JP2003282095A - Electrolyte membrane for fuel cell and production process thereof - Google Patents

Electrolyte membrane for fuel cell and production process thereof

Info

Publication number
JP2003282095A
JP2003282095A JP2002086348A JP2002086348A JP2003282095A JP 2003282095 A JP2003282095 A JP 2003282095A JP 2002086348 A JP2002086348 A JP 2002086348A JP 2002086348 A JP2002086348 A JP 2002086348A JP 2003282095 A JP2003282095 A JP 2003282095A
Authority
JP
Japan
Prior art keywords
fuel cell
electrolyte membrane
ion
inorganic
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002086348A
Other languages
Japanese (ja)
Inventor
Yotaro Yamazaki
陽太郎 山崎
Kiminori Imai
公紀 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2002086348A priority Critical patent/JP2003282095A/en
Publication of JP2003282095A publication Critical patent/JP2003282095A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte membrane for a fuel cell, which has excellent heat resistance and does not transmit methanol. <P>SOLUTION: The electrolyte membrane for a fuel cell is composed of a composite membrane of an inorganic ion conductor and an ion-conductive polymer. Examples of the inorganic ion conductor include zeolites and inorganic oxides having ion conductivity for proton (H<SP>+</SP>) A membrane obtained by dispersing the inorganic ion conductor in a medium, suction-filtering the resultant dispersion through a filter medium to form an inorganic ion conductor membrane, adding a solution of the ion-conductive polymer to this membrane and then suction-filtering the mixture is dried, thereby obtaining the electrolyte membrane for a fuel cell composed of the composite membrane of the inorganic ion conductor and the ion-conductive polymer. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池用電解質膜
およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to an electrolyte membrane for a fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】固体電解質燃料電池は、電池内に液体を
用いず、固体電解質自体が両極ガスの隔離材の役割も兼
ねるので、電池構造が簡素化できる。そして種々の用途
のために広く研究開発が行われている。この中で、固体
高分子型燃料電池(PEFC)は、常温で高い出力密度
が得られ、システムが単純でコンパクトなことから、特
に移動用の電源として注目されている。電解質膜として
は、パーフルオロスルホン酸膜等のイオン交換膜が用い
られ、これらは水を含んだ状態で良好なプロトン導電性
を示す。PEFCは、電子導電体である燃料極、空気極
の2種の電極とプロトン導電体である電解質膜から構成
され、これをセパレーターと交互に積層することで燃料
電池スタックが形成される。PEFCは、燃料極におけ
る燃料(水素、メタノール等)の酸化反応によって生成し
たプロトンが電解質膜を透過し、空気極では酸素の還元
反応及びプロトンとの反応により水が生成する。電子は
燃料極から空気極へ向かって外部回路を移動し、化学エ
ネルギーを直接電気エネルギーとして取り出すことがで
きる。
2. Description of the Related Art In a solid electrolyte fuel cell, a liquid is not used in the cell, and the solid electrolyte itself also serves as a separator for bipolar gas, so that the cell structure can be simplified. And research and development are widely performed for various uses. Among them, the polymer electrolyte fuel cell (PEFC) has been attracting attention especially as a power source for transportation because it has a high output density at room temperature and the system is simple and compact. As the electrolyte membrane, an ion exchange membrane such as a perfluorosulfonic acid membrane is used, and these exhibit good proton conductivity in the state of containing water. The PEFC is composed of two types of electrodes, a fuel electrode and an air electrode, which are electronic conductors, and an electrolyte membrane, which is a proton conductor, and a fuel cell stack is formed by alternately stacking these with separators. In the PEFC, protons generated by the oxidation reaction of fuel (hydrogen, methanol, etc.) at the fuel electrode permeate the electrolyte membrane, and at the air electrode, water is generated by the oxygen reduction reaction and the reaction with the protons. The electrons move in the external circuit from the fuel electrode to the air electrode, and chemical energy can be directly taken out as electric energy.

【0003】PEFC用燃料としてメタノールを用いる
方法には、メタノールを改質器で水素に変換した後、そ
の水素を燃料電池に投入する改質形とメタノールを直接
燃料電池に投入する直接形(DMFC:Direct
Methanol FuelCell)の二種類があ
る。
The method of using methanol as a fuel for PEFC includes a reforming type in which methanol is converted into hydrogen in a reformer and then the hydrogen is introduced into a fuel cell and a direct type in which methanol is directly introduced into a fuel cell (DMFC). : Direct
There are two types, the Methanol Fuel Cell.

【0004】まず、改質形において各電極で生じる電気
化学反応を下記に示す。
First, the electrochemical reaction occurring at each electrode in the modified form is shown below.

【0005】 燃料極(アノード):H2→2H++2e- 空気極(カソード):1/2O2+2H++2e-→H2O 全反応:H2+1/2O2→H2O 次に、DMFCにおいて各電極で生じる電気化学反応を
下記に示す。
Fuel electrode (anode): H 2 → 2H + + 2e Air electrode (cathode): 1 / 2O 2 + 2H + + 2e → H 2 O Total reaction: H 2 + 1 / 2O 2 → H 2 O The electrochemical reaction occurring at each electrode in DMFC is shown below.

【0006】燃料極(アノード) :CH3OH+H2O→
CO2+6H++6e- 空気極(カソード) :3/2O2+6H++6e-→3H2
O 全反応:CH3OH+3/2O2+H2O→CO2+3H2
O 改質形で利用される改質器は、メタノールの改質機能だ
けでなく、COシフト反応やCO選択酸化反応など他の
機能が必要となり、性能やサイズ、システム制御等の面
で多くの課題を持つ。一方、DMFCは改質器が不要な
ためシステムの簡素化・小型化が可能で、また、負荷応
答性が速いなどの特性を持ち、自動車への搭載をはじめ
とする多くの用途への応用が期待できる。
Fuel electrode (anode): CH 3 OH + H 2 O →
CO 2 + 6H + + 6e Air electrode (cathode): 3 / 2O 2 + 6H + + 6e → 3H 2
O All reaction: CH 3 OH + 3 / 2O 2 + H 2 O → CO 2 + 3H 2
The reformer used in the O 2 reforming type requires not only the reforming function of methanol but also other functions such as CO shift reaction and CO selective oxidation reaction. Have a challenge. On the other hand, the DMFC does not require a reformer, so the system can be simplified and downsized, and it has characteristics such as fast load responsiveness, so it can be applied to many applications including mounting in automobiles. Can be expected.

【0007】上述のように、DMFCの燃料極ではメタ
ノールの酸化反応(CH3OH+H2O→CO2+6H+
-)が進行するが、この反応は反応速度が遅く、反応
速度を上げる触媒として白金が用いられている。さら
に、この反応中間体としてCO種が発生するが、CO種
は白金触媒と強く結合し、触媒活性を著しく低下させ
る。このようなCO被毒を抑えるために、現在吸着した
COを酸化させるPt−Ru触媒が広く用いられている
が、十分な性能を発揮するまでには至っていない。
As described above, in the fuel electrode of the DMFC, the oxidation reaction of methanol (CH 3 OH + H 2 O → CO 2 + 6H + 6)
e -) but proceeds, the reaction is slow reaction rate, platinum is used as a catalyst to increase the reaction rate. Further, CO species are generated as an intermediate of this reaction, but the CO species bind strongly to the platinum catalyst and remarkably reduce the catalytic activity. In order to suppress such CO poisoning, a Pt-Ru catalyst that oxidizes adsorbed CO is currently widely used, but it has not yet reached full performance.

【0008】CO酸化反応の速度は温度とともに急速に
増大するため、性能を向上させる目的で電池スタックの
作動温度を上げる試みがなされている。現在の電池スタ
ックでは電解質膜としてイオン伝導性高分子膜が使われ
ており、使用限界温度はイオン伝導性高分子膜の耐熱性
で決まっている。しかし、現在イオン伝導性高分子膜と
して使用されているポリテトラフルオロエチレン系樹脂
(たとえば「ナフィオン」(登録商標)は130℃でク
リープを起こすため、100℃以上での使用が困難とさ
れている。また、「ナフィオン」は水を大量に含んでお
り、膜中では微細なクラスターを形成し、クラスター中
に水を取り込んでこの中をプロトンが移動する。このた
め、作動温度が100℃以上になると膜が乾燥し、プロ
トン伝導特性が低下する。
Since the rate of CO oxidation reaction increases rapidly with temperature, attempts have been made to raise the operating temperature of the battery stack for the purpose of improving performance. In current battery stacks, ion conductive polymer membranes are used as electrolyte membranes, and the temperature limit for use is determined by the heat resistance of the ion conductive polymer membranes. However, the polytetrafluoroethylene-based resin (for example, “Nafion” (registered trademark)) currently used as an ion-conductive polymer membrane causes creep at 130 ° C., and thus it is difficult to use it at 100 ° C. or higher. Also, "Nafion" contains a large amount of water, forming fine clusters in the membrane, and taking in water into the clusters, and moving protons in the clusters. If so, the membrane is dried, and the proton conductive property is deteriorated.

【0009】また、メタノールは水に溶けるため、「ナ
フィオン」膜中の水チャンネルを通って一部燃料極側か
ら空気極側へ透過してしまう。燃料であるメタノールが
空気側に存在すると、酸素還元反応が妨害され、起電力
が低下する。さらに、燃料であるメタノールの損失にも
つながる。
Further, since methanol dissolves in water, it partially permeates from the fuel electrode side to the air electrode side through the water channel in the "Nafion" membrane. If methanol, which is the fuel, is present on the air side, the oxygen reduction reaction is disturbed and the electromotive force is reduced. In addition, it also leads to the loss of fuel, methanol.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、耐熱性に優れ、メタノールを透過しない燃
料電池用電解質膜を得ることを課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to obtain an electrolyte membrane for a fuel cell which is excellent in heat resistance and does not permeate methanol.

【0011】[0011]

【課題を解決するための手段】本発明は、無機イオン導
電体とイオン伝導性高分子との複合膜より構成されてな
る燃料電池用電解質膜を要旨とする。
DISCLOSURE OF THE INVENTION The gist of the present invention is an electrolyte membrane for a fuel cell, which is composed of a composite membrane of an inorganic ion conductor and an ion conductive polymer.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0013】まず、本発明において用いられる無機イオ
ン導電体としては、ゼオライト、無機酸化物等のプロト
ン(H+)に対してイオン伝導性を有するものが挙げら
れる。無機酸化物としては、TiO2,SnO2,ZrO
2等が挙げられる。最も好適には、ゼオライトであり、
たとえばA型、フォージャサイト(XもしくはY型)、
モルデナイト、シャバサイト等が挙げられる。ゼオライ
トは、構造水やゼオライト中のカチオンに配置した水に
起因するプロトン導電性を示す;移動可能な陰イオンが
構造中に存在しない;ゼオライト中のカチオンを交換す
ることで、熱特性や吸着容量、酸強度等の化学的・物理
的性質が変化する;高耐熱性、分子選択排除特性、化学
修飾が容易;ならびに高分子材料に比べて安価である;
等の特徴を有する。本発明においてはゼオライトにおけ
る上記のような特性により、イオン伝導性高分子との複
合膜を作製することで、耐熱性の向上、メタノール透過
の低減を図ることができる。これらの無機イオン導電体
は、好適には、プロトン導電性を増大させるために、酸
化スズ、酸化チタン等で修飾されうるが、特に酸化スズ
が好適である。その量は通常、質量比で0.1〜3.0
である。これらの修飾は、たとえば無機イオン導電体と
塩化スズ(IIもしくはIV)を適宜、所望の比率で混合
し、200〜400℃程度に加熱して、塩化スズを溶融
・分解させることにより得られる。
First, examples of the inorganic ion conductor used in the present invention include those having ion conductivity with respect to protons (H + ) such as zeolite and inorganic oxide. As the inorganic oxide, TiO 2 , SnO 2 , ZrO
2 etc. Most preferably, zeolite,
For example, A type, faujasite (X or Y type),
Examples include mordenite and chabazite. Zeolites show proton conductivity due to structural water and water arranged in cations in the zeolite; there are no mobile anions in the structure; by exchanging cations in the zeolite, thermal characteristics and adsorption capacity , Changes in chemical and physical properties such as acid strength; high heat resistance, molecular selective exclusion properties, easy chemical modification; and cheaper than polymer materials;
And so on. In the present invention, due to the above-mentioned characteristics of the zeolite, it is possible to improve the heat resistance and reduce the permeation of methanol by producing a composite membrane with the ion conductive polymer. These inorganic ionic conductors can preferably be modified with tin oxide, titanium oxide or the like in order to increase the proton conductivity, but tin oxide is particularly preferred. The amount is usually 0.1 to 3.0 by mass ratio.
Is. These modifications can be obtained, for example, by appropriately mixing an inorganic ionic conductor and tin chloride (II or IV) in a desired ratio and heating to about 200 to 400 ° C. to melt and decompose tin chloride.

【0014】イオン伝導性高分子は、プロトン(H+
に対してイオン伝導性を有し、好適にはポリテトラフル
オロエチレン系樹脂が選ばれる。ゼオライト等の無機イ
オン導電体は脆弱であり粉末でしか得ることができな
い。このために、燃料電池用電解質膜に必要なガス不透
過な膜を作ることができない。そこで本発明において
は、後述の方法によって粉末を堆積・プレスし、その上
からイオン伝導性高分子溶液を流し、吸引ろ過し、空隙
に高分子を析出しつつ循環させる。以上の操作により、
膜を貫通する空隙がイオン伝導性高分子により埋めら
れ、ガス不透過かつプロトン伝導性のある電解質膜が得
られる。この複合電解質膜の厚みは通常50から300
μm、好ましくは80〜200μm程度から選ばれる。
The ion conductive polymer is a proton (H + )
A polytetrafluoroethylene-based resin having ion conductivity with respect to is preferably selected. Inorganic ion conductors such as zeolite are brittle and can only be obtained in powder form. Therefore, a gas-impermeable membrane required for a fuel cell electrolyte membrane cannot be formed. Therefore, in the present invention, the powder is deposited and pressed by the method described below, and the ion conductive polymer solution is flown over it, suction filtered, and circulated while precipitating the polymer in the voids. By the above operation,
The voids penetrating the membrane are filled with the ion conductive polymer, and an electrolyte membrane having gas impermeable and proton conductivity is obtained. The thickness of this composite electrolyte membrane is usually 50 to 300.
μm, preferably about 80 to 200 μm.

【0015】無機イオン導電体に対するイオン伝導性高
分子の量は通常1〜50wt%、好ましくは1〜30w
t%から選択される。
The amount of the ion conductive polymer with respect to the inorganic ion conductor is usually 1 to 50% by weight, preferably 1 to 30 w.
selected from t%.

【0016】上記のように、ゼオライト等の無機イオン
導電体粉末を堆積させるには、ゼオライト等を水等の媒
体中に分散して、これをろ過媒体を通して吸引ろ過し
て、無機イオン導電体膜をろ過媒体上に形成するのが好
適である。ついでこれに高分子濃度が1〜30wt%程
度のイオン伝導性高分子溶液を添加した後に、吸引ろ過
してろ過媒体上に得られる膜を乾燥することにより、無
機イオン導電体粉末の堆積層中の間隙がイオン伝導性高
分子で充填されてなるガス不透過な複合膜がろ過媒体上
に得られる。ここで用いるろ過媒体としては、特に制限
されないが、炭素シート等の多孔質電極シートを用いる
と、電解質膜−ガス拡散電極の構成を直接得ることがで
きるので好適である。
As described above, in order to deposit the inorganic ionic conductor powder such as zeolite, the zeolite or the like is dispersed in a medium such as water, and this is suction-filtered through a filtration medium to obtain an inorganic ionic conductor membrane. Are preferably formed on the filtration medium. Then, after adding an ion-conducting polymer solution having a polymer concentration of about 1 to 30 wt% to this, suction filtration is performed to dry the film obtained on the filtration medium. A gas-impermeable composite membrane in which the gaps between the two are filled with an ion-conductive polymer is obtained on the filtration medium. The filtration medium used here is not particularly limited, but it is preferable to use a porous electrode sheet such as a carbon sheet because the configuration of the electrolyte membrane-gas diffusion electrode can be directly obtained.

【0017】この複合膜の形状は目的とする電池構成に
応じて平板、円筒状等から任意に選定しうる。
The shape of this composite membrane can be arbitrarily selected from a flat plate, a cylindrical shape and the like according to the intended battery structure.

【0018】得られる電解質膜は、常法により電池構造
を形成されうる。たとえば、膜の両面にそれぞれガス拡
散電極を接合して一体化する。そして、この両面にガス
流路を設けたセパレータが接触し、空気と燃料ガスはそ
のガス流路を通って電極材の背面から供給されるように
構成される。ガス拡散電極としては、たとえば白金を担
持したカーボン粒子とカーボン不織布が用いられる。
The electrolyte membrane thus obtained can be formed into a battery structure by a conventional method. For example, gas diffusion electrodes are bonded and integrated on both sides of the membrane. Then, a separator provided with a gas channel is in contact with both surfaces of the separator, and air and fuel gas are supplied from the back surface of the electrode material through the gas channel. As the gas diffusion electrode, for example, carbon particles supporting platinum and carbon nonwoven fabric are used.

【0019】[0019]

【実施例】実施例 ゼオライト(水素添加モルデナイト)を蒸留水中に分散
し、これを吸引ろ過してゼオライト膜を作製した。これ
に5wt%「ナフィオン」溶液を添加し、しばらく放置
した後、吸引ろ過を行った。さらに、ろ液を再添加し、
放置、吸引ろ過を数回繰り返した。この膜を室温で乾燥
させることにより、厚さ約200μmのゼオライト−
「ナフィオン」複合膜(ゼオライト:「ナフィオン」=
質量比2:1)を作製した。この複合膜は基本的にゼオ
ライトの特性を発揮し、耐熱性が向上し、メタノールも
ほとんど透過しないものであった。
EXAMPLES Example Zeolite (hydrogenated mordenite) was dispersed in distilled water and suction filtered to prepare a zeolite membrane. A 5 wt% “Nafion” solution was added to this, and after standing for a while, suction filtration was performed. Furthermore, the filtrate is added again,
The standing and suction filtration were repeated several times. By drying this membrane at room temperature, zeolite with a thickness of about 200 μm
"Nafion" composite membrane (zeolite: "Nafion" =
A mass ratio of 2: 1) was produced. This composite membrane basically exhibited the characteristics of zeolite, improved heat resistance, and hardly permeated methanol.

【0020】[0020]

【発明の効果】本発明の燃料電池用電解質膜によれば、
耐熱性が向上し、燃料電池スタックの作動温度を高温化
できる。これにより、触媒活性を高めることができ、燃
料極におけるメタノール酸化反応の反応速度が向上す
る。「ナフィオン」単独の膜に比べ含水量が少なく、メ
タノール透過を抑制できるため、空気極における起電力
の低下、燃料のロスを低減できる。
According to the electrolyte membrane for a fuel cell of the present invention,
The heat resistance is improved, and the operating temperature of the fuel cell stack can be increased. Thereby, the catalytic activity can be increased and the reaction rate of the methanol oxidation reaction at the fuel electrode is improved. The water content is lower and the permeation of methanol can be suppressed as compared with the membrane of "Nafion" alone, so that reduction of electromotive force at the air electrode and fuel loss can be reduced.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G301 CA02 CA30 5H026 AA08 BB03 CX05 EE12 EE19 HH05    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5G301 CA02 CA30                 5H026 AA08 BB03 CX05 EE12 EE19                       HH05

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 無機イオン導電体とイオン伝導性高分子
との複合膜より構成されてなる燃料電池用電解質膜。
1. A fuel cell electrolyte membrane comprising a composite membrane of an inorganic ion conductor and an ion conductive polymer.
【請求項2】 無機イオン導電体粉末の堆積層中の間隙
がイオン伝導性高分子で充填されてなる請求項1記載の
燃料電池用電解質膜。
2. The electrolyte membrane for a fuel cell according to claim 1, wherein gaps in the deposited layer of the inorganic ion conductor powder are filled with an ion conductive polymer.
【請求項3】 無機イオン導電体がプロトン(H+)に対
してイオン伝導性を有する請求項1記載の燃料電池用電
解質膜。
3. The electrolyte membrane for a fuel cell according to claim 1, wherein the inorganic ionic conductor has ionic conductivity with respect to protons (H + ).
【請求項4】 無機イオン導電体がゼオライトおよび無
機酸化物の少なくとも一種から選ばれる請求項1記載の
燃料電池用電解質膜。
4. The electrolyte membrane for a fuel cell according to claim 1, wherein the inorganic ionic conductor is selected from at least one of zeolite and inorganic oxide.
【請求項5】 無機イオン導電体が、酸化スズで修飾さ
れている請求項1記載の燃料電池用電解質膜。
5. The electrolyte membrane for a fuel cell according to claim 1, wherein the inorganic ionic conductor is modified with tin oxide.
【請求項6】 酸化スズで修飾された無機イオン導電体
が、無機イオン導電体と塩化スズの混合物を加熱して得
られる請求項5記載の燃料電池用電解質膜。
6. The electrolyte membrane for a fuel cell according to claim 5, wherein the tin oxide-modified inorganic ionic conductor is obtained by heating a mixture of the inorganic ionic conductor and tin chloride.
【請求項7】 イオン伝導性高分子がプロトン(H+
に対してイオン伝導性を有する請求項1記載の燃料電池
用電解質膜。
7. The ion-conducting polymer is a proton (H + ).
The electrolyte membrane for a fuel cell according to claim 1, which has ion conductivity with respect to.
【請求項8】 イオン伝導性高分子がポリテトラフルオ
ロエチレン系樹脂である請求項1記載の燃料電池用電解
質膜。
8. The electrolyte membrane for a fuel cell according to claim 1, wherein the ion conductive polymer is a polytetrafluoroethylene-based resin.
【請求項9】 無機イオン導電体に対するイオン伝導性
高分子の量が1〜50wt%である請求項1記載の燃料
電池用電解質膜。
9. The electrolyte membrane for a fuel cell according to claim 1, wherein the amount of the ion conductive polymer with respect to the inorganic ion conductor is 1 to 50 wt%.
【請求項10】 無機イオン導電体を媒体中に分散し
て、これをろ過媒体を通して吸引ろ過して無機イオン導
電体膜を形成し、ついでこれにイオン伝導性高分子溶液
を添加した後に、吸引ろ過してろ過媒体上に得られる膜
を乾燥することにより、無機イオン導電体−イオン伝導
性高分子複合膜からなる燃料電池用電解質膜を得ること
を特徴とする燃料電池用電解質膜の製造方法。
10. An inorganic ionic conductor is dispersed in a medium, and this is suction-filtered through a filtration medium to form an inorganic ionic conductor film, and then an ion-conductive polymer solution is added thereto, followed by suction. A method for producing an electrolyte membrane for a fuel cell, characterized in that an electrolyte membrane for a fuel cell comprising an inorganic ion conductor-ion conductive polymer composite membrane is obtained by filtering and drying the membrane obtained on a filtration medium. .
【請求項11】 ろ過媒体が多孔質電極シートである請
求項10記載の燃料電池用電解質膜の製造方法。
11. The method for producing an electrolyte membrane for a fuel cell according to claim 10, wherein the filtration medium is a porous electrode sheet.
【請求項12】 媒体が水である請求項10記載の製造
方法。
12. The method according to claim 10, wherein the medium is water.
【請求項13】 イオン伝導性高分子溶液の高分子濃度
が1〜30wt%である請求項10記載の製造方法。
13. The method according to claim 10, wherein the polymer concentration of the ion conductive polymer solution is 1 to 30 wt%.
JP2002086348A 2002-03-26 2002-03-26 Electrolyte membrane for fuel cell and production process thereof Pending JP2003282095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086348A JP2003282095A (en) 2002-03-26 2002-03-26 Electrolyte membrane for fuel cell and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086348A JP2003282095A (en) 2002-03-26 2002-03-26 Electrolyte membrane for fuel cell and production process thereof

Publications (1)

Publication Number Publication Date
JP2003282095A true JP2003282095A (en) 2003-10-03

Family

ID=29232975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086348A Pending JP2003282095A (en) 2002-03-26 2002-03-26 Electrolyte membrane for fuel cell and production process thereof

Country Status (1)

Country Link
JP (1) JP2003282095A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100637169B1 (en) 2004-08-30 2006-10-20 삼성에스디아이 주식회사 Composite electrolyte membrane
EP1793437A3 (en) * 2005-09-09 2009-04-22 Institut für Energie- und Umwelttechnik e.V. (IUTA) - Institut an der Universität Duisburg - Essen Electrolyt, electrode and catalyst electrode for use in fuel cells
US7842199B2 (en) 2005-05-25 2010-11-30 Samsung Sdi Co., Ltd. Proton conducting titanate, polymer nano-composite membrane including the same, and fuel cell adopting the polymer nano-composite membrane
JP2011105919A (en) * 2009-11-20 2011-06-02 Kobe Univ Membrane-shaped fluorescence emitter and method for manufacturing the same
WO2012020268A1 (en) * 2010-08-12 2012-02-16 University Of Manchester Membrane electrode assembly
JP7050203B1 (en) * 2021-07-14 2022-04-07 日本碍子株式会社 Electrolyte membrane for electrochemical cell, its manufacturing method, and electrochemical cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100637169B1 (en) 2004-08-30 2006-10-20 삼성에스디아이 주식회사 Composite electrolyte membrane
US7842199B2 (en) 2005-05-25 2010-11-30 Samsung Sdi Co., Ltd. Proton conducting titanate, polymer nano-composite membrane including the same, and fuel cell adopting the polymer nano-composite membrane
EP1793437A3 (en) * 2005-09-09 2009-04-22 Institut für Energie- und Umwelttechnik e.V. (IUTA) - Institut an der Universität Duisburg - Essen Electrolyt, electrode and catalyst electrode for use in fuel cells
JP2011105919A (en) * 2009-11-20 2011-06-02 Kobe Univ Membrane-shaped fluorescence emitter and method for manufacturing the same
WO2012020268A1 (en) * 2010-08-12 2012-02-16 University Of Manchester Membrane electrode assembly
JP7050203B1 (en) * 2021-07-14 2022-04-07 日本碍子株式会社 Electrolyte membrane for electrochemical cell, its manufacturing method, and electrochemical cell

Similar Documents

Publication Publication Date Title
JP3427003B2 (en) Fuel cell
JP5332429B2 (en) Electrocatalyst
KR101880317B1 (en) Polymer electrolyte fuel cell
CN100438158C (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
JPH05144444A (en) Fuel cell and electrode manufacturing method
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP2003086192A (en) Fuel cell and its manufacturing method
JP2003036859A (en) Solid polymer type fuel cell and its fabrication method
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
US7887940B2 (en) Electrolyte membrane, electrode, and fuel cell
JP2002231265A (en) Fuel cell
KR20140103178A (en) Fuel cell
JP4352878B2 (en) Monomer compound, graft copolymer compound, production method thereof, polymer electrolyte membrane, and fuel cell
JP4428774B2 (en) Manufacturing method of fuel cell electrode
JP2004158261A (en) Proton-conductive material, film/electrode joint body, and fuel cell
JP2003282095A (en) Electrolyte membrane for fuel cell and production process thereof
JP2003317737A (en) Fuel cell, catalyst electrode using it and solid electrolyte film
JP2003115299A (en) Solid polymer fuel cell
US20240136540A1 (en) Method for producing catalyst layers for fuel cells
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP2008016344A (en) Direct alcohol type fuel cell
JP2006244721A (en) Fuel cell and its manufacturing method
JP2001110431A (en) Electrode of fuel cell
JP2003142124A (en) Electrolyte film and solid high polymer type fuel cell using the same