JPS6062063A - Activation method of electrode for fuel cell - Google Patents

Activation method of electrode for fuel cell

Info

Publication number
JPS6062063A
JPS6062063A JP58168987A JP16898783A JPS6062063A JP S6062063 A JPS6062063 A JP S6062063A JP 58168987 A JP58168987 A JP 58168987A JP 16898783 A JP16898783 A JP 16898783A JP S6062063 A JPS6062063 A JP S6062063A
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
fuel
activating
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58168987A
Other languages
Japanese (ja)
Inventor
Teruo Kumagai
熊谷 輝夫
Tatsuo Horiba
達雄 堀場
Seiji Takeuchi
瀞士 武内
Kazuo Iwamoto
岩本 一男
Hidejiro Kawana
川名 秀治郎
Noriko Kitami
北見 訓子
Yuichi Kamo
友一 加茂
Koki Tamura
弘毅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58168987A priority Critical patent/JPS6062063A/en
Publication of JPS6062063A publication Critical patent/JPS6062063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To prevent an electrode catalyzer from being poisoned and enable to maintain electrode performance highly by removing chlorine ion, fluorine ion, etc. from the electrode before operation of a fuel cell after assembling it and at the time of stopping the operation of the fuel cell. CONSTITUTION:An electrode catalyzer is activated by removing halogen system composition from an electrode catalyzer which is poisoned by halogen system composition such as chlorine ion, fluorine ion, etc. An activation treatment like this can be operated before operation of a fuel cell and after assembling it or at the time of stopping operation of the fuel cell. An electro-chemical method is to perform an anode reaction at a potential higher than the predetermined level, by an outisde electric power against a fuel pole which is incorporated into the cell. Further, a cleaning method is to circulate de-ionized water, electrolyte and liquid fuel or composite liquid composed of these three through a fuel chamber and to clean the electrode catalyzer. Removing efficiency for the poisoned component of the catalyzer can be improved by using such electro-chemical method and cleaning method together.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池用電極の賦活方法に係り、特にメタノ
ール・酸素燃料電池等の電極触媒の被毒による電極性能
の低下を防止した燃料電池用電極の賦活方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for activating an electrode for a fuel cell, and in particular to a method for activating an electrode for a fuel cell such as a methanol/oxygen fuel cell, which prevents deterioration in electrode performance due to poisoning of the electrode catalyst. This invention relates to a method for activating an electrode.

〔発明の背景〕[Background of the invention]

燃料を供給し、電極上で電気化学反応を行わせ直接電気
エネルギーを取り出す燃料電池は、高効率が期待できる
新しいタイプの゛電源として、その実用化が期待されて
いる。現在実用化研究が進められている燃料電池には、
比較的大容量の電源として、リン酸を電解質とする酸素
・水素燃料電池があυ、小型可搬用電源としては、硫酸
を電)9イ質とするメタノール・酸素燃料電池や、水酸
化カリウム水溶液を電解質とする酸素−水素あるいは酸
素−ヒドラジン燃料電池がある。これ等の燃料電池にお
いては、いずれも電極には触媒能が必要であり最も実用
性の高い電極触媒としては、白金やパラジウム等の貴金
属を単独、あるいはこれ等の組み合せとして用いられる
。白金族元素は、触媒活性は高く有効なものであるが、
これらの触媒を用いると、燃料あるいは酸化剤に共存す
る物質や、電気化学的に生成する副生成物質によって、
触媒が被毒し、電極性能を著しく低下させる問題がある
Fuel cells, which supply fuel and cause an electrochemical reaction to occur on electrodes to directly extract electrical energy, are expected to be put into practical use as a new type of power source that is expected to be highly efficient. Fuel cells, which are currently being researched for practical use, include:
Oxygen-hydrogen fuel cells that use phosphoric acid as the electrolyte are relatively large-capacity power sources, while methanol-oxygen fuel cells that use sulfuric acid as the electrolyte and potassium hydroxide aqueous solutions are used as small, portable power sources. There are oxygen-hydrogen or oxygen-hydrazine fuel cells that use hydrogen as an electrolyte. In all of these fuel cells, the electrodes must have catalytic ability, and the most practical electrode catalysts are noble metals such as platinum and palladium, used alone or in combination. Platinum group elements have high catalytic activity and are effective, but
When these catalysts are used, substances that coexist with the fuel or oxidizer, or electrochemically generated by-products, can cause
There is a problem in that the catalyst is poisoned and the electrode performance is significantly reduced.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の問題点を解消し、
電極触媒の被毒を防止し、電極性能を高度に維持できる
燃料電池用電極の賦活方法1c提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide a method 1c for activating an electrode for a fuel cell, which prevents poisoning of an electrode catalyst and maintains a high level of electrode performance.

〔発明の概要〕 本発明者らは、燃料電池用電極の触媒能は塩素又は塩素
イオン、あるいはフッ素又はフッ素イオンなどのハロゲ
ン系成分が触媒中に共存すると著しく低下することを見
い出した。特にメタノール液体燃料を用いるメタノール
・酸素燃料電池においては、電イタに使用される貴会W
i触媒の原料として塩化物を用いた場合、触媒中に塩素
又は塩素イオンが残存し、電池構成材から触媒中にノ温
累又は塩素イオンが混入することもある。
[Summary of the Invention] The present inventors have discovered that the catalytic ability of a fuel cell electrode is significantly reduced when halogen components such as chlorine or chlorine ions, or fluorine or fluorine ions coexist in the catalyst. In particular, in methanol/oxygen fuel cells that use methanol liquid fuel,
When chloride is used as a raw material for a catalyst, chlorine or chlorine ions may remain in the catalyst, and chlorine ions may be mixed into the catalyst from battery constituent materials.

すなわち、例えば、沈着法でホルムアルデヒドで塩化白
金酸を還元するとfi1式で反応が進む。
That is, for example, when chloroplatinic acid is reduced with formaldehyde by a deposition method, the reaction proceeds according to the fi1 formula.

H2PtCム+HCHO+H*0→Pt+CO2↑+6
l−ICt・・・illこの反応では塩酸ができ酸性に
なると反応が進行しないため水酸化カリウム等で中和し
、アルカリ性溶液にして還元している。
H2PtCmu+HCHO+H*0→Pt+CO2↑+6
l-ICt...ill In this reaction, hydrochloric acid is produced and the reaction does not proceed if it becomes acidic, so it is neutralized with potassium hydroxide or the like and reduced to an alkaline solution.

HC7+KOH→ H20+KC1・・・・・・・・・
(2)(2)式の塩化カリウムは水溶液中では解離し、
溶液中の塩素イオンは還元された白金に吸着する。
HC7+KOH→ H20+KC1・・・・・・・・・
(2) Potassium chloride of formula (2) dissociates in an aqueous solution,
Chlorine ions in the solution are adsorbed on the reduced platinum.

KCl −* K”+C1−・・・・・・・・・(3)
Pt十C1’″ →pt・・・・・・Ct−(ad) 
・・・・・・・・・(4)白金触媒は塩素を吸着すると
吸着被毒により触媒能を失う。
KCl −* K”+C1−・・・・・・・・・(3)
Pt10C1''' →pt...Ct-(ad)
(4) When a platinum catalyst adsorbs chlorine, it loses its catalytic ability due to adsorption poisoning.

史にηi電解質よび液体燃料は通常所定モル娘度に調整
して用いられる。燃料電池を連続運転する場合、電解質
、液体燃料の使景は比較的多くなるため、一般的には水
道水によって希釈される。水道水には一般に塩素イオン
、フッ素イオンなどが含まれる。このため、電解質、液
体燃料から微敷の塩素イオン、フッ素イオンなどが触媒
中に混入する。
Historically, the ηi electrolyte and liquid fuel are usually adjusted to a predetermined molar density before use. When a fuel cell is operated continuously, relatively large amounts of electrolyte and liquid fuel are used, so they are generally diluted with tap water. Tap water generally contains chlorine ions, fluoride ions, etc. Therefore, small amounts of chlorine ions, fluorine ions, etc. from the electrolyte and liquid fuel mix into the catalyst.

本発明は、塩素イオン、フッ素イオンなどのハロゲン系
成分により被毒された電極触媒から、ハロゲン系成分を
除去する賦活方法である。
The present invention is an activation method for removing halogen components from an electrode catalyst that has been poisoned by halogen components such as chlorine ions and fluoride ions.

このような賦活処理は、燃料電極触媒の調製時。Such activation treatment is performed during the preparation of the fuel electrode catalyst.

燃料電池の組立後作動前、および燃料電池の作動停止時
のいずれかにおいて行うことができる。
This can be carried out either after the fuel cell is assembled and before operation, or when the fuel cell is stopped.

電極触媒調製時に賦活処理する方法としては、電気化学
物および洗浄の方法が挙げられる。ここで電気化学的方
法としては、例えば燃料極の製造時にその電極に外部電
源により所定電位以上でアノード反応を行う方法がある
。燃料極から塩素イオンを除去する場合、塩素イオンの
酸化電位よシも高い電位でアノード反応を行う。
Examples of the activation treatment method during preparation of the electrode catalyst include electrochemical and washing methods. As an example of the electrochemical method, there is, for example, a method of performing an anodic reaction on the fuel electrode at a predetermined potential or higher using an external power source when manufacturing the fuel electrode. When removing chlorine ions from the fuel electrode, an anode reaction is performed at a potential higher than the oxidation potential of chlorine ions.

また電極触媒調製時に洗浄によって塩素イオン。In addition, chlorine ions are removed by washing during electrode catalyst preparation.

フッ素イオン等を除去する方法としては、脱イオン水や
実質的に上記イオンを含有しない電解質−液体燃料、あ
るいは脱イオン水と電解質、液体燃料との混合液で電極
を洗浄する方法などがある。
Examples of methods for removing fluorine ions include cleaning the electrodes with deionized water, an electrolyte-liquid fuel that does not substantially contain the above ions, or a mixed solution of deionized water, electrolyte, and liquid fuel.

洗浄液として、電解質、液体燃料を用いる場合、仮にこ
れらの液成分が電極中に残存しても電池組立て後の電極
性能に支障は生じない。
When an electrolyte or a liquid fuel is used as the cleaning liquid, even if these liquid components remain in the electrode, there will be no problem with the electrode performance after battery assembly.

燃料電池の組立て後作動前および燃料電池の作動停止時
に、電極から塩素イオン、フッ素イオン等を除去して電
極触媒を賦活する際にも、電気化学的および洗浄の方法
がある。電気化学的方法は電池内に組込まれた燃料極に
対して、外部電源により所定電位以上でアノード反応を
行う。また洗浄の方法は、燃料室に脱イオン水、電解質
、液体燃料、あるいは脱イオン水と電解質、液体燃料と
の混合液を循環させ、電極触媒を洗浄する。このような
洗浄方法では、洗浄に用いた液体が燃料室に残存しても
支障なく、起動又は再作動することができる。
There are also electrochemical and cleaning methods for removing chlorine ions, fluorine ions, etc. from the electrodes and activating the electrode catalysts after assembly and before operation of the fuel cell and when stopping the operation of the fuel cell. In the electrochemical method, an anode reaction is performed on a fuel electrode incorporated in a battery at a predetermined potential or higher using an external power source. Further, in the cleaning method, deionized water, electrolyte, liquid fuel, or a mixture of deionized water, electrolyte, and liquid fuel is circulated in the fuel chamber to clean the electrode catalyst. In such a cleaning method, even if the liquid used for cleaning remains in the fuel chamber, the engine can be started or restarted without any problem.

なお、電気化学的方法と洗浄方法とを併用して触媒被毒
成分の除去効果を高めることができる。
Note that the electrochemical method and the cleaning method can be used together to enhance the effect of removing catalyst poisoning components.

本発明に電極触媒は、周期律表第■族の少なくとも1種
以上を含有するもので、塩素イオン、フッ素イオンなど
のハロゲン系成分の被毒による電極性能が著しく、かつ
上記した賦活処理による効果が大きい。
The electrode catalyst of the present invention contains at least one member of Group Ⅰ of the periodic table, and has remarkable electrode performance due to poisoning by halogen-based components such as chlorine ions and fluoride ions, and has no effect due to the above-mentioned activation treatment. is large.

メタノ−′ル・酸素燃料電池においては、グラファイト
、ファーネスブラック等の多孔質炭素担体を用いて、白
金やルテニウムを担持した触媒が用いられる。担持する
方法は、沈着法、含浸法、混線法等の通常の触媒調製法
のいずれであってもよい。電極は、この触媒籾米をペー
ストとなるように蒸留水を添加し、混線後に結着剤とし
てコロイド状ポリテトラフルオロエチレンを添加して、
さらに混練し、調製された触媒ペーストを導電性多孔質
基板上に塗布し、これを乾燥後、焼成して得られる。
In methanol/oxygen fuel cells, catalysts are used in which platinum or ruthenium is supported on a porous carbon carrier such as graphite or furnace black. The supporting method may be any of the usual catalyst preparation methods such as a deposition method, an impregnation method, and a crosstalk method. The electrodes are made by adding distilled water to the catalytic rice to make it into a paste, and then adding colloidal polytetrafluoroethylene as a binder after mixing.
The catalyst paste prepared by further kneading is applied onto a conductive porous substrate, dried, and then fired.

〔発明の実施例〕[Embodiments of the invention]

メタノールl Ill□t/ t、硫酸3 mol/ 
tの燃料溶液中に塩化カリウムをそれぞれ1.25X1
0−’rno7/l* 2.5X10−’mot/41
.25xlO−3mo、/:/l、および’jAteカ
リウム6.25x 10−’ mot/lK eるヨウ
に添加した燃料中で電流密度601nん/crtl一定
とした際の単極電位を測定した。その結果を第1図に示
した。第1図より、塩化カリウムが存在したもの(図中
の符号:塩化カリウム1.25xl O−’mot/l
を2.2.5X10−’m07/l を3.1.25X
10−3mot/lを4、硫酸カリウム6.25X10
−’ mat/Lを5、無添加を1)の電極性能が著し
く低下することがわかる。
Methanol l Ill□t/t, sulfuric acid 3 mol/
Potassium chloride in each 1.25 x 1 t of fuel solution
0-'rno7/l* 2.5X10-'mot/41
.. The monopolar potential was measured at a constant current density of 601 nm/crtl in a fuel added to 25xlO-3mo, /:/l, and 'jAte potassium 6.25x 10-' mot/lKe. The results are shown in Figure 1. From Figure 1, potassium chloride was present (code in the figure: potassium chloride 1.25xl O-'mot/l
2.2.5X10-'m07/l 3.1.25X
10-3 mot/l 4, potassium sulfate 6.25X10
It can be seen that the electrode performance of -' mat/L of 5 and no additive of 1) is significantly reduced.

触媒調製例1 炭素粉末(グラファイト:AUP)4.92gとこれに
35%ホルムアルデヒド溶液5mlと50%水酸化カリ
ウム浴液12m1を加えた後にH2Oを加え6Qmlと
して攪拌する。これをドライアイス−エタノール冷媒中
で攪拌しながら、溶液を+2〜−2Cに冷却する。この
溶液に、塩化白金DI 0.57g1塩化ルテニウム0
.32gをH2Oに溶し23m1とした溶液を約1 m
l’/ rmnの速度で添加する。この間、液の温度は
+2〜−2Cで保持する。添加終了後溶液を室温にもど
しさらに35〜40Cに昇温し、この温度で約30分間
撹拌する。さらにこの溶液を55〜60Cで約30分攪
拌した後に固形物を蒸留水で水洗し、スラリーのpHが
7以下になるまで洗浄を繰り返す。洗浄後のケーキは乾
燥器にて80Cで充分に乾燥し燃料極触媒Aを得た。こ
の触媒Aに含有される塩素は、比色分析により分析した
ところ検出限界(0,005重量%以下1であった。
Catalyst Preparation Example 1 After adding 4.92 g of carbon powder (graphite: AUP), 5 ml of 35% formaldehyde solution and 12 ml of 50% potassium hydroxide bath solution, H2O was added and the mixture was stirred to make 6 Q ml. The solution is cooled to +2 to -2C while stirring in a dry ice-ethanol refrigerant. To this solution, add 0.57 g of platinum chloride DI1 0.57 g of ruthenium chloride
.. Approximately 1 m of a solution of 32 g dissolved in H2O to make 23 m1
Add at a rate of l'/rmn. During this time, the temperature of the liquid is maintained at +2 to -2C. After the addition is complete, the solution is returned to room temperature and further heated to 35-40C, and stirred at this temperature for about 30 minutes. Further, after stirring this solution at 55 to 60 C for about 30 minutes, the solid matter is washed with distilled water, and the washing is repeated until the pH of the slurry becomes 7 or less. The washed cake was sufficiently dried at 80C in a dryer to obtain fuel electrode catalyst A. The chlorine contained in this catalyst A was analyzed by colorimetric analysis and was found to be at the detection limit (0,005% by weight or less 1).

触媒調製例2 蒸留水による水洗がpHI OKなるまでの洗浄の繰り
返し以外は、触媒調製例1と同じ条件で調製した燃料極
触媒を触媒Bとした。この触媒に含有される塩素は0.
012重景%であった。
Catalyst Preparation Example 2 Catalyst B was a fuel electrode catalyst prepared under the same conditions as Catalyst Preparation Example 1, except that washing with distilled water was repeated until the pHI was OK. The chlorine content in this catalyst is 0.
It was 012% heavy view.

実施例1 触媒調製例1で得られた触媒A粉末0.375gをとり
蒸留水0.4 ml加えよく混練する。充分に混練した
後コロイド状テトラフルオロエチレン液(タイキン工業
製ポリフロンディスパージョンD1゜5倍希釈:テトラ
フルオロエチレン12重量%含有)を0.2 ml加え
てよく混合する。′このペースト状触媒を多孔質炭素基
板(具現化学製、クレカマットE715)50X50m
mに均一に塗布する。
Example 1 Take 0.375 g of catalyst A powder obtained in Catalyst Preparation Example 1, add 0.4 ml of distilled water, and knead well. After thorough kneading, 0.2 ml of a colloidal tetrafluoroethylene liquid (Polyflon Dispersion D, manufactured by Taikin Industries, diluted 1°5 times, containing 12% by weight of tetrafluoroethylene) was added and mixed well. 'This paste catalyst was placed on a porous carbon substrate (Kurekamat E715, manufactured by Guigen Kagaku) 50 x 50 m.
Apply evenly to m.

これを乾燥後、aooc窒素気流中で30分焼成する。After drying this, it is fired for 30 minutes in an aooc nitrogen stream.

得られた電極は、白金1.□ m9/ crLルテニウ
ム0.5 m? / cni含有する。これを電極1と
した。
The obtained electrode was made of platinum 1. □ m9/crL Ruthenium 0.5 m? / Contains cni. This was designated as electrode 1.

実施例2 触媒調製例2で得られた触媒B粉末を用いる以外は、実
施例1と同じ条件で調製した電極を電極2とした。
Example 2 Electrode 2 was an electrode prepared under the same conditions as Example 1, except that the catalyst B powder obtained in Catalyst Preparation Example 2 was used.

実施例3 燃料極および酸化剤極の電極性能は、宙、流密度−電位
(t−E)特性で評価する。電流密度−電位特性のモデ
ルを第2図に示した。電流を流すと反応の遅れ、内部抵
抗などによって、燃料極Aの電位は責の方向、図では上
方へ向う。一方、酸化剤極Bの電位は卑の方向、図では
下方へ向う。燃料極Aと酸化剤極Bの電位の差が電池電
圧Cであリ、これが大であって、しかも電流をとり出し
ても電圧がそれほど低下しない電池が優れた電池である
ことから、性能向上のためには燃料極の特性曲線を下方
へ引き下げ、酸化剤極の特性曲線を上方へ押し上げるこ
とが必要である。
Example 3 The electrode performances of the fuel electrode and the oxidizer electrode are evaluated based on the flow density-potential (t-E) characteristics. A model of current density-potential characteristics is shown in FIG. When a current is applied, the potential of the fuel electrode A moves in the negative direction (in the figure, upward) due to reaction delays and internal resistance. On the other hand, the potential of the oxidizer electrode B is in the base direction, which is downward in the figure. The difference in potential between the fuel electrode A and the oxidizer electrode B is the battery voltage C, and this is large, and a battery whose voltage does not drop much even when current is drawn out is an excellent battery, which improves performance. In order to achieve this, it is necessary to lower the characteristic curve of the fuel electrode downward and push the characteristic curve of the oxidizer electrode upward.

そこで実施例1および実施例2で得られた電極(1,2
)をそれぞれ2c4になるように切り出し、メタノール
濃度1 mo7/ ts硫酸濃度3mo、/:/lの燃
料中で電極性能(i−E%性)を測定した。
Therefore, the electrodes (1, 2
) was cut out to a size of 2c4, and the electrode performance (i-E% property) was measured in fuel with a methanol concentration of 1 mo7/ts and a sulfuric acid concentration of 3 mo, /:/l.

その結果を第3図に示した。第3図において、6は電極
1.7は電極2の電極性能をそれぞれ示す。
The results are shown in Figure 3. In FIG. 3, 6 indicates the electrode performance of electrode 1, and 7 indicates the electrode performance of electrode 2.

第2図から明らかなように電極2のごとく塩素又は塩素
イオンが存在すると電極性能が低下するが、触媒調整時
に洗浄を充分に行い、塩素の混入を避けた電極lの電極
性能が高いことがわかる。
As is clear from Figure 2, electrode performance deteriorates when chlorine or chlorine ions are present, as in electrode 2, but electrode performance is high in electrode 1, which was thoroughly cleaned during catalyst preparation and avoided chlorine contamination. Recognize.

実〃山汐l14 電極1および電極2を3 mol/ tの硫酸溶液中で
電位が0.76V(標準水素電極基準)で、アノード反
応が起こるように5分間通電した後蒸留水で洗浄した。
Miyamashio 114 Electrodes 1 and 2 were energized in a 3 mol/t sulfuric acid solution at a potential of 0.76 V (based on standard hydrogen electrodes) for 5 minutes to cause an anode reaction, and then washed with distilled water.

これらをそれぞれ電極3および電極4とした。この電極
を用いて、メタノール濃度1mol/l、懺酸濃度3 
mat/ Lの燃料中で電流密度60mA/cnfでの
単極−位を測定した。その結果、標準水素電極基準で、
単極電位は、由:iJ#3で0.35V、電極4で0.
36 Vであった。なお、電極3および電極4の塩素含
有量は検出限界以下であった。
These were designated as electrode 3 and electrode 4, respectively. Using this electrode, methanol concentration is 1 mol/l, phosphoric acid concentration is 3
The monopolar position was measured at a current density of 60 mA/cnf in a fuel of mA/L. As a result, based on standard hydrogen electrode standards,
The unipolar potential was 0.35V at iJ#3 and 0.35V at electrode 4.
It was 36V. Note that the chlorine content of electrode 3 and electrode 4 was below the detection limit.

実施例5 電位が1.36V(標準水素電極基準)でアノード反応
が起こるように2分間通電した以外は実施例4と同じ東
沖で処理した電極を電極5および電極6とし単極電位を
測定した。その結果、60m A / artの′−電
流密度、標準水素電極基準で電極5が0.36V、電極
6が0゜36Vであった。塩素含有量はそれぞれの電極
とも検出限界以下であった。
Example 5 The monopolar potential was measured using the electrodes treated at Higashioki as in Example 4, using electrodes 5 and 6, except that the potential was 1.36 V (standard hydrogen electrode reference) and electricity was applied for 2 minutes to cause an anode reaction. did. As a result, the current density was 60 mA/art, electrode 5 was 0.36 V, and electrode 6 was 0.36 V based on a standard hydrogen electrode. The chlorine content was below the detection limit for each electrode.

触媒調製例3 炭素粉末(キャポット社製、パルカンXC72R1に(
l二l)メタノール−水500m1を加え、塩化白金酸
(H2P t C1,6・6HzO) 5.3 gを溶
解し、70Cで還流加熱し還元して空気極触媒を得た。
Catalyst Preparation Example 3 Carbon powder (manufactured by Capot Co., Ltd., Palcan XC72R1 (
121) 500 ml of methanol-water was added, 5.3 g of chloroplatinic acid (H2PtC1,6.6HzO) was dissolved, and the mixture was heated under reflux at 70C for reduction to obtain an air electrode catalyst.

これを触媒Cとした。This was designated as catalyst C.

実施例6 触媒Cを1gに蒸留水を加えて混練し、ポリフロンディ
スパージョン(ダイキン製)を0.4 g 加えて混練
したものを導電性多孔質炭素基板100cvtに塗布し
乾燥後、空気流中300Cで30分間焼成し空気極電極
を得た。これを電極7とした。
Example 6 1 g of Catalyst C was mixed with distilled water, and 0.4 g of Polyflon dispersion (manufactured by Daikin) was added and kneaded. The mixture was applied to a conductive porous carbon substrate of 100 cvt, dried, and then air-flowed. The mixture was fired at 300C for 30 minutes to obtain an air electrode. This was designated as electrode 7.

実施例7 実施例4で得られた燃料極用の電極4と実施例6で得ら
れた空気極用の電極7を50X50mmに切り出し、こ
れを用いて単電池Aを構成した。電極間には3 mol
/ Lの硫酸に浸漬した陽イオン交換膜(デュポン製、
ナフィオン)を電解質として介在させた。酸化剤は空気
、燃料は1mo7/、/、メタノールと3mot/を硫
酸を含有する溶液を用いて、それぞれ電池の外部よりフ
ァンおよびポンプで連続的に供給した。電池の温度は6
0Cに保持した。初期の出力は、電極密度60mA/c
rlで0.45■であった。これを各8時間毎に燃料供
給を停止する操作をくり返し100時間運転したときの
出力は0.44 Vであった。
Example 7 The electrode 4 for the fuel electrode obtained in Example 4 and the electrode 7 for the air electrode obtained in Example 6 were cut out to a size of 50×50 mm, and a unit cell A was constructed using these. 3 mol between the electrodes
/L of sulfuric acid immersed in a cation exchange membrane (manufactured by DuPont,
Nafion) was used as an electrolyte. The oxidizing agent was air, the fuel was 1mo7/, /, and a solution containing methanol and 3mot/sulfuric acid was used, and each was continuously supplied from outside the cell by a fan and a pump. Battery temperature is 6
It was held at 0C. Initial output is electrode density 60mA/c
rl was 0.45■. When this operation was repeated for 100 hours by repeatedly stopping the fuel supply every 8 hours, the output was 0.44 V.

比較例1 実施例2で得られた燃料極用の電極2を使用する以外は
実施例7と同じ条件で電池を構成(゛電池Bとした]シ
、電池電圧を測定した。初期の出力は、電流密度60 
mAlcy!で0.34 Vであり、100時間後では
0.21Vであった。
Comparative Example 1 A battery was constructed under the same conditions as in Example 7 except that electrode 2 for the fuel electrode obtained in Example 2 was used (referred to as "Battery B"), and the battery voltage was measured.The initial output was , current density 60
mAlcy! It was 0.34 V at 100 hours, and 0.21 V after 100 hours.

実施例8 比較例1で作製した却電池Bを3セル積層し、電池Cと
した。この電池を運転する前に燃料である1 mot/
 tメタノール、3 mol/ L硫酸を10m1 /
 minの速度でソンスルーで流しながら、燃料極の電
位を吸着化字種が酸化されるまで高くして前処理した後
、燃料を注入して実施例7と同じ条件で電池電圧を測定
した。初期の出力は、′屯流留展60 ”A/’crl
で1.27 Vであり、100時間後では1、25 V
であった。
Example 8 Three cells of the rechargeable battery B produced in Comparative Example 1 were stacked to form a battery C. Before operating this battery, the fuel is 1 mot/
t methanol, 3 mol/L sulfuric acid 10ml/
After pretreatment was carried out by increasing the potential of the fuel electrode until the adsorbed species was oxidized while flowing through the battery at a speed of 10 min, fuel was injected and the cell voltage was measured under the same conditions as in Example 7. The initial output is
It is 1.27 V at 100 hours, and 1.25 V after 100 hours.
Met.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電極反応の被毒成分となるハロゲン系
成分を除去した状態の電極で燃料電池を作動させること
ができるので電池性能を常に篩性能に維持できる。
According to the present invention, a fuel cell can be operated with an electrode from which halogen-based components that are poisonous components in electrode reactions have been removed, so that the cell performance can always be maintained at the sieving performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、電極反応の妨害成分の濃度による6 0 m
A/cnlの電流密度通電時間と電位変化との関係図、
第2図は電極の性能を評価するための電流密度−電位(
t−E)特性図、第3図は本発明と従来法による電極の
電流密度−電位(i−E)%注口である。 代理人 弁理士 鵜沼辰之 嘱1図 60爪ハ/cT11?−4電時間(i)槽2図 丈、電7℃を席(、mへ/C鮎) 第1頁の続き ■発明者 州名 秀治部 日立市幸町 所内 0発 明 者 北 見 訓 子 日立市幸町所内 0発 明 者 加 茂 友 −日立市幸町所内 @発明者 円相 弘毅 日立車輪 所内
Figure 1 shows the concentration of components interfering with the electrode reaction at 60 m
Relationship diagram between A/cnl current density energization time and potential change,
Figure 2 shows current density-potential (
t-E) characteristic diagram, and FIG. 3 shows current density-potential (i-E) % spout of electrodes according to the present invention and the conventional method. Agent Patent Attorney Tatsuyuki Unuma 1 Figure 60 Claws/cT11? -4 electric hours (i) Tank 2 height, electric 7℃ seat (to m/C Ayu) Continued from page 1 ■ Inventor State name Hidejibu Hitachi City Saiwai-cho Shonai 0 Inventor Kuniko Kitami Inside Saiwai-cho, Hitachi City0 Inventor Tomo Kamo - Inside Saiwai-cho, Hitachi City @Inventor Hiroki Enso Inside Hitachi Wheelworks

Claims (1)

【特許請求の範囲】 1、燃料電池電極触媒の調製時、燃料電池の組立後作動
前および燃料電池の作動停止時のいずれかにおいて、電
極触媒からハロゲン系成分を除去することを特徴とする
燃料電池用電極の賦活方法。 2、特許請求の範囲第1項において、前記ハロゲン系成
分が、塩素又は塩素イオンであることを特徴とする燃料
電池用電極の賦活方法。 3、特許請求の範囲第1項において、前記電極触媒が周
期律表第■族の少なくとも1種以上の元素を含有するこ
とを特徴とする燃料電池用電極の賦活方法。 4、特許請求の範囲第1項において、前記電極上に外部
電源を介してアノード反応を行い、ハロゲン系成分を除
去することを特徴とする燃料電池用電極の賦活方法。 5、特許請求の範囲第1項において、前記電極を、その
燃料電池に用いられる電解質、脱イオン水若しくは液体
燃料又はこれらの2種以上の混合溶液で洗浄し、ハロゲ
ン系成分を除去することを特徴とする燃料電池用電極の
賦活方法。 6、特許請求の範囲第1項において、前記燃料電池が、
メタノールを液体燃料とすることを特徴とする燃料電池
用筒1極の賦活方法。
[Scope of Claims] 1. A fuel characterized in that halogen-based components are removed from the electrode catalyst during preparation of the fuel cell electrode catalyst, after assembly and before operation of the fuel cell, and when stopping operation of the fuel cell. Method for activating battery electrodes. 2. The method for activating a fuel cell electrode according to claim 1, wherein the halogen-based component is chlorine or chlorine ions. 3. The method for activating an electrode for a fuel cell according to claim 1, wherein the electrode catalyst contains at least one element from Group Ⅰ of the periodic table. 4. A method for activating an electrode for a fuel cell according to claim 1, characterized in that an anode reaction is performed on the electrode via an external power source to remove halogen components. 5. Claim 1 provides that the electrode is cleaned with an electrolyte used in the fuel cell, deionized water, liquid fuel, or a mixed solution of two or more thereof to remove halogen components. Characteristic method for activating electrodes for fuel cells. 6. In claim 1, the fuel cell comprises:
A method for activating a cylinder single pole for a fuel cell, characterized in that methanol is used as a liquid fuel.
JP58168987A 1983-09-13 1983-09-13 Activation method of electrode for fuel cell Pending JPS6062063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58168987A JPS6062063A (en) 1983-09-13 1983-09-13 Activation method of electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168987A JPS6062063A (en) 1983-09-13 1983-09-13 Activation method of electrode for fuel cell

Publications (1)

Publication Number Publication Date
JPS6062063A true JPS6062063A (en) 1985-04-10

Family

ID=15878248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168987A Pending JPS6062063A (en) 1983-09-13 1983-09-13 Activation method of electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPS6062063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0701294A1 (en) * 1994-06-16 1996-03-13 British Gas plc A method of operating a fuel cell
US7923160B2 (en) 2003-05-21 2011-04-12 Aisin Seiki Kabushiki Kaisha Method for activating solid polymer fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0701294A1 (en) * 1994-06-16 1996-03-13 British Gas plc A method of operating a fuel cell
US7923160B2 (en) 2003-05-21 2011-04-12 Aisin Seiki Kabushiki Kaisha Method for activating solid polymer fuel cell

Similar Documents

Publication Publication Date Title
CN110504472B (en) Direct methanol fuel cell membrane electrode for improving catalyst utilization rate and preparation method thereof
JP6869234B2 (en) Redox flow battery with carbon dioxide based redox pair
JP3411897B2 (en) Active polymer electrolyte membrane for polymer electrolyte fuel cells
Ojani et al. Electrochemical behavior of Ni (II) incorporated in zeolite Y-modified carbon electrode: application for electrocatalytic oxidation of methanol in alkaline solution
JPS6025508B2 (en) How to generate gas by electrolytic reaction
JP2005527957A (en) Proton conductive carbonaceous material
JP4336777B2 (en) Surface-modified inorganic porous body and fuel cell using the porous body as an electrolyte
CN100341181C (en) Catalyst for fuel cell and fuel cell comprising the same
JP2005501177A (en) Electrochemical reaction electrode, manufacturing method, and application device thereof.
CN101026237A (en) Oxygen reduction electrode and fuel cell including the same
Zen et al. Oxygen Reduction on Ruthenium‐Oxide Pyrochlore Produced in a Proton‐Exchange Membrane
JP2019157223A (en) Production method of hydrogen peroxide using photoelectrode
RU2467798C1 (en) Method of producing catalyst on carbon support
JPS6062063A (en) Activation method of electrode for fuel cell
JP2021138994A (en) Electrode catalyst for reducing co2, method of producing electrode catalyst for reducing co2, co2 reducing electrode, and co2 reducing system
JP2004047206A (en) Electrolyte film for fuel cell
JP2007012375A (en) Fuel cell, method of manufacturing electrode catalyst layer, and operation method thereof
US3231428A (en) Fuel cell with catalytic electrodes
JP2003282095A (en) Electrolyte membrane for fuel cell and production process thereof
JPS59127372A (en) Electrode for fuel cell
JP2009070733A (en) Manufacturing method of single-chamber fuel cell and modified manganese oxide
JP2005342579A (en) Catalyst material and its production method, catalyst electrode, and electrochemical device
Raghuveer et al. Nanocrystalline pyrochlore bonded to proton exchange membrane electrolyte as electrode material for oxygen reduction
JPH06150937A (en) Solid high polymer type fuel cell
US3377204A (en) Method of incorporating platinum in carbon