度が900℃を越えれば加工歪が回復してし
まい、次工程の時効処理で顕著な強度増大が図れず、一
方熱間仕上温度が600℃未満では形状制御が困難とな
ることがある。またこの熱間仕上圧延における加工度は
10qり以上が必要でらシ、この値に満たない場合には
次工程の時効処理に際して有効に強度増加を図るために
必要な歪を導入し得ない。一方、後者の場合、すなわち
熱間圧延後、溶体化処理を行ってから冷間加工を施し、
その後時効処理を施す場合、熱間圧延条件については特
に制限を設ける必要はないが、溶体化処理後の冷間加工
に際しては加工度を10%以上とする必要がある。この
場合冷間加工度が10チ未満では、前記と同様に次工程
の時効処理において有効な強度増加を図るために必要な
歪を導入し得ないり このようにして熱間もしくは冷間によシ加工歪を導入し
た後の時効処理の温度条件は、■含有量に応じた最適範
囲が存在する。すなわち本発明者等が、CO,5% 、
 N O,18% 、 Cr 7゜2 % 、 Mn2
8.0%を含有しかつVを05係もしくは1.0多含有
する高Mn鋼スラブについて、仕上温度850℃、仕上
加工度15チにて熱間圧延し、種々の温度で50時間時
効処理を施し、4にでの02係耐力を調べたところ、時
効温度と耐力とはV含有量に応じて第1図に示すような
関係となることが見出された。このような結果から、時
効処理温度を[35o−tooxv(%))℃以上、(
650+100XV(チ))以下とした場合に100k
g/A71!程度以上の高い極低温耐力が得られ、その
範囲未満あるいはその範囲を越える場合のいずれでも充
分な極低温耐力が得られないことが明らかである。また
時効処理時間は、10〜100時間の範囲内とする必要
がある。すなわち本発明者等が上記と同じ成分の素材ス
ラブに対し上記と同じ仕上げ条件で熱間圧延し、650
℃において時間を変えて時効処理を飾し、その4Kにお
ける0、 2 %耐力と時効時間との関係を調べたとこ
ろ、第2図に示す結果が得られた。第2図から明らかな
ように、時効時間が10時間未満では時効硬化が充分で
はなく、一方100時間を越えればV炭化物が粗大化す
るため過時効となり、強度低下をもたらす。したがって
充分な極低温強度、特に4Kにおいて1oOk必鑓以上
の耐力を得るためには、時効時間を10〜100時間と
する必要がある。
If the hot finishing temperature exceeds 900°C, the processing strain will recover, and the aging treatment in the next process will not be able to significantly increase the strength, while if the hot finishing temperature is less than 600°C, shape control may become difficult. be. Further, the working degree in this hot finish rolling must be 10q or more, and if this value is not reached, it is not possible to introduce the necessary strain to effectively increase the strength during the aging treatment in the next step. On the other hand, in the latter case, after hot rolling, solution treatment is performed and then cold working is performed.
When aging treatment is performed thereafter, there is no need to set any particular restrictions on the hot rolling conditions, but when performing cold working after solution treatment, the degree of working must be 10% or more. In this case, if the degree of cold working is less than 10 inches, it may not be possible to introduce the necessary strain to effectively increase the strength in the aging treatment in the next process, or the strain that is required to increase the strength effectively in the aging treatment in the next process may not be able to be applied. There is an optimum range of temperature conditions for aging treatment after introducing processing strain depending on the content. That is, the present inventors, CO, 5%,
N O, 18%, Cr 7゜2%, Mn2
High Mn steel slabs containing 8.0% and 05% or 1.0% V were hot rolled at a finishing temperature of 850°C and a finishing degree of 15mm, and aged for 50 hours at various temperatures. 4, and it was found that the aging temperature and proof stress have a relationship as shown in FIG. 1 depending on the V content. From these results, the aging treatment temperature should be set at [35 o-tooxv (%)) °C or higher, (
650 + 100XV (chi)) or less, 100k
g/A71! It is clear that a high cryo-temperature yield strength is obtained above a certain level, and that sufficient cryo-temperature yield strength cannot be obtained either below or exceeding that range. Further, the aging treatment time needs to be within the range of 10 to 100 hours. That is, the present inventors hot-rolled a material slab with the same components as above under the same finishing conditions as above, and obtained 650
When the aging treatment was carried out at different temperatures at 4K and the relationship between the 0.2% proof stress and the aging time was investigated, the results shown in FIG. 2 were obtained. As is clear from FIG. 2, if the aging time is less than 10 hours, age hardening is not sufficient, while if it exceeds 100 hours, the V carbide becomes coarse, resulting in over-aging, resulting in a decrease in strength. Therefore, in order to obtain sufficient cryogenic strength, especially a yield strength of 1000 k or more at 4K, the aging time must be set to 10 to 100 hours.

以下にこの発明の実施例を、従来例、参考例とともに記
す。
Examples of the present invention will be described below along with conventional examples and reference examples.

第1表中に化学成分を示す本発明例、従来例、およびこ
の発明の限定条件かられずかに逸脱した条件の参考例に
ついて、通常の転炉で溶製した後、炉外真空精錬炉にお
いて#’#錬し、分塊、熱間圧延を行ない、また場合に
よっては熱延後浴体化処理して冷間圧延し、その後時効
処理を施して4.0 m厚の製品とした。得られた製品
の液体ヘリウム温度(4K)における極低温特性などの
特性を調べた。熱間圧延工程の仕上圧延以降の工程条件
、および特性試験結果を第1表中に併せて示す。
The present invention example, the conventional example, and the reference example with conditions slightly deviating from the limiting conditions of the present invention, whose chemical components are shown in Table 1, were melted in a normal converter and then in an extra-furnace vacuum refining furnace. #'# The product was wrought, bloomed, and hot rolled, and in some cases, after hot rolling, it was subjected to bath treatment and cold rolling, and then subjected to aging treatment to obtain a product with a thickness of 4.0 m. The properties of the obtained product, such as cryogenic properties at liquid helium temperature (4K), were investigated. The process conditions after finish rolling in the hot rolling process and the results of the characteristic tests are also shown in Table 1.

第1表から明らかなように、各従来例の極低温1針刃は
、Ti合金を除いて高々70〜80 kVfnfL@度
に過ぎない。Ti合金の極低温耐力は、本発明例の最低
値附近の値を有するが、伸びと靭性(シャルピー吸収エ
ネルギー)が極めて小さく、まだ加工性も劣る。これに
対し各本発明例はいずれも極低温耐力が著しく高く、最
低でも150 kgn以上で、200 kg/mrlに
達する場合もある。そして本発明例の場合、上述のよう
に極低温耐力が高いにもかかわらず、延性(伸び)及び
靭性(シャルピー吸収エネルギー)も極低温において比
較的良好であシ、また常温における機械加工性や溶接性
も、良好である。
As is clear from Table 1, the cryogenic single-needle blades of each conventional example, except for the Ti alloy, have a temperature of only 70 to 80 kVfnfL @ degrees. Although the cryogenic yield strength of the Ti alloy is close to the lowest value of the examples of the present invention, the elongation and toughness (Charpy absorbed energy) are extremely low, and the workability is still poor. On the other hand, all of the examples of the present invention have extremely high cryogenic strength, which is at least 150 kgn or more, and can reach 200 kg/mrl in some cases. In the case of the example of the present invention, although the cryogenic yield strength is high as mentioned above, the ductility (elongation) and toughness (Charpy absorbed energy) are also relatively good at cryogenic temperatures, and the machinability and machinability at room temperature are also good. Weldability is also good.

一方、この発明の条件範囲をわずかに満足していない参
考例においては、169の例がV無添加のために析出硬
化が生ぜず、極低温耐力が従来例なみの値にとどまって
いる。また1610の例はこの発明の限定条件を越えた
多量のVを添加したものでちり、この場合極低温耐力は
充分にあるが、延靭性、加工性、溶接性が不良である。
On the other hand, among the reference examples that do not slightly satisfy the condition range of the present invention, example 169 does not undergo precipitation hardening because no V is added, and the cryogenic yield strength remains at the same value as the conventional example. In addition, the example of 1610 contains a large amount of V added which exceeds the limiting conditions of this invention, and in this case, the cryogenic strength is sufficient, but the ductility, workability, and weldability are poor.

All〜13はいずれも熱間圧延の仕上工程条件がこの
発明の範囲を外れている例であり、これらはいずれも極
低温耐力がT1合金を除〈従来例よりは高いものの、本
発明例の如(150に1国上という著しく大きい値は得
られていない。また況14は時効処理条件がこの発明の
範囲を外れるものであるが、この場合も同様である。
All of All to No. 13 are examples in which the hot rolling finishing process conditions are outside the scope of the present invention, and all of these have cryogenic yield strength other than T1 alloy (although higher than the conventional example, the present invention example has However, a significantly large value of 1 in 150 countries has not been obtained. Also, in case 14, the aging treatment conditions are outside the scope of the present invention, but the same applies in this case.

以上の実施例からも明らかなように、この発明の方法に
よれば、高Mn鋼素材の成分を限定し、かつ適量のVを
添加し、加工歪の導入、残存のための圧延処理工程条件
を特定するとともに最終V炭化物の析出時効処理の条件
をV含有量に応じて特定することによって、液体ヘリウ
ム温度の如く極低温における耐力が従来のものと比較し
て著しく高く、シかも極低温における延靭性や常温にお
ける加工性、溶接性が損なわれず、かつ非磁性も確保さ
れた高Mn鋼を安価に製造することが可能となった。
As is clear from the above examples, according to the method of the present invention, the ingredients of the high Mn steel material are limited, an appropriate amount of V is added, and the rolling treatment process conditions are set to introduce and maintain working strain. By specifying the precipitation aging treatment conditions of the final V carbide according to the V content, the yield strength at extremely low temperatures such as liquid helium temperature is significantly higher than that of conventional ones, and it is possible to It has become possible to inexpensively produce high-Mn steel that does not impair ductility, workability at room temperature, and weldability, and also has nonmagnetic properties.

なおこの発明の方法による非磁性鋼は、超電導磁石支持
構造材などの超電導利用技術構造材のほか、液化水素利
用技術、液化天然ガス技術などの構造材の如く、低温強
度が要求される構造材には全て適用可能である。
The non-magnetic steel produced by the method of this invention can be used for structural materials that require low-temperature strength, such as structural materials using superconductivity technology such as superconducting magnet support structures, as well as structural materials for liquefied hydrogen technology and liquefied natural gas technology. All are applicable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は4Kにおける0、2%耐力に及ぼす析出時効処
理温度の影響を示す相関図、第2図は同じ(4Kにおけ
る02%耐力に及ぼす析出時効処114時間の影響を示
す相関図である。 出願人 川崎製鉄株式会社 代理人 弁理士豊田代入 (ほか1名)
Figure 1 is a correlation diagram showing the influence of precipitation aging treatment temperature on 0 and 2% proof stress at 4K, and Figure 2 is the same (correlation diagram showing the influence of precipitation aging treatment 114 hours on 02% yield strength at 4K). .Applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Toyoda (and 1 other person)

Claims (1)

【特許請求の範囲】 CおよびNを、C010チ以上、N O,05チ以上で
かつC(チ)+2N(係)が10チ以下となる範囲内で
含み、かつMn 26〜30%、Cr 10 %以下を
含有し、さらに0.1チ以上でしかも上(C(%)十0
.5 N (%)+o、o5cr(%))以上、5 (
C(%)十0.5N(%)+0.05Cr(%))以−
Fの量のVを含有する高Mn鋼を素材とし、その鋼索材
を仕上温度600〜900℃かつ仕上加工度10チ以上
で熱間加工した後時効処理するか、もしくは前記鋼索材
を熱間加工後溶体化処理して10%以上の冷間加工を施
した後時効処理するにあたり、その時効処理の温度(T
)および時間(1)を、(650−toov(%))0
C≦T≦(650+100V(%月℃10hr≦t≦1
00 hr で規定する範囲内とする極低温用高Mn非磁性鋼の製造
方法。
[Claims] Contains C and N within the range of C010 or more, N O,05 or more, and C (chi) + 2N (correspondence) is 10 or less, and Mn 26 to 30%, Cr Contains 10% or less, and 0.1% or more and above (C (%) 100
.. 5 N (%) + o, o5cr (%)) or more, 5 (
C (%) 100.5N (%) + 0.05Cr (%)) or more
A high Mn steel containing V in an amount of F is used as a raw material, and the steel cable material is hot worked at a finishing temperature of 600 to 900°C and a finishing degree of 10 inches or more, and then subjected to aging treatment, or the steel cable material is hot worked. When performing aging treatment after solution treatment after processing and cold working of 10% or more, the aging treatment temperature (T
) and time (1), (650-toov(%))0
C≦T≦(650+100V(%Month℃10hr≦t≦1
A method for manufacturing high Mn nonmagnetic steel for cryogenic use within the range specified by 00 hr.
JP58170180A 1983-09-14 1983-09-14 Production of high-mn non-magnetic steel for extra-low temperature service Granted JPS6063317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58170180A JPS6063317A (en) 1983-09-14 1983-09-14 Production of high-mn non-magnetic steel for extra-low temperature service

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58170180A JPS6063317A (en) 1983-09-14 1983-09-14 Production of high-mn non-magnetic steel for extra-low temperature service

Publications (2)

Publication Number Publication Date
JPS6063317A true JPS6063317A (en) 1985-04-11
JPH0518887B2 JPH0518887B2 (en) 1993-03-15

Family

ID=15900166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58170180A Granted JPS6063317A (en) 1983-09-14 1983-09-14 Production of high-mn non-magnetic steel for extra-low temperature service

Country Status (1)

Country Link
JP (1) JPS6063317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951946A (en) * 2019-12-26 2020-04-03 安徽工业大学 Heat treatment process of low-density steel and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110951946A (en) * 2019-12-26 2020-04-03 安徽工业大学 Heat treatment process of low-density steel and preparation method thereof
CN110951946B (en) * 2019-12-26 2021-04-20 安徽工业大学 Heat treatment process of low-density steel and preparation method thereof

Also Published As

Publication number Publication date
JPH0518887B2 (en) 1993-03-15

Similar Documents

Publication Publication Date Title
Miller Ultrafine-grained microstructures and mechanical properties of alloy steels
CN110983194B (en) Super-toughness steel material and manufacturing method thereof
EP4257717A1 (en) High-entropy austenitic stainless steel, and preparation method therefor
CN112501496B (en) On-line quenching type double-phase low-yield-ratio steel plate and production method thereof
JPS61270356A (en) Austenitic stainless steels plate having high strength and high toughness at very low temperature
US3673007A (en) Method for manufacturing a high toughness steel without subjecting it to heat treatment
JPS6013022A (en) Production of nonmagnetic steel plate
CN108950400B (en) Low-temperature marine steel and preparation method thereof
JPS62270721A (en) Production of high-mn austenitic stainless steel for cryogenic service
JPS5942068B2 (en) High manganese non-magnetic steel for cryogenic temperatures
JPH0320408A (en) Production of high tensile steel stock excellent in toughness at low temperature
CN115354227A (en) Ferrite martensitic steel for reactor fuel cladding material and heat treatment process thereof
JPS6063317A (en) Production of high-mn non-magnetic steel for extra-low temperature service
CN110129683B (en) Manufacturing method of high-strength bridge cable steel
JPS6156235A (en) Manufacture of high toughness nontemper steel
CN110257699B (en) Carbide-free bainite bridge cable steel and manufacturing method thereof
CN109576593A (en) A kind of hot rolling magnetic yoke steel and its manufacturing method
CN107779783B (en) Low-carbon low-alloy high-strength plastic steel and preparation method thereof
JPH0645827B2 (en) Method for manufacturing high strength steel sheet with excellent workability
CN117026097B (en) Maraging steel and preparation method thereof
JPH0331423A (en) Production of high tensile electric welded steel tube having excellent low temp. toughness
JPS61170545A (en) High manganese steel for very low temperature use having superior rust resistance
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPH02205631A (en) Production of high-mn nonmagnetic steel excellent in very low temperature characteristic after formation and heat treatment of nb3sn
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet