JPS6062316A - Automatic water level control method and apparatus - Google Patents

Automatic water level control method and apparatus

Info

Publication number
JPS6062316A
JPS6062316A JP59172313A JP17231384A JPS6062316A JP S6062316 A JPS6062316 A JP S6062316A JP 59172313 A JP59172313 A JP 59172313A JP 17231384 A JP17231384 A JP 17231384A JP S6062316 A JPS6062316 A JP S6062316A
Authority
JP
Japan
Prior art keywords
water
water level
gate
float
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59172313A
Other languages
Japanese (ja)
Other versions
JPH0437883B2 (en
Inventor
沈 相▲チヤン▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS6062316A publication Critical patent/JPS6062316A/en
Publication of JPH0437883B2 publication Critical patent/JPH0437883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Barrages (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、貯水池又は河川のデにの水位を自動的に調節
できるようにした自動水位調節方法およびその装置、更
に詳しくは、貯水池において余水吐けの高さを高くする
ことなく、設計計画洪水量を設計計画通りの溢流を行い
つつ、設計計画溢流水深を最大限に活用して、余水吐け
の高さに対応した既設従前満水位貯水量より多い貯水量
、即ち、設計計画溢流水深に対して最大限の貯水可能量
を貯水することができる自動水位調節方法およびその装
置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an automatic water level adjustment method and device that can automatically adjust the water level in a reservoir or a river, and more particularly, to Existing conventional construction that corresponds to the height of the spillway by making maximum use of the design plan overflow water depth while overflowing the design plan flood volume as per the design plan without increasing the height of the spillway. The present invention relates to an automatic water level adjustment method and device capable of storing a water storage amount greater than the full water level storage amount, that is, the maximum possible storage amount for a design plan overflow water depth.

[従来の技術] 従来、貯水池は一定水位以上の水は排出できるように余
水吐けを設けて溢水させており、このような余水吐は高
さ以内の貯水の限定は、自然水資源を十分に利用せずに
惜しくもそのまま捨てているという結果をもたらしてい
る。しかし、現在の貯水池施設において、設計計画溢流
水深の溢流に瑳跣をもたらさない条件であるのならば現
在の貯水量より多くの水を貯水することができるのであ
る。
[Conventional technology] Conventionally, reservoirs have been flooded with spillways so that water above a certain water level can be discharged.Limiting the storage of water within the height of such spillways has a negative impact on natural water resources. Unfortunately, this results in people simply throwing it away without making full use of it. However, in the current reservoir facility, it is possible to store more water than the current storage capacity if the conditions are such that the overflow does not cause damage to the design plan overflow depth.

従来、貯水池の満水位を高くする調節方法としてはつぎ
のような方法が実施されてきた。即ち、余水吐けの高さ
を高くするために、(イ)1:吠や板材を使って高くす
る方法、(ロ)ゴムダム(DAM)を設ける方法、(ハ
)テンターゲイトを設ける方法、(ニ)サイホン(Sy
phon)を設ける方法等がある。
Conventionally, the following methods have been used to raise the water level of a reservoir. In other words, in order to increase the height of the spillway, (a) 1. Method of raising the height using barbs and planks, (b) Method of installing a rubber dam (DAM), (c) Method of installing a tenter gate. d) Siphon (Sy)
phon).

[発明が解決しよりとする問題点] しかしながら、前記(イ)の場合は洪水の時に士吠が流
失されるので、降雨の際ごとにあらためて上吹を積みな
おさなければならず、従って経済的損失、人力の消耗お
よび手間がかかる等不都合がある。(ロ)の場合、ゴム
ダムは洪水の時、ゴムダム自体が倒伏されて洪水量が設
計計画洪水量より以上に増加されることにより下流放水
路の被害と河川の被害が甚しくなる。(ハ)の場合は洪
水時に人為的に水門開閉をしなければならず、水門を開
けると洪水がいっぺんに越流するために放水路と河川に
莫大な被害を与えるので、大型ダムではダム上流の流量
観測所でダムに随時流量報告をし、それに従って水門を
作動せしめるといった不都合があるばかりでなく、大型
ダムにおいて冬季満水位と夏季満水位を設定のうえ洪水
のある以前にあらかじめ調節するので水門の開閉使用頻
度が少なく、一方小規模のダムではダム管理人を置くこ
とができないので、危急の時には水門の操作が困難であ
る。(ニ)の場合は、余水吐けにサイホンを設けるもの
であって、サイホンが一定水位以上に上昇すると、一時
に作動して多くの洪水量が排出されるので、下流の放水
路と河川に与える被害が大きく、また作動が中正される
ときには当初の満水位よりも水位が落ちる欠陥と施工り
の難点、工事費の過多等の欠点がある。それかといって
余水吐は自体をより高くすると満水位は高くなるけれど
もそれに伴なって設計計画溢流水深の上昇につれて堤防
の増高築造、水没地域の拡大等の問題が生ずる。
[Problems to be solved by the invention] However, in the case of (a) above, the shibo is washed away during floods, so it is necessary to reload the top of the pile every time it rains, which is not economical. There are disadvantages such as loss, consumption of manpower, and time consuming. In the case of (b), when a rubber dam floods, the rubber dam itself collapses and the flood volume increases beyond the designed flood volume, resulting in severe damage to the downstream spillway and river. In case (c), the flood gates must be opened and closed manually during floods, and if the flood gates are opened, the floodwaters will overflow all at once, causing enormous damage to the spillway and river. Not only is it inconvenient to have to report the flow rate to the dam at any time at the flow gauging station and operate the flood gates accordingly, but also because large dams have to set the winter high water level and summer high water level and adjust them in advance before a flood occurs. The frequency of opening and closing of the sluice gates is low, and on the other hand, small-scale dams cannot have a dam keeper, making it difficult to operate the sluice gates in an emergency. In the case of (d), a siphon is installed at the spillway, and when the water level rises above a certain level, the siphon is activated all at once, discharging a large amount of flood water, so the downstream spillway and river are flooded. The damage caused is great, and when the operation is corrected, the water level drops below the initial full water level, and there are drawbacks such as difficulties in construction and excessive construction costs. On the other hand, if the spillway itself is made higher, the full water level will be higher, but as the overflow water depth in the design plan increases, problems such as the construction of higher embankments and the expansion of submerged areas will arise.

つぎに河川のi人の場合においては、河川を横ν」る固
定コンクリート7尺を築造して堰水位を高くし、水路を
通じた取水を利用するのであるが、j人゛のためにその
地点において洪水量が高くなり、堤防の崩壊危険と河床
の損傷流失等の問題点がある。
Next, in the case of a person i living on a river, a fixed concrete 7-foot wall is constructed across the river to raise the water level of the weir and take water through the canal. Flood volumes are increasing in the area, leading to problems such as the risk of bank collapse and damage to riverbeds.

従って、本発明は、前述のような貯水池においての貯水
量の増大確保と河川1Kにおいての堰水位調節の問題点
を解決しようとするもので、既設貯水池余水吐けの施設
と堤防を増高築造することなく、また水没地域の拡大す
る要もなく、さらに設計計画溢流水量の溢流水量を設計
計画のとおり行なえると同時に、既設余水吐けに対応し
た従前満水位貯水量よりも多量の水を貯水できるように
しながらも、計画貯水位゛(変更満水位)を自動的に調
節、確保できるようにした自動水位調節方法およびその
装置を提供することを目的とするものである。
Therefore, the present invention aims to solve the above-mentioned problems of increasing the amount of water stored in the reservoir and regulating the water level of the weir in the river 1K. There is no need to expand the submerged area, and the amount of overflow water can be reduced according to the design plan, and at the same time, the amount of water stored at the previous full water level corresponding to the existing spillway can be increased. The object of the present invention is to provide an automatic water level adjustment method and device that can automatically adjust and secure the planned water storage level (changed full water level) while storing water.

[問題点を解決するための手段] 本発明によれば、貯水池の余水吐は上に水門を設置して
余水吐けより高い変更満水位に水を貯水し、該変更満水
位にフロートを浮遊せしめ、該フロートの昇降に対応し
て前記水門を開閉するようになし、前記変更満水位から
設計計画溢流水位までの水位の変動に伴う前記フロート
の昇降に対する前記水門の作動−合を、前記変更満水位
から設計計画溢流水位までの水深に相当する値対余水吐
けから設計計画溢流水位まで、の水深と該設計計画溢流
水位から異常洪水位までの水深との和に相当する値に設
定した自動水位調節方法が提供される。また、本発明に
よれば、河床に水門を設置するとともに、河川の堰水位
にフロートを浮遊せしめ、該フロートの昇降に対応して
前記水門を開閉するようになし、前記堰水位から設計計
画洪水位までの水位の変動に伴う前記フロ゛−トの昇降
に対する前記水門の作動割合を堰水位から設計計画洪水
位までの水深に相当する値対河床から設計計画洪水位ま
での水深に相当する値に設定した自動水位調節方法が提
供される。更に、本発明によれば、余水吐は又は河床上
に上下動1可能に設置した水門と、該水門の設置に伴う
変更満水位又は堰水位に浮遊せしめたフロートと、該フ
ロートと水門とを連動連結しフロートの昇降に対応して
前記水門を開閉作動する駆動手段とからなる自動水位調
節装置が提供される。
[Means for Solving the Problems] According to the present invention, a water gate is installed above the spillway of a reservoir to store water at a modified full water level higher than the spillway, and a float is installed at the modified full water level. The water gate is opened and closed in response to the rise and fall of the float, and the operation of the water gate is controlled in response to the rise and fall of the float as the water level changes from the changed full water level to the design plan overflow water level. The value corresponding to the water depth from the above changed full water level to the design plan overflow water level vs. the sum of the water depth from the spillway to the design plan overflow water level and the water depth from the design plan overflow water level to the abnormal flood level. An automatic water level adjustment method is provided that is set to a value that Further, according to the present invention, a water gate is installed on a river bed, a float is floated at the weir water level of the river, and the water gate is opened and closed in response to the rise and fall of the float, so that the designed floodwaters are flooded from the weir water level. The operating ratio of the water gate with respect to the rise and fall of the float as the water level fluctuates from the weir water level to the design flood level versus the value equivalent to the water depth from the river bed to the design flood level. An automatic water level adjustment method is provided. Further, according to the present invention, the spillway includes a water gate installed on the river bed so as to be able to move up and down, a float suspended at a changed full water level or weir water level due to the installation of the water gate, and the float and the water gate. There is provided an automatic water level adjustment device comprising a driving means which is interlocked and connected to each other and opens and closes the water gate in response to the raising and lowering of the float.

[作用] 前記自動水位調節方法およびその装置が提供されること
により、貯水池又は河川に洪水が流入し、その水位が変
更満水位又は堰水位より高くなると、フロートが上昇し
、該フロートの上昇に対応して駆動装置が作動し、水門
が引き七げられて開き、流入水量を自動的に排出して貯
水池又は河川の水位を変更満水位又は堰水位に維持する
[Function] By providing the automatic water level adjustment method and its device, when flood water flows into a reservoir or river and the water level becomes higher than the changed full water level or the weir water level, the float rises, and the float rises. In response, the drive is actuated to pull the sluice gate open and automatically discharge the incoming water volume to maintain the water level in the reservoir or river at a modified full or weir level.

〔実施例〕〔Example〕

次に、本発明による自動水位調節方法およびその装置を
図示の実施例に基づいて説明する。
Next, the automatic water level adjustment method and device according to the present invention will be explained based on illustrated embodiments.

第1図は貯水池に適用する本発明方法の原理を示すもの
である。同図において、Pは貯水池、Qは余水吐け、R
は該余水吐けQと同一高さに設置された水流案内台、S
は側溝である。このような貯水池の満水位はDz (以
下従前の満水位という)である。この従前の満水位DI
より更に貯水量を増大するために、前記水流案内台R上
に水門lが設置され、これにより変更満水位をDzとす
ることができる。この変更満水位D2以上貯水池P嚢と
水が流入した場合、その水量だけ貯水池Pから排出し、
貯水池Pの水位を変更満水位D2に自動的に調節すべく
前記水門lを開閉するために、前記変更満水位D2から
設計計画溢流水位D3間を貯水池Pの水位に応じて浮動
するフロート2が設置されるとともに、該フロート2の
−L丁動に対応して前記水門1を作動開閉する後述する
駆動手段3バ貢作署A鉛スー聞叡 帥−に袖pσ砒士礒
(佐1直、その水位が変更満水位置D2より高くなり、
フロート2が−E昇すると、前記駆°動手段3はその水
深H9に対応して水門lを引き−Eげて開き、流入水量
に対応する水量を排出するようになっている、このとき
、排出量が流入量より多量であれば、水位が次第に下が
り、これに伴ってフロート2が降下すると、駆動手段3
が水門lを下げて閉じるようになっている。また、水門
lが閉じられると、再び水位が高くなりフロート2が上
昇して前記のように再び水門lが開かれるといったフロ
ート2の位置に対応する水門の開閉動作が繰返し行われ
、貯水池Pの水位を変更満水位D2に自動的に庸持すべ
く調節される。
FIG. 1 shows the principle of the method of the invention applied to a reservoir. In the figure, P is the reservoir, Q is the spillway, and R
is a water flow guide stand installed at the same height as the spillway Q, S
is a gutter. The full water level of such a reservoir is Dz (hereinafter referred to as the previous full water level). This previous high water level DI
In order to further increase the amount of water stored, a water gate l is installed on the water flow guide stand R, thereby making it possible to set the changed full water level to Dz. If water flows into the reservoir P bag above this changed full water level D2, that amount of water will be discharged from the reservoir P,
A float 2 floats between the changed full water level D2 and the design plan overflow water level D3 according to the water level of the reservoir P in order to open and close the water gate l to automatically adjust the water level of the reservoir P to the changed full water level D2. At the same time, a drive means 3, which will be described later, opens and closes the water gate 1 in response to the -L movement of the float 2. , the water level becomes higher than the changed full water position D2,
When the float 2 rises -E, the driving means 3 pulls the water gate 1 -E to open in accordance with the water depth H9, and discharges an amount of water corresponding to the amount of inflow water.At this time, If the discharge amount is greater than the inflow amount, the water level gradually decreases and the float 2 descends accordingly, causing the drive means 3
The sluice gate is lowered and closed. Furthermore, when the water gate l is closed, the water level rises again, the float 2 rises, and the water gate l is opened again as described above.The opening and closing operations of the water gate corresponding to the position of the float 2 are repeated, and the The water level is automatically adjusted to maintain the full water level D2.

ここで、フロート2の昇降と水門lの作動関係について
説明する。
Here, the relationship between the lifting and lowering of the float 2 and the operation of the water gate 1 will be explained.

フロート2は変更満水位置D2から設計aI画水位D3
までの間、即ち、水位調節用水深H1内を浮動するもの
であり、この水位調節用水深H1は大きいほど調節精度
が高くなり11(ましいのであるが、設計計画溢流水位
D3は設計上決められておリ、変更満水位Dlから設計
計画溢流水位D3までの間、即ち、設計計画溢流水深H
2が一定であるため、水位調節用水深H,を大きくする
と、変更満水位D2が低くなるため、水門lを設置して
貯水量を増加することができる水深(従前の満水位DI
から変更満水位D2までの水深)Hsが相対的に小さく
なってしまう。従って、変更満水位D2の高さを適切に
調整すれば、それに伴ってフロート2の浮動距離で水位
調節用水深H1も調整される。即ち、次のような等式が
成立する。
Float 2 changes from full water position D2 to design aI water level D3
In other words, it floats within the water level adjustment water depth H1, and the greater the water level adjustment water depth H1, the higher the adjustment accuracy becomes. The period from the changed full water level Dl to the design plan overflow water level D3, that is, the design plan overflow water depth H
2 is constant, increasing the water level adjustment water depth H will lower the changed full water level D2, so the water depth at which the water storage can be increased by installing the water gate l (previous full water level DI
The water depth (water depth from to the modified full water level D2) Hs becomes relatively small. Therefore, if the height of the modified full water level D2 is appropriately adjusted, the water level adjustment water depth H1 is also adjusted by the floating distance of the float 2 accordingly. That is, the following equation holds true.

変更満水位D2の水深H3+水位調節用水深)11=設
計計画溢流水深H2 一方、水門lは貯水池Pに流入する洪水の流入φが増加
し、フロート2が設計計画溢流水位D3に達したとき、
設計計画溢流水深H2より高く引き上げられる必要があ
る。即ち、水門lは設計計画水深H2と設計計画溢流水
位D3から異常法水位D4までの水深(異常洪水水深)
H4との和である異常洪水水深H5に相当する量以上引
き上げる必要がある。例えば、設計計画溢流水深H2を
1mとしたとき、フロート2は設計計画溢流水位D3ま
で1m上昇するが、水門lの開閉高さは設計計画溢流水
位D3より高くなくてはならず、設計計画溢流水位DH
(1m)の20%増をプラスした異常法水位D4までの
水位である1、2m以上でなくてはならない。なぜなら
ば、もし、水門lの開閉高さが設計計画溢流水位D5以
下であると、水位が設計計画溢流水位D5以上に上昇し
、堤防の破壊の危険と水没地域範囲の拡大等の問題が惹
起される。
Water depth H3 of the changed full water level D2 + Water depth for water level adjustment) 11 = Design plan overflow depth H2 On the other hand, the inflow φ of flood water flowing into the reservoir P has increased in the water gate 1, and the float 2 has reached the design plan overflow water level D3. When,
It is necessary to raise the water higher than the design plan overflow depth H2. In other words, the water gate l is the water depth between the design plan water depth H2 and the design plan overflow water level D3 to the abnormal legal water level D4 (abnormal flood water depth).
It is necessary to raise the water by an amount equivalent to the abnormal flood depth H5, which is the sum of H4 and H4. For example, when the design plan overflow water depth H2 is 1 m, the float 2 will rise by 1 m to the design plan overflow water level D3, but the opening/closing height of the water gate l must be higher than the design plan overflow water level D3. Design plan overflow water level DH
The water level must be 1.2 m or higher, which is the abnormal legal water level D4 plus 20% increase of (1 m). This is because if the opening/closing height of the flood gate I is below the design plan overflow water level D5, the water level will rise above the design plan overflow water level D5, causing problems such as the risk of bank destruction and expansion of the submerged area. is caused.

そこで、水門1を設置することにより、貯水量を増すこ
とができる適切な水深H5をどの程度に定めるか、即ち
、水位調節水深H1をどの位に定めるかによって水門l
の開閉割合が定まるのである。
Therefore, by installing the water gate 1, it is necessary to determine the appropriate water depth H5 that can increase the amount of water stored, that is, to what extent the water level adjustment water depth H1 is determined.
The opening/closing ratio is determined.

即ち、フロート2の上下浮動に対する水門lの開閉割合
を、変更満水位D2から設計計画溢流水位D3までの水
深H1(水位調節用水深)対余水吐けQから設計計画溢
流水位D3までの水深H2(設計計画溢流水深)と該設
計計画溢流水位D5から異常法水位D4までの水深H4
との和に相当する値にした。このようなフロート2の昇
降に対して水門lを一定割合で作動するように前記駆動
手段3を構成することにより、変更満水位D2以上の流
入水量に対して同量の水量を排出することができるとと
もに、貯水池Pの水位が設計計画溢流水位D3になると
きには、水門1の位置は設計計画溢流水位D3より高い
異常法水位D4まで開かれるため、設計計画洪水量は水
門lを設置する以前と同じ状態で排出されるので、洪水
量の排出を円滑に行うことができる。
In other words, the opening/closing ratio of the water gate l with respect to the vertical floating of the float 2 is changed from the water depth H1 (water level adjustment water depth) from the full water level D2 to the design plan overflow water level D3 versus the water depth H1 (water level adjustment water depth) from the spillway Q to the design plan overflow water level D3. Water depth H2 (design plan overflow water depth) and water depth H4 from the design plan overflow water level D5 to the abnormal legal water level D4
The value corresponding to the sum of By configuring the driving means 3 to operate the water gate 1 at a constant rate in response to the rise and fall of the float 2, it is possible to discharge the same amount of water for the amount of inflow water that is equal to or higher than the modified full water level D2. At the same time, when the water level of reservoir P reaches the design plan overflow water level D3, the position of flood gate 1 will be opened to the abnormal legal water level D4, which is higher than the design plan overflow water level D3. Since the water is discharged in the same condition as before, the flood volume can be discharged smoothly.

ここで、水位調節用水深H,と水門lの開閉側について
例示する。
Here, the water depth H for water level adjustment and the opening/closing side of the water gate I will be illustrated.

設計計画溢流水深H2を1m、異常法水位D4を設計計
画溢流水位D3の20%増とし、異常洪水水深H5を1
.2mとすると次のとうりである■水位調節用水深H,
を10cm(水門lを設置することによって貯水量が増
加できる水深H31+90cm)にすると、水門lのl
I+閏窩さl±★侍調節用水深H1の12倍以上になる
。即ち、水位調節用水深H1対水門lの開閉比は1:1
2以りになる。
The design plan overflow water depth H2 is 1 m, the abnormal legal water level D4 is 20% higher than the design plan overflow water level D3, and the abnormal flood water depth H5 is 1 m.
.. If it is 2m, the following is the water depth H for water level adjustment.
is set to 10 cm (water depth H31 + 90 cm, where water storage capacity can be increased by installing water gate l), then l of water gate l
I + incisor depth l±★ will be more than 12 times the samurai adjustment water depth H1. In other words, the opening/closing ratio of water level adjustment water depth H1 to water gate l is 1:1.
It becomes more than 2.

■水位調節用水深H1を20cm(H5は80cm)に
すると、水門lの開閉高さは水位調節用水深H,の6倍
以上になる。即ち、水位調節用水深H,対水水門の開閉
比はl:6以−ヒになる。
■If the water depth H1 for water level adjustment is 20 cm (H5 is 80 cm), the opening/closing height of the water gate l will be more than 6 times the water depth H for water level adjustment. That is, the water depth H for water level adjustment and the opening/closing ratio of the water gate are 1:6 or more.

■水位調節用水深H1を30cm(Hgは70cm)に
すると、水門lの開閉高さは水位調節用水深H1の4倍
以上になる。即ち、水位調節用水深H1対水閂lの開閉
比はl:4以上になる。
■If the water depth H1 for water level adjustment is 30 cm (Hg is 70 cm), the opening/closing height of the water gate I will be more than four times the water depth H1 for water level adjustment. That is, the opening/closing ratio of the water level adjustment water depth H1 to the water bolt l is 1:4 or more.

■水位調節用水深H,を50cm(H5は50cm)に
すると、水門lの開閉高さは水位調節用水深H1の約2
.4倍以上になる。即ち、水位調節用水深H1対水門l
の開閉比はl:2.4以−にになる。
■If the water depth H for water level adjustment is set to 50cm (H5 is 50cm), the opening/closing height of the water gate L will be approximately 2 times the water depth H1 for water level adjustment.
.. It will be more than 4 times more. That is, water depth H1 for water level adjustment vs. water gate l
The opening/closing ratio is l:2.4 or more.

ここで、水位調節用水深H1はあまり少なくすると貯水
量は多く確保されるが、水面変動(流1’rによる水位
変動でなく、波等による水面変動)の微動でも水門lの
昇降動作が大きくおこり、よって貯水量が流失されるお
それがあり、逆にあまり多くすると水門lの昇降動作は
大きくないが、相対的に貯水量の確保が少なくなるので
、最小限の調節用水深H,は、設計計画溢流水深H2の
30%程度が好適である。
Here, if the water level adjustment water depth H1 is too small, a large amount of water can be secured, but even slight fluctuations in water level (not water level fluctuations due to flow 1'r, but water surface fluctuations due to waves, etc.), the vertical movement of water gate l becomes large. On the other hand, if it is increased too much, the vertical movement of the water gate l will not be large, but the amount of water stored will be relatively small, so the minimum adjustment water depth H, is: Approximately 30% of the design plan overflow water depth H2 is suitable.

従って、設計計画溢流水深H2の高さがl−mであって
水位調節用水深H1が30cmのとき、水門1は駆動手
段3によって4倍の1.2m以上に開かれる。即ち、水
門lは余水吐けQの頂上から1.2mの位置にあるので
、当初の設計計画溢流水深H2を保持しながら洪水量は
排出されるのである。
Therefore, when the height of the designed overflow water depth H2 is 1-m and the water level adjustment water depth H1 is 30 cm, the water gate 1 is opened by the driving means 3 to a height of 1.2 m or more, which is four times the height. That is, since the sluice gate I is located 1.2 m from the top of the spillway Q, the flood water is discharged while maintaining the original design plan overflow depth H2.

このように、水位の昇降につれて水門lの開閉割合を、
変更満水位D2から設計計画溢流水位D3までの水深H
1(水位調節用水深)対余水吐けQから設計計画溢流水
位D3までの水深H2(設計計画溢流水深)と該設計計
画溢流水位D3から異常洪水水位D4までの水深H4と
の和に相当する値である異常洪水水深H5としたので、
変更満水位D2を超える流入水量に対して、その水位に
従って水門lが自動的に開閉し流入水量と同量の水量を
排出することができ、貯水池Pの水を変更満水位D2に
維持することができる。
In this way, as the water level rises and falls, the opening and closing ratio of the water gate l is
Water depth H from the modified full water level D2 to the design plan overflow water level D3
1 (Water depth for water level adjustment) vs. sum of water depth H2 (design plan overflow water depth) from spillway Q to design plan overflow water level D3 and water depth H4 from the design plan overflow water level D3 to abnormal flood water level D4 We set the abnormal flood water depth H5 to be the value corresponding to
When the amount of inflow water exceeds the changed full water level D2, the water gate 1 is automatically opened and closed according to the water level, and the same amount of water as the amount of inflow water can be discharged, and the water in the reservoir P is maintained at the changed full water level D2. I can do it.

次に、河川Tに適用する本発明方法の原理を第2図に基
づいて説明する。
Next, the principle of the method of the present invention applied to river T will be explained based on FIG. 2.

河床Uに水門lを設置するとともに、堰水位D6にフロ
ート2を浮遊せしめ、該フロート2の上下動に従い、前
記駆動手段3によって水門lを開閉し、堰水位D6を超
える流入水量に対して同量の水量を排出し、河川Tの水
位を常に堰水位D6に維持するようにしたものである。
A water gate l is installed on the riverbed U, and a float 2 is suspended at the weir water level D6, and according to the vertical movement of the float 2, the water gate l is opened and closed by the driving means 3, and the water gate l is opened and closed at the same rate for the amount of inflow water exceeding the weir water level D6. The water level of the river T is always maintained at the weir water level D6 by discharging the same amount of water.

ここでフロート2の昇降に対する水門lの作動について
説明する。
Here, the operation of the water gate 1 in response to the raising and lowering of the float 2 will be explained.

フロート2は堰水位D6から設計計画洪水量D7までの
間(水位調節用水深H6)を−L下に浮動する。
The float 2 floats below -L between the weir water level D6 and the designed flood amount D7 (water level adjustment water depth H6).

一方、水門lは河川Tに流入する洪水の流入I11が増
加し、フロート2が設計計画洪水量D7に達したとき、
設計計画洪水水深H7に相当する醗引き上げられるよう
に前記作動手段3を構成する。
On the other hand, when the inflow I11 of flood water flowing into the river T increases and the flood gate 1 reaches the design plan flood volume D7,
The operating means 3 is configured to be raised to a height corresponding to the designed flood water depth H7.

即ち、フロート2の昇降に対する水門lの開閉割合は、
堰水位D6”から設計計画洪水量D7までの水深H6(
水位調節用水深)対河床Uから設計計画洪水量D7まで
の水深H7(設計計画洪水水深)に設定され、この作動
割合になるように前記駆動手段3は構成される。
That is, the opening/closing ratio of the water gate l with respect to the rise and fall of the float 2 is:
Water depth H6 (from weir water level D6” to design plan flood volume D7)
The water depth H7 (design flood water depth) is set from the river bed U (water depth for water level adjustment) to the design flood volume D7, and the driving means 3 is configured to have this operating ratio.

従って、河川Tに洪水が流入し、その水位が堰水位D6
を超えると、フロー)2が上昇し、前記駆動手段3を介
してフロート2の上昇に対する前記割合で水門lが引き
上げられて開き、流入水量相当する水量を排出する。
Therefore, flood water flows into river T, and its water level becomes weir water level D6.
When the flow exceeds 2, the flow 2 rises, and the water gate 1 is pulled up and opened at the above-mentioned ratio to the rise of the float 2 via the drive means 3, and an amount of water corresponding to the amount of inflow water is discharged.

そして、排出量が流入量よりも多過ぎると水位が次第に
降下して水門lは前記駆動手段によって降下せしめられ
て閉じられる。水門lが降下し閉じられると水位が上昇
して再び水門lが前記駆動手段により自動的に持上げら
れ開かれるといった昇降運動の反復によって堰水位D6
が自動的に調節されるものである。
When the amount of discharge is greater than the amount of inflow, the water level gradually falls and the water gate I is lowered and closed by the driving means. When the water gate 1 is lowered and closed, the water level rises, and the water gate 1 is automatically lifted and opened again by the driving means. By repeating the raising and lowering movement, the weir water level D6
is automatically adjusted.

この際、流入水量が排出水量より次第に多くなると水は
継続して排出されながらも堰水位が継続して上昇するが
、設計計画洪水量D7になるときの水門1の位置は、設
計計画洪水量D7より高く開かれて設計計画洪水量は水
門lを設置しないと同様の状態で排出されるので、洪水
量排除が円滑になされるのである。ここにおいて、水門
の開閉高さは、河川においては堰水位D6が固定されて
いる(従って、水位調節用水深H6が固定される)ので
、水位調節用水深H6対設計計画洪水深H7の割合は固
定されるため、当該河川の実情に適した値に設定すれば
よい。即ち、例えば、取水水深H日を2mとし、水位調
節用水深H6を5mとしたときは、設計計画洪水水深H
7は7mになる、即ち、前記フロート2と水門1との作
動割合は1:1.4であればよい。この作動割合を前記
貯水池の場合のようにl:4またはそれ以りにすると、
設計計画洪水の際水門lは20m以1−引き揚げられる
ことになり、不必要に水門を引きしげるという矛盾が生
ずるとともに、水門lを案内支持するガイドレールも2
0m以上のものを設置しなければならないという不都合
が生ずる。
At this time, when the amount of inflow water gradually exceeds the amount of discharged water, the water level continues to rise even though water continues to be discharged, but the position of flood gate 1 when the design plan flood amount reaches D7 is the same as the design plan flood amount. By opening higher than D7, the designed flood volume will be discharged in the same manner as if the sluice l was not installed, so the flood volume can be removed smoothly. Here, as for the opening/closing height of the flood gate, the weir water level D6 is fixed in the river (therefore, the water level adjustment water depth H6 is fixed), so the ratio of the water level adjustment water depth H6 to the design flood depth H7 is Since the value is fixed, it can be set to a value suitable for the actual situation of the river. That is, for example, when the intake water depth H is 2 m and the water level adjustment water depth H6 is 5 m, the design plan flood water depth H
7 is 7 m, that is, the operating ratio of the float 2 and the water gate 1 should be 1:1.4. If this working ratio is 1:4 or higher as in the case of the reservoir,
Design plan: In the event of a flood, the floodgates will have to be raised by more than 20m, creating a contradiction in that the floodgates will be pulled up unnecessarily.
This creates the inconvenience of having to install something that is longer than 0m.

このように、堰水位D6にフロート2を浮ばせ、該フロ
ート2の昇降に対する水門1の作動割合を、堰水位D6
から設計計画洪水位D7までの水深H’s(水位調節用
水深)対河床Uから設計計画洪水位D7までの水深H7
(設計計画洪水水深)となるように前記駆動手段3を構
成したので、堰水位D6を超える流入水量に対して、フ
ロート2が上昇するに従い水門lを前記作動割合によっ
て引き上げて開き、流入水量と同量の水量を排出するた
め、河川Tの水位を常に堰水位D6に維持することがで
きる。
In this way, the float 2 is floated at the weir water level D6, and the operating ratio of the water gate 1 with respect to the rise and fall of the float 2 is set at the weir water level D6.
Water depth H's (water depth for water level adjustment) from to the design plan flood level D7 vs. water depth H7 from the river bed U to the design plan flood level D7
Since the drive means 3 is configured so that the amount of inflow water exceeds the weir water level D6, as the float 2 rises, the sluice gate 1 is pulled up and opened according to the operating ratio, and the amount of inflow water is increased. Since the same amount of water is discharged, the water level of the river T can always be maintained at the weir water level D6.

なお、第2図において、符号り日は異常洪水位(ある。In Fig. 2, the days marked are abnormal flood levels.

次に、本発明による自動水位調節装置の具体例を第3図
および第4図により説明する。
Next, a specific example of the automatic water level adjustment device according to the present invention will be explained with reference to FIGS. 3 and 4.

第3図は本発明による自動水位調節装置を貯水池に適用
した状態を示す側面図、第4図は同装置の斜視図である
。流水案内台R上に設置した水門lは、第4図に示すよ
うに流水案内台R上に設置され断面コ字状をなし互いに
対向して配置された2つのガイドレール11.11にロ
ーラ12.12を介し上下動可能に支持される。
FIG. 3 is a side view showing the automatic water level adjustment device according to the present invention applied to a reservoir, and FIG. 4 is a perspective view of the device. As shown in FIG. 4, the sluice l installed on the flowing water guide stand R is installed on the flowing water guide stand R, and has rollers 12 on two guide rails 11 and 11 that have a U-shaped cross section and are arranged opposite to each other. .12 so that it can move up and down.

該水門1の上方には支柱9.9によって支持される駆動
手段3の架台31.31′が配置される。該架台31.
31′は断面コ字状をしたレール状の枠材311によっ
て各々直方形状に構成され、その上面には3つの軸受3
21.322.323および321′、322′、32
3′が各々取付けられている。該軸受321.321′
にはチェーンホイール33.33′を各々備えた軸33
1.331′が各々回転可能に軸支される。また軸受3
22,322′には前記チェーンホイール33.33′
と同径のチェーンホイール34.34′および大径歯車
35.35′を各々一体重に備えた軸341.341′
が各々回軸可能に軸支される。更に、軸受323.32
3′には前記大径歯車35.35′と各々噛合う小径歯
車36.36′およびプーリ37.37′を各々一体重
に備えた軸361.361′が各々回転可能に軸支され
る。なお、前記大径歯車35.35′と小径歯車36.
36′との歯車比は、貯水池に適用する場合は、前記余
水外けQの頂上り、から設計計画溢流水位D3までの水
深H2(設計計画溢流水深)と該設計計画溢流水位D3
から異常洪水位D4までの水深H4との和に相当する値
である異常洪水水深H5対変更満水位D2から設計計画
溢流水位D3までの水深H1(水位調節用水深)との比
率に、また、河川に適用する場合は、河床Uから設計計
画洪水位D7までの水深H7(設計計画洪水水深)対取
水位D6から設計計画洪水位D7までの水深H6(水位
調節水深)との比率に定められ、この歯車機構により増
幅機構が構成される。
Above the sluice 1 a cradle 31.31' of the drive means 3 is arranged, which is supported by a column 9.9. The pedestal 31.
31' is formed into a rectangular parallelepiped by rail-like frame members 311 each having a U-shaped cross section, and three bearings 3 are mounted on the upper surface of the frame members 311.
21.322.323 and 321', 322', 32
3' are attached to each. The bearing 321.321'
has a shaft 33 each equipped with a chain wheel 33, 33'.
1.331' are each rotatably journalled. Also bearing 3
22, 322' has the chain wheel 33, 33'
A shaft 341.341' equipped with a chain wheel 34.34' of the same diameter and a large-diameter gear 35.35' each in one weight.
are each pivotably supported. Furthermore, bearing 323.32
3' is rotatably supported by shafts 361 and 361' each having a single weight of small diameter gears 36 and 36' and pulleys 37 and 37' which mesh with the large diameter gears 35 and 35'. Note that the large diameter gear 35, 35' and the small diameter gear 36.
When applied to a reservoir, the gear ratio with 36' is determined by the water depth H2 (designed overflow depth) from the top of the overflow Q to the design overflow water level D3 and the design overflow water level. D3
to the abnormal flood water depth H5, which is the value equivalent to the sum of the water depth H4 from 2000 to the abnormal flood level D4, to the water depth H1 (water level adjustment water depth) from the modified full water level D2 to the design plan overflow water level D3, and When applied to a river, the ratio is set as the water depth H7 (design flood water depth) from the river bed U to the design plan flood level D7 to the water depth H6 (water level adjustment water depth) from the intake water level D6 to the design plan flood level D7. This gear mechanism constitutes an amplification mechanism.

前記フロート2.2′は、比重の小さい浮材を内部に充
填した円筒状に構成され、前記チェーンホイール33,
33′の下方において貯水池内に立設された軸棒24.
24′に各々摺動可能に嵌合される。該フロート2.2
′の中空所21.21′の上下部にはベアリングを装着
しており、軸なっている。なお、該フロート2.2′を
嵌合する軸棒24,24′には載置片’25.25′が
各々上下位置調整可能に装着され、フロート2.2′の
下方への移動を規制している。前記フロート2.2′の
」一端には各々結着具22.22′が取付けられており
、該結着具22.22’に各々ロープ4.4′の一端が
連結される。該ロープ4.4′の他端には各々チェーン
5.5′の一端が連結され、該チェーン5.5′は前記
チェーンホイール33.33”および34.34′と係
合して、その他端が重錘6.6′を各々連結したロープ
7.7′と各々連結している。
The float 2.2' has a cylindrical shape filled with a floating material having a low specific gravity, and is connected to the chain wheel 33,
A shaft rod 24 erected within the reservoir below 33'.
24', respectively. The float 2.2
Bearings are installed in the upper and lower parts of the hollow space 21 and 21', forming a shaft. In addition, mounting pieces '25 and 25' are respectively attached to the shaft rods 24 and 24' into which the float 2.2' is fitted, so that the vertical position can be adjusted, and the downward movement of the float 2.2' is restricted. are doing. A binding device 22.22' is attached to one end of each of the floats 2.2', and one end of a rope 4.4' is connected to each binding device 22.22'. One end of each chain 5.5' is connected to the other end of the rope 4.4', and the chain 5.5' engages with the chain wheels 33.33'' and 34.34' to connect the other end. are connected to ropes 7.7' which are connected to weights 6.6', respectively.

なお、前記水門lにはその上端に結着具13.13′が
取付けられ、該結着具13.13′に前記プーリ37.
37′に一端が各々連結されたロープ8.8′の他端が
各々連結される。なお、前記重錘6.6′の重量は水門
lの持ち上げ荷重と、前記歯車35.35′と36.3
6′との歯車比(増速比)と、機械摩擦損失との和より
大きく*譬−曲fjM?yLOQ′/F%I−kLl、
A番44Q6′の重量と、機械摩擦損失の和より大きく
設定されている。また、前記水門lに連結されたロープ
8.8′は、波濤による水面の流動の際、水門lが作動
しないように張り過ぎないようゆとりのある長さにする
A fastening device 13.13' is attached to the upper end of the water gate l, and the pulley 37.
The ropes 8 and 8' each have one end connected to the rope 37', and the other end of each rope 8' is connected to the rope 37'. The weight of the weight 6.6' is the lifting load of the water gate l and the gears 35.35' and 36.3.
6' gear ratio (speed increasing ratio) and mechanical friction loss *Parable fjM? yLOQ'/F%I-kLl,
It is set larger than the sum of the weight of No. A 44Q6' and mechanical friction loss. In addition, the rope 8.8' connected to the water gate 1 is made to have a sufficient length so as not to be too tensioned so that the water gate 1 does not operate when the water surface flows due to waves.

なお、流水案内台Hの上面長さLは、洪水量排出のとき
・水圧のため水流Xが延びて直接゛側溝S(第1図参照
)に落下する木理現象を防止するよう適正な長さに設定
する。
The length L of the upper surface of the water guide platform H is set to an appropriate length to prevent the wood grain phenomenon in which the water flow X extends due to water pressure and falls directly into the gutter S (see Figure 1) when discharging flood water. Set to

次に、前記実施例の作動について説明する。Next, the operation of the above embodiment will be explained.

貯水池Pの余水吐けQに設けた水流案内台R上に水門l
を設置することにより、結果的に余水吐けQの高さを高
める役割を果し、変更満水位D2よで貯水することがで
きる。洪水時に貯水池Pの水位が変更満水位D2より上
昇すると、フロート6.6′は軸棒24.24′に沿っ
て上昇し、該フロート6.6′とロープ4.4′、チェ
ーン5.5′およびロープ7.7′によって連結されて
いる重錘6.6′が下降する。この過程において、チェ
ーン5.5′はチェーンホイール34(34′)を第3
図において矢印方向に回転するので、該チェーンホイー
ル34(3°4′)と一体重に構成された大径歯車35
(35′)が同一方向に回転せしめられる。従って、該
大径歯車35(35′)と噛合っている小径歯車36(
36′)が矢印方向に回転し、該小径歯車36(36′
)と一体重に構成されているプーリ37(37′)が同
一方向に回転するので、該プーリ37、(37′)にロ
ープ8、(8′)が巻き−Lげられ、これにより水門l
がガイドレール11.11’(第4図参照)に沿って引
き上げられ、水門lが開かれる。なお、前記重錘28と
28′の重量は水門lの重量より重いので、フロート6
.6′が浮力によって浮き上ることにより、水門lは重
錘28.28′の重力によって引き上げられる。また、
前記大歯車35(35′)と小歯車36(36′)との
歯車比を例えば4:1に設定した場合、水位が10cm
上昇すればフロート2.2′が10cm上昇し1重錘6
.6′が10cm下降するが。
A water gate L is installed on the water flow guide platform R installed at the spillway Q of the reservoir P.
By installing this, the height of the spillway Q can be increased, and water can be stored at the changed full water level D2. When the water level of the reservoir P rises above the changed full water level D2 during a flood, the float 6.6' rises along the shaft 24.24', and the float 6.6', the rope 4.4', and the chain 5.5 ' and a weight 6.6' connected by a rope 7.7' is lowered. In this process, the chain 5.5' moves the chain wheel 34 (34') to the third
Since it rotates in the direction of the arrow in the figure, the large-diameter gear 35 is integrally formed with the chain wheel 34 (3° 4').
(35') are rotated in the same direction. Therefore, the small diameter gear 36 (35') meshing with the large diameter gear 35 (35')
36') rotates in the direction of the arrow, and the small diameter gear 36 (36'
) and the pulley 37 (37') rotate in the same direction, the ropes 8, (8') are wound around the pulleys 37, (37'), and as a result, the water gate l
is pulled up along the guide rail 11.11' (see Figure 4), and the water gate l is opened. Note that the weights 28 and 28' are heavier than the weight of the water gate l, so the float 6
.. 6' floats up due to buoyancy, and the water gate l is pulled up by the gravity of the weights 28 and 28'. Also,
When the gear ratio of the large gear 35 (35') and the small gear 36 (36') is set to 4:1, for example, the water level is 10 cm.
When it rises, float 2.2' rises 10 cm and 1 weight 6
.. 6' is lowered by 10cm.

水門1は前記歯車比により4倍の40cm引き揚げられ
る。即ち、水門1は水位上昇に対して4倍の割合で引き
揚げられることになる。
The water gate 1 can be raised by 40 cm, which is four times the height due to the gear ratio. In other words, the water gate 1 will be raised at a rate four times greater than the water level rise.

水門lが開かれることにより、貯水池Pの水位が下がる
と、フロート2.2′が降下するが該フロートの重量は
重錘6.6′の重量より重いので、重錘6.6′は上昇
し、該重錘6.6′と連結したチェーン5がチェーンホ
イール34.34′を第3図において矢印と反対方向に
回動する。これにより大歯車34 (34”)、小歯車
35(35′)が各々矢印と反対方向に回動するので、
小歯車35(35”)と一体重に構成されたプーリ37
(37′)がロープ8(8’)を巻き戻し。
When the water level of the reservoir P falls by opening the water gate L, the float 2.2' falls, but since the weight of the float is heavier than the weight of the weight 6.6', the weight 6.6' rises. The chain 5 connected to the weight 6.6' rotates the chain wheel 34.34' in the direction opposite to the arrow in FIG. As a result, the large gear 34 (34") and the small gear 35 (35') each rotate in the opposite direction to the arrow.
Pulley 37 configured as one piece with small gear 35 (35”)
(37') unwinds rope 8 (8').

水門lはその自重によりガイドレール11.11′ (
第4図参照)に沿って降下し閉じられる。
Due to its own weight, the sluice l guide rail 11.11' (
(see Figure 4) and closes.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば貯水池における余水吐けの
高さを高くすることなく、設計計画洪水量を設計計画と
おり円滑に溢流させながら設計計画溢流水深を最大限に
活用して余水吐けの高さに対応した既説の従前の満水位
の貯水量より多くの貯水量、即ち設計計画溢流水深に対
して最大限の貯水可能量を貯水することができる。従っ
て当初計画された設計計画溢流水位がそのまま保持され
るので、従前の満水位を高めて水をより多量に貯水して
も貯水池の余水吐けの高さや、堤防の高さの増高築造や
、水没地域を拡大しなくても、変更満水位を自由自在に
調節保持することができる。
As described above, according to the present invention, without increasing the height of the spillway in the reservoir, the designed flood volume can be smoothly overflowed as planned, and the designed overflow depth can be utilized to the maximum. It is possible to store a larger amount of water than the previously described full water level storage amount corresponding to the height of the water outlet, that is, the maximum possible storage amount for the design plan overflow water depth. Therefore, the overflow water level originally planned will be maintained as it is, so even if you raise the previous full water level and store more water, the height of the reservoir spillway or the height of the embankment will be increased. In addition, the full water level can be adjusted and maintained at will without expanding the submerged area.

そして流入された洪水量も自動的に水門を調節開閉しな
がら排出することができるのである。
The inflowing floodwaters can also be drained out while automatically adjusting and closing the flood gates.

また、本発明によれば、貯水量を増やすために従来設置
した余水吐けに土壌状を積んだり、ゴムダム、テンター
ゲート、サイホン等の問題点を解決し、貯水池に流入し
た水量だけ自動水位調節しながら排出すべく水門の開閉
を水位に対応して目的に行うので、危急の洪水が流入し
ても自動的に水位を調節し洪水を排出するため、ダム自
体を安全に保護し、河床の破壊を防Iにし、人手や動力
を要することもなく、他の施設、方法に比べて施工の簡
便は勿論、工費も極めて低廉であるので、その作用効果
は真に大なるものである。
In addition, according to the present invention, problems such as stacking soil on conventionally installed spillways, rubber dams, tenter gates, siphons, etc. to increase the amount of water stored can be solved, and the water level is automatically adjusted according to the amount of water flowing into the reservoir. The sluice gates are opened and closed according to the water level in order to discharge the water while the water is flowing, so even if critical floodwaters flow in, the water level is automatically adjusted and the floodwaters are discharged, thereby safely protecting the dam itself and protecting the river bed. It prevents destruction, does not require manpower or power, is easier to construct than other facilities and methods, and is extremely inexpensive, so its effects are truly great.

また、本発明によれば、河川においても固定コンクリー
ト系を築造することなく堰水位を高くすることができ、
堰水位の高さを確保することができるとともに、該堰水
位を超えて洪水が流入した場合には、自動的に水門を開
いて流入水量に対応した量だけ排出するので、河川の水
位を常に堰水位に維持することができる。
Further, according to the present invention, it is possible to raise the water level of a weir in a river without constructing a fixed concrete system,
In addition to ensuring the height of the weir water level, if flood water exceeds the weir water level, the sluice gates are automatically opened and the amount of water corresponding to the inflow is discharged, so the water level of the river can be maintained at all times. The water level can be maintained at the weir level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を貯水池に適用した場合の原理を示
す説明図、第2図は同河川に適用した場合の原理を示す
説明図、第3図は本発明装置一実施例を示す側面図、第
4図は同斜視図である。 Q・・・余水吐け、R・・・流水案内台、U・・・河床
、l・・・水門、2・・・フロート、3・・・駆動手段
、D2・・・変更満水位、D3・・・設計計画溢流水位
、D4・・・異常洪水位、D6・・・堰水位、D7・・
・設計計画洪水位。 特許出願人 沈 相 多を
Fig. 1 is an explanatory diagram showing the principle when the method of the present invention is applied to a reservoir, Fig. 2 is an explanatory diagram showing the principle when the method is applied to a river, and Fig. 3 is a side view showing an embodiment of the device of the present invention. FIG. 4 is a perspective view of the same. Q... Spillwater discharge, R... Water guide platform, U... Riverbed, l... Sluice gate, 2... Float, 3... Drive means, D2... Changed full water level, D3 ...Design plan overflow water level, D4...Abnormal flood level, D6...Weir water level, D7...
・Design plan flood level. Patent applicant Shen Xiangduo

Claims (6)

【特許請求の範囲】[Claims] (1)貯水池の余水吐は上に水門を設置して余水吐けよ
り高い変更満水位に水を貯水し、該変更満水位にフロー
トを浮遊せしめ、該フロートの昇降に対応して前記水門
を開閉するようになし、前記変更満水位から設計計画溢
流水位までの水位の変動に伴う前記フロートの昇降に対
する前記水門の作動割合を、前記変更満水位から設計計
画溢流水位までの水深に相当する値対余水吐けから設計
計画溢流水位までの水深と該設計計画溢流水位から異常
洪水位までの水深との和に相当する値に設定したことを
特徴とする自動水位調節方法。
(1) A water gate is installed above the spillway of the reservoir, water is stored at a changed full water level higher than the spillway, a float is suspended at the changed full water level, and the water gate is adjusted in response to the rise and fall of the float. The water gate is opened and closed, and the operating ratio of the water gate relative to the rise and fall of the float as the water level fluctuates from the modified full water level to the design plan overflow water level is adjusted to the water depth from the modified full water level to the design plan overflow water level. An automatic water level adjustment method characterized in that the water level is set to a value corresponding to the sum of the water depth from the spillway to the design plan overflow water level and the water depth from the design plan overflow water level to the abnormal flood level.
(2)河床に水門を設置するとともに、河川の堰水位に
フロートを浮遊せしめ、該フロートの昇降に対応して前
記水門を開閉するようになし、前記堰水位から設計計画
洪水番までの水位の変動に伴う前記フロートの昇降に対
する前記水門の作動割合を、堰水位から設計計画法水位
までの水深に相当する値対河床から設計計画法水位まで
の水深に相当する値に設定したことを特徴とする自動水
位調節方法。
(2) A water gate is installed on the riverbed, a float is suspended at the weir water level of the river, and the water gate is opened and closed in response to the rise and fall of the float, and the water level from the weir water level to the design plan flood number is The operating ratio of the water gate with respect to the rise and fall of the float due to fluctuations is set to a value corresponding to the water depth from the weir water level to the design plan water level versus a value equivalent to the water depth from the riverbed to the design plan water level. automatic water level adjustment method.
(3)余水吐は又は河床上に上下動可能に設置した水門
と、該水門の設置に伴う変更満水位又は堰水位に浮遊せ
しめたフロートと、該フロートと水門とを連動連結しフ
ロートの昇降に対応して前記水門を開−閉作動する駆動
手段とからなることを特徴とする自動水位調節装置。
(3) A spillway is constructed by interlocking and connecting a sluice gate installed on the river bed so that it can move up and down, a float suspended at a changed full water level or weir water level due to the installation of the sluice gate, and the float and the sluice gate. An automatic water level adjustment device comprising a drive means for opening and closing the water gate in response to elevation.
(4)前記駆動装置は、フロートのA降に対する水門の
作動割合を、変更満水位から設計計画溢流水位までの水
深に相当する値対余水吐けから設計計画溢流水位までの
水深と該設計計画溢流水位から異常洪水位までの水深と
の和に相当する値にする増幅機構を備えたことを特徴と
する特許請求の範囲第(3)項記載の自動水位調節装置
(4) The drive device sets the operating ratio of the flood gate for A precipitation of the float to a value corresponding to the water depth from the modified full water level to the design plan overflow water level to a value corresponding to the water depth from the spillway to the design plan overflow water level. The automatic water level adjustment device according to claim 3, further comprising an amplification mechanism that adjusts the water depth to a value corresponding to the sum of the water depth from the design plan overflow water level to the abnormal flood water level.
(5)前記駆動装置は、フロートの昇降に対する水門の
作動割合を、堰水位から設計計画法水位までの水深に相
当する値対河床から設計計画洪水位までの水深に相当す
る値にする増幅機構を備えたことを特徴とする特許請求
の範囲第(3)項記載の自動水位調節装置。
(5) The driving device is an amplification mechanism that sets the operating ratio of the flood gate to the elevation of the float to a value corresponding to the water depth from the weir water level to the design plan water level to a value equivalent to the water depth from the riverbed to the design plan flood level. An automatic water level adjustment device according to claim (3), characterized in that it is equipped with:
(6)前記増幅機構は、フロートの昇降に対応して作動
せしめられる大歯車と、該大歯車と噛合い水門とロープ
によって連結されたプーリと一体的に構成された小歯車
とからなる歯車機構によって構成したことを特徴とする
特許請求の範囲第(4)項又は第(5)項記載の自動水
位調節装置。
(6) The amplification mechanism is a gear mechanism consisting of a large gear that is operated in response to the elevation and descent of the float, and a small gear that meshes with the large gear and is integrally configured with a pulley connected by a water gate and a rope. An automatic water level adjustment device according to claim (4) or (5), characterized in that it is constructed by:
JP59172313A 1983-08-18 1984-08-18 Automatic water level control method and apparatus Granted JPS6062316A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019830003866A KR850001685B1 (en) 1983-08-18 1983-08-18 Method and apparatus of autometically controlling water level in a dam
KR3866 1983-08-18

Publications (2)

Publication Number Publication Date
JPS6062316A true JPS6062316A (en) 1985-04-10
JPH0437883B2 JPH0437883B2 (en) 1992-06-22

Family

ID=19229733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172313A Granted JPS6062316A (en) 1983-08-18 1984-08-18 Automatic water level control method and apparatus

Country Status (2)

Country Link
JP (1) JPS6062316A (en)
KR (1) KR850001685B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009632A (en) * 2005-07-04 2007-01-18 Ryozo Kimura Effluent rate regulating device of regulating reservoir, and regulating reservoir
JP2016102299A (en) * 2014-11-27 2016-06-02 株式会社朝日技研 Gate closing apparatus
JP2021110085A (en) * 2019-12-30 2021-08-02 仲二 和田 Automatic opening and closing device of water gate door

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101362996B1 (en) * 2012-10-12 2014-02-20 주식회사 준수이앤텍 Habitat for providing ecosystem environment of fish

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009632A (en) * 2005-07-04 2007-01-18 Ryozo Kimura Effluent rate regulating device of regulating reservoir, and regulating reservoir
JP2016102299A (en) * 2014-11-27 2016-06-02 株式会社朝日技研 Gate closing apparatus
JP2021110085A (en) * 2019-12-30 2021-08-02 仲二 和田 Automatic opening and closing device of water gate door

Also Published As

Publication number Publication date
KR850001685B1 (en) 1985-11-22
JPH0437883B2 (en) 1992-06-22
KR850001937A (en) 1985-04-10

Similar Documents

Publication Publication Date Title
JP4388494B2 (en) Automatic tide door equipment at Rikusu
KR0183992B1 (en) Spillway for exceptional floods for barrages comprising at least two spillways
DE102010034572A1 (en) Hydropower plant rake assembly
CN212477623U (en) Intelligent irrigation sluice control mechanism
JPS6062316A (en) Automatic water level control method and apparatus
KR101028841B1 (en) Flood control reservoir buoyancy type floodgate
CN112982324A (en) Sluice that rubbish was held back among realization was to hydraulic engineering
CN111088780A (en) Floating box type transverse-moving tidal gate structure
CN211571644U (en) Floating box type transverse-moving tidal gate structure
KR100399744B1 (en) Automatic sluice
JPH1037166A (en) Rising and falling weir
JP3427324B2 (en) Chain gate device
CN113693036B (en) Novel fish gathering station structure
JPH086101Y2 (en) Fishway equipment for dams and weirs
CN211816095U (en) Turnover gate for hydraulic engineering
CN109113033A (en) Prevent silt from entering the built-in draining pump submerged floating sediment trapping bank of intake
JP2004003238A (en) Water gate for preventing high tide
KR102608056B1 (en) Conductive sluice actuation system
JP4082260B2 (en) Float type selective water intake equipment
KR20010012005A (en) Automatic water gate
JP3518747B2 (en) Float type selective water intake equipment
JPS5996318A (en) Elevating type power generation facility
JP2021021290A (en) Water intake port opening and closing control device
KR20010035198A (en) How to configure automatic sluice using connecting rod
JPS60133113A (en) Float weir