JPS6062125A - Plasma etching method - Google Patents
Plasma etching methodInfo
- Publication number
- JPS6062125A JPS6062125A JP17069183A JP17069183A JPS6062125A JP S6062125 A JPS6062125 A JP S6062125A JP 17069183 A JP17069183 A JP 17069183A JP 17069183 A JP17069183 A JP 17069183A JP S6062125 A JPS6062125 A JP S6062125A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- etching
- etched
- plasma
- frequency power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 17
- 238000001020 plasma etching Methods 0.000 title claims description 16
- 238000005530 etching Methods 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 239000007795 chemical reaction product Substances 0.000 abstract description 16
- 238000000354 decomposition reaction Methods 0.000 abstract description 8
- 239000007789 gas Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は密閉容器に導入した反応ガ、スに高周波(マイ
クロ波を含む)電力を印加し生起したプラズマ中に発生
した活性種と被エツチング材料との物理化学反応を利用
して被エツチング材料をエツチングするプラズマエツチ
ング方法に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to the active species and material to be etched generated in the plasma generated by applying high frequency (including microwave) power to a reactive gas introduced into a closed container. The present invention relates to a plasma etching method in which a material to be etched is etched using a physicochemical reaction with a material to be etched.
一般に電子材料、主として半導体素子製造材料において
は、所定の素子ノ4ターンを形成するためにエツチング
工程を用いることが多い。このエツチング工程において
は、従来酸、アルカリ等の液体薬品による腐蝕(ウェッ
トエツチング)が主として使用されていた。近年制御性
、安全性の面から気相中でエツチングを行なうプラズマ
エツチング方法が広く使われるようになってきた。この
プラズマエツチングは、ハロゲン等を含む反応ガスに高
周波(マイクロ波を含む)電力を印加し、放電を励起し
、形成される活性種と被エツチング材料との物理化学反
応を利用して被エツチング材料を揮発性化合物に変換し
、気相として排気するものである。Generally, in electronic materials, mainly materials for manufacturing semiconductor devices, an etching process is often used to form four turns in a predetermined device. In this etching process, corrosion using liquid chemicals such as acids and alkalis (wet etching) has conventionally been mainly used. In recent years, plasma etching methods, in which etching is performed in a gas phase, have come into wide use due to its controllability and safety. This plasma etching applies high-frequency (including microwave) power to a reactive gas containing halogen, etc., excites a discharge, and utilizes a physicochemical reaction between the formed active species and the material to be etched. is converted into volatile compounds and exhausted as a gas phase.
ところでプラズマエツチングは大別して次の二種に分類
できる。即ち被エツチング材表面が直接プラズマにさら
されている場合と、プラズマ発生部分と被エツチング材
は別個の所に置いてあり、プラズマ部分においてつくら
れた活性種が被エツチング材表面に導入され、エツチン
グ反応が起こる場合である。前者の直接プラズマにさら
されている場合には、次のようなことが問題になる。即
ち第1図に示される如く、密閉容器11中の被エツチン
グ材12は直接プラズマ領域14にさらされているか、
またはシールド13により隔てられている時も、プラズ
マの極く近傍にある。このような状況では、主としてプ
ラズマ中での素反応は次のようなものであると考えられ
る。第2図に示すようにガス導入孔21より導かれた反
応ガス22は、プラズマ領域23内で活性化され反応性
の大きな活性種24となる。これと被エツチング材25
が反応して反応生成物26となり、これが排気孔27を
通って除去されることによりエツチングは進行する。こ
の時ガス導入孔21側の反応生成物26は再びプラズマ
領域を通過するため、イオン、電子の衝撃を受け再分解
する率も多い。By the way, plasma etching can be broadly classified into the following two types. In other words, when the surface of the material to be etched is directly exposed to plasma, and when the plasma generation area and the material to be etched are placed in separate locations, the active species created in the plasma region are introduced to the surface of the material to be etched, resulting in the etching. This is when a reaction occurs. In the case of direct exposure to plasma, the following problems arise. That is, as shown in FIG. 1, is the material 12 to be etched in the closed container 11 directly exposed to the plasma region 14?
Or, even when separated by the shield 13, it is very close to the plasma. In such a situation, the elementary reactions in the plasma are considered to be mainly as follows. As shown in FIG. 2, the reactive gas 22 introduced through the gas introduction hole 21 is activated within the plasma region 23 and becomes highly reactive active species 24. This and the material to be etched 25
reacts to form a reaction product 26, which is removed through the exhaust hole 27, thereby progressing the etching. At this time, since the reaction product 26 on the gas introduction hole 21 side passes through the plasma region again, there is a high rate of re-decomposition due to the impact of ions and electrons.
このようにして再分解した被エツチング材原子(分子)
28は再び材料表面に付着する。エツチング反応がこの
ような素反応の集合から成っているため、次のような2
点が本質的に問題となる。Atoms (molecules) of the etched material re-decomposed in this way
28 is again attached to the material surface. Since the etching reaction consists of a collection of such elementary reactions, the following two reactions occur.
point is essentially the problem.
(イ)反応生成物26が再びプラズマ領域23で再分解
を受け、材料表面に付着するためエツチング効率が低下
する。またガスの流れは第2図中の矢印で示した方向に
あるため、再分解、再付着はガス流の下流領域で多く生
じ、エツチングの不均一となる。(a) The reaction products 26 undergo re-decomposition in the plasma region 23 and adhere to the material surface, resulting in a decrease in etching efficiency. Further, since the gas flow is in the direction shown by the arrow in FIG. 2, re-decomposition and re-deposition occur more frequently in the downstream region of the gas flow, resulting in non-uniform etching.
(ロ)ガス導入孔21より導入されたガス種が活性化さ
れ、材料と結合し消費されるためガス流の下流域では活
性種が不足となり、エツチング不均一の原因となる。(b) The gas species introduced through the gas introduction hole 21 is activated, combines with the material, and is consumed, resulting in a shortage of active species in the downstream region of the gas flow, causing non-uniform etching.
本発明は、プラズマエツチング装置においてはガス流の
存在は避は難く、ガス流上流域と下流域ではエツチング
に不均一が生じやす(、その原因としてはプラズマ中で
の活性種の存在が不均一であること、及び反応生成物が
再びプラズマ領域を通過する際再分解を受け、材料表面
に再付着するととKあることに鑑み、活性種形成のソー
スとなる外部からのエネルギー供給に変調を加えること
で時間的不均一をつくり出し、それにより空間的不均一
を解消し、エツチング効率、均一性の優れたプラズマエ
ツチング方法を提供しようとするものである。In the present invention, the presence of gas flow is unavoidable in plasma etching equipment, and etching tends to be non-uniform in the upstream and downstream regions of the gas flow (the cause of this is the non-uniform presence of active species in the plasma). In view of the fact that the reaction products undergo re-decomposition when passing through the plasma region again and re-deposit on the material surface, the external energy supply that is the source of active species formation is modulated. This aims to create a temporal non-uniformity, thereby eliminating the spatial non-uniformity, and to provide a plasma etching method with excellent etching efficiency and uniformity.
本発明においては、外部からの高周波(マイクロ波、R
adio Frequency略してRF)電力印加に
変調を加えて、導入ガスを活性種に変換する反応を間欠
的にすることにより、プラズマ内に一様に活性種をつく
り出し、次の周期まで外部からのエネルギー供給の停止
している間に被エツチング材と活性種との反応を進行さ
せ、更に揮発性反応生成物を除去することで反応生成物
が再びプラズマ中で再分解することを防ぎ、エツチング
反応の効率を高めるようにしたものである。In the present invention, external high frequency (microwave, R
Adio Frequency (abbreviated as RF) By modulating the power application and making the reaction that converts the introduced gas into active species intermittently, active species are uniformly created in the plasma, and energy from the outside is not absorbed until the next cycle. While the supply is stopped, the reaction between the material to be etched and the active species is allowed to proceed, and volatile reaction products are removed to prevent the reaction products from being decomposed again in the plasma, thereby slowing down the etching reaction. This is designed to increase efficiency.
以下図面を参照して本発明の一実施例を説明する。同実
施例に使用したのは、第3図に示すような通常の平行平
板型エツチング装置であり、密閉容器(真空チャンバ)
3ノ中に導入孔32より反応性ガスが導入され、反応生
成物及び余分なガスは排気孔33より除去される。上部
電極3Qは接地されており、被エツチング材34は下部
電極35上に載置されている。この下部電極35には、
遮断器36、マツチングネットワーク38を介して例え
ば1 ’3.56 MHzの高周波電源39より電力が
印加される。遮断器36はパルス発生器37により制御
され、任意の周期で高周波電力をオン、オフ可能となっ
ている。An embodiment of the present invention will be described below with reference to the drawings. The device used in this example was a normal parallel plate type etching apparatus as shown in Fig. 3, with a closed container (vacuum chamber)
A reactive gas is introduced into the chamber through an introduction hole 32, and reaction products and excess gas are removed through an exhaust hole 33. The upper electrode 3Q is grounded, and the material to be etched 34 is placed on the lower electrode 35. This lower electrode 35 has
Power is applied via a circuit breaker 36 and a matching network 38 from a high frequency power source 39 of, for example, 1'3.56 MHz. The circuit breaker 36 is controlled by a pulse generator 37, and can turn on and off the high frequency power at an arbitrary period.
上記反応性ガスとしては四塩化炭素CC/ 4を用い、
被エツチング材にはAlを選んだ。Carbon tetrachloride CC/4 is used as the reactive gas,
Al was selected as the material to be etched.
しかして密閉容器31内に試料34を載置後真空に引き
、反応ガスを導入して略0. I Torr程度の減圧
条件に保ち、電極面積当り0.2 W程度の高周波電力
(13,56MHz )を印加し、エツチングを行なっ
た。反応生成物はA11XC1lyの形をとり、排気孔
33より除去されていく。印加高周波電力は遮断器36
によって周期的にオン、オフすることができ、即ち・ぐ
ルス変調が加わったものと云える。この時の下部電極3
5への印加高周波電圧の波形を第4図に示す。高周波の
印加されている時間tl、遮断されている時間t2は自
由に設定することができる。After placing the sample 34 in the sealed container 31, it is evacuated, and a reaction gas is introduced to approximately 0%. Etching was carried out under reduced pressure conditions of about I Torr and by applying high frequency power (13.56 MHz) of about 0.2 W per electrode area. The reaction product takes the form of A11XC1ly and is removed from the exhaust hole 33. The applied high frequency power is applied to the circuit breaker 36.
It can be turned on and off periodically by , and can be said to have added Gluc modulation. Lower electrode 3 at this time
FIG. 4 shows the waveform of the high frequency voltage applied to 5. The time tl during which the high frequency is applied and the time t2 during which the high frequency is cut off can be freely set.
ここで連続的に高周波電力を印加している場合の結果を
第5図に示す。この図においては、被エツチング材(こ
の場合5インチ径のシリコンウェハ上にスiQツタリン
グ法によりAA膜を堆積したもの)内の位置とエツチン
グ速度の関連を示す。ウェハ内でガス流の上流付近では
エツチング速度が略1000νmlnとなるのに比べ、
下流付近では略600 Vmin程度しかない。これは
前述した様に、エツチングに寄与する活性種がガス流上
流域で消費されてしまうためと、下流域では反応生成物
がプラズマ中で再分解し、ウェハ表面に再付着するため
である。この欠点をとり除く一つの方法は、第6図に示
すようにRF電力を間欠的に加えることである。即ち第
6図(、)においては、図示右側の時間・印加電圧関係
に示すようにRF電力は印加されておらず(時間t 2
) 、チャンバ内には一様に反応ガス41が満たされ
ている。ここで第6図(b)のように時間1.0間RF
電力を印加すると、一様にチャンバ内に満たされていた
ガス種の一部が活性化される。この活性種420分布も
一様である。次に棺6図(c)のように活性種と被エツ
チング材が反応して反応生成物43が形成されるが、こ
の間RF印加はなされていないので、反応生成物43は
再びプラズマにさらされて再分解することなく除去され
ていく。このような状況が効果的に起こるようにするに
は、ガス流速、表面反応に要する時間、チャンバサイズ
等多くの要素が関連するが、実際には第4図の時間tl
rt2の値をうまく選ぶことにより最適化することが
できる。FIG. 5 shows the results when high frequency power is continuously applied. This figure shows the relationship between the position within the material to be etched (in this case, an AA film deposited on a 5-inch diameter silicon wafer by the SiQ tuttering method) and the etching rate. Compared to the etching rate near the upstream side of the gas flow within the wafer, which is approximately 1000 νmln,
Near the downstream, it is only about 600 Vmin. As mentioned above, this is because active species contributing to etching are consumed in the upstream region of the gas flow, and in the downstream region, reaction products are re-decomposed in the plasma and re-attached to the wafer surface. One way to eliminate this drawback is to apply RF power intermittently, as shown in FIG. That is, in FIG. 6(,), as shown in the time/applied voltage relationship on the right side of the figure, no RF power is applied (time t 2
), the chamber is uniformly filled with a reaction gas 41. Here, as shown in Fig. 6(b), the RF for a time of 1.0
Application of electrical power activates a portion of the gas species uniformly filled within the chamber. This active species 420 distribution is also uniform. Next, as shown in Fig. 6 (c), the active species and the material to be etched react to form a reaction product 43, but since no RF is applied during this time, the reaction product 43 is exposed to the plasma again. It is removed without being re-decomposed. In order for this situation to occur effectively, many factors are involved, such as gas flow rate, time required for surface reaction, chamber size, etc., but in reality, the time tl shown in Figure 4 is related.
Optimization can be achieved by choosing the value of rt2 well.
このようにして最適化した場合のウェハ内のエツチング
速度の分布を第7図に示す。即ちRFに変調を加えない
第5図の場合に比し、明らかに均一性の向上が見られる
。更にこの時はt1/(tl+ tz )−0,7即ち
RF印加時間は約全体の7割であるにもかかわらず、エ
ツチング速度は低下しておらず、これは反応生成物の丙
分解、再付着によるロスが低減されているためである。FIG. 7 shows the etching rate distribution within the wafer when optimized in this manner. That is, compared to the case of FIG. 5 in which no modulation is applied to RF, the uniformity is clearly improved. Furthermore, at this time, even though t1/(tl+tz)-0.7, that is, the RF application time was about 70% of the total, the etching rate did not decrease, and this was due to the decomposition and re-decomposition of the reaction products. This is because loss due to adhesion is reduced.
この効果はエツチング効率向上以外にも好都合な結果を
もたらす。即ち通常のRF連続印加方式では、反応生成
物の再分解、再刊着がウェハ以外のチャンバ内壁にも及
び、従ってチャンバが汚染し、ダストの原因となってい
る。これに対し本発明のRF変調印加方式では、反応生
成物の再分解、再付着が低減されるため、チャンバの汚
れがずっと少なくできる。This effect brings about advantageous results in addition to improving etching efficiency. That is, in the conventional continuous RF application method, the reaction products are re-decomposed and re-deposited on the inner wall of the chamber other than the wafer, thereby contaminating the chamber and causing dust. In contrast, in the RF modulation application method of the present invention, re-decomposition and re-deposition of reaction products are reduced, so that the chamber can be much less contaminated.
なお本発明は実施例のみに限られることなく種々の応用
が可能である。例えば実施例では平行平板型リアクタに
おけるAlのエツチングを行なう場合を例にしたが、他
の溝造のプラズマエツチング例えばバレルクイプリアク
タにおいても、また被エツチング材としてAl以外の例
えば金E、シリコン、シリコン酸化物、シリコン窒化物
、レジスト等の有機物をエツチングする場合にも有効で
ある。また電力印加方式はパルス変調方式としたが、他
の方式例えば正弦波変調でも有効である。Note that the present invention is not limited to the embodiments, and can be applied in various ways. For example, in the embodiment, the case of etching Al in a parallel plate reactor was used as an example, but it can also be used in other groove-shaped plasma etching such as a barrel quip reactor. It is also effective when etching organic materials such as silicon oxide, silicon nitride, and resist. Although the power application method is a pulse modulation method, other methods such as sine wave modulation are also effective.
以上説明した如く本発明によれば、プラズマエツチング
の均一性の向上、エツチング効率の向上が可能となり、
またチャンバの汚れを少な(できる等の利点を有したプ
ラズマエツチング方法が提供できるものである。As explained above, according to the present invention, it is possible to improve the uniformity of plasma etching and improve the etching efficiency.
Furthermore, it is possible to provide a plasma etching method that has advantages such as less contamination of the chamber.
第1図は従来のプラズマエツチング装置の構成図、第2
図は従来のプラズマエツチング方法の原理図、第3図は
本発明の一実施例を示すプラズマエツチング装置の構成
図、第4図は同装置で用いる高周波波形図、第5図は従
来装置によるエツチング特性図、第6図は第3図の装置
の作用説明図、第7図は同装置によるエツチング特性図
である。
30・・・上部電極、3ノ・・・密閉容器、32・・・
ガス導入孔、33・・・排気孔、34・・・被エツチン
グウェハ、35・・・下部電極、36・・・遮断器、3
7・・・/f/L/ス発生器、38・・・マツチングネ
ットワーク、39・・・高周波電源。
出顕代理人 弁理士 鈴 江 武 彦Figure 1 is a configuration diagram of a conventional plasma etching system;
The figure shows the principle of a conventional plasma etching method, Fig. 3 is a configuration diagram of a plasma etching apparatus showing an embodiment of the present invention, Fig. 4 is a diagram of high frequency waveforms used in the same apparatus, and Fig. 5 shows etching by the conventional apparatus. FIG. 6 is an explanatory diagram of the operation of the apparatus shown in FIG. 3, and FIG. 7 is an etching characteristic diagram using the same apparatus. 30... Upper electrode, 3... Sealed container, 32...
Gas introduction hole, 33... Exhaust hole, 34... Wafer to be etched, 35... Lower electrode, 36... Circuit breaker, 3
7... /f/L/S generator, 38... Matching network, 39... High frequency power supply. Appearance agent Patent attorney Takehiko Suzue
Claims (3)
印加し生起したプラズマ中に発生した活性種と被エツチ
ング材料との物理化学反応を利用して被エツチング材料
をエツチングするに当り、印加する高周波電力に変調を
施こすようにしたことを特徴とするプラズマエツチング
方法。(1) When etching the material to be etched by utilizing the physicochemical reaction between the material to be etched and the active species generated in the plasma generated by applying high frequency power to a reactive gas introduced into a sealed container, A plasma etching method characterized by modulating high frequency power.
変調)するものであることを特徴とする特許請求の範囲
第1項に記載のプラズマエツチング方法。(2) The plasma etching method according to claim 1, wherein the modulation is an intermittent supply (pulse modulation) of the high frequency power.
特許請求の範囲第1項に記載のプラズマエツチング方法
。(3) The plasma etching method according to claim 1, wherein the modulation is sinusoidal modulation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17069183A JPS6062125A (en) | 1983-09-16 | 1983-09-16 | Plasma etching method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17069183A JPS6062125A (en) | 1983-09-16 | 1983-09-16 | Plasma etching method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6062125A true JPS6062125A (en) | 1985-04-10 |
Family
ID=15909604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17069183A Pending JPS6062125A (en) | 1983-09-16 | 1983-09-16 | Plasma etching method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6062125A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0214523A (en) * | 1988-06-13 | 1990-01-18 | Tel Sagami Ltd | Treatment by plasma |
US6942813B2 (en) | 2003-03-05 | 2005-09-13 | Applied Materials, Inc. | Method of etching magnetic and ferroelectric materials using a pulsed bias source |
US7682518B2 (en) | 2003-08-28 | 2010-03-23 | Applied Materials, Inc. | Process for etching a metal layer suitable for use in photomask fabrication |
US7786019B2 (en) | 2006-12-18 | 2010-08-31 | Applied Materials, Inc. | Multi-step photomask etching with chlorine for uniformity control |
US7790334B2 (en) | 2005-01-27 | 2010-09-07 | Applied Materials, Inc. | Method for photomask plasma etching using a protected mask |
US7829243B2 (en) | 2005-01-27 | 2010-11-09 | Applied Materials, Inc. | Method for plasma etching a chromium layer suitable for photomask fabrication |
US7879510B2 (en) | 2005-01-08 | 2011-02-01 | Applied Materials, Inc. | Method for quartz photomask plasma etching |
-
1983
- 1983-09-16 JP JP17069183A patent/JPS6062125A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0214523A (en) * | 1988-06-13 | 1990-01-18 | Tel Sagami Ltd | Treatment by plasma |
US6942813B2 (en) | 2003-03-05 | 2005-09-13 | Applied Materials, Inc. | Method of etching magnetic and ferroelectric materials using a pulsed bias source |
US7682518B2 (en) | 2003-08-28 | 2010-03-23 | Applied Materials, Inc. | Process for etching a metal layer suitable for use in photomask fabrication |
US7879510B2 (en) | 2005-01-08 | 2011-02-01 | Applied Materials, Inc. | Method for quartz photomask plasma etching |
US7790334B2 (en) | 2005-01-27 | 2010-09-07 | Applied Materials, Inc. | Method for photomask plasma etching using a protected mask |
US7829243B2 (en) | 2005-01-27 | 2010-11-09 | Applied Materials, Inc. | Method for plasma etching a chromium layer suitable for photomask fabrication |
US7786019B2 (en) | 2006-12-18 | 2010-08-31 | Applied Materials, Inc. | Multi-step photomask etching with chlorine for uniformity control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6849857B2 (en) | Beam processing apparatus | |
JP2894658B2 (en) | Dry etching method and apparatus | |
JPS61107730A (en) | Compound excitation plasma etching system | |
JP3706027B2 (en) | Plasma processing method | |
JPH10261620A (en) | Surface treater | |
US20040094400A1 (en) | Method of processing a surface of a workpiece | |
JPS5915982B2 (en) | Electric discharge chemical reaction device | |
KR930003876B1 (en) | Plasma ashing method | |
JP2764575B2 (en) | Radical control method | |
US6909086B2 (en) | Neutral particle beam processing apparatus | |
JPS6062125A (en) | Plasma etching method | |
TW307027B (en) | Process for reducing circuit damage during pecvd in single wafer pecvd system | |
JP2764524B2 (en) | Radical control device | |
JP3520577B2 (en) | Plasma processing equipment | |
JPS56105480A (en) | Plasma etching method | |
US4946537A (en) | Plasma reactor | |
JPH07288191A (en) | Plasma treatment method and apparatus therefor | |
JP2004214609A (en) | Method of treating plasma processing apparatus | |
JPS63103088A (en) | Plasma treating device | |
JP3550466B2 (en) | Plasma processing method | |
JP2000150196A (en) | Plasma processing method and its device | |
EP1039501A2 (en) | Apparatus and method for production of electronic devices | |
JP3940467B2 (en) | Reactive ion etching apparatus and method | |
JPS6034633B2 (en) | Plasma gas phase reactor | |
JPH10172793A (en) | Plasma generator |