JPS6061501A - Method for preserving viscus - Google Patents

Method for preserving viscus

Info

Publication number
JPS6061501A
JPS6061501A JP17018883A JP17018883A JPS6061501A JP S6061501 A JPS6061501 A JP S6061501A JP 17018883 A JP17018883 A JP 17018883A JP 17018883 A JP17018883 A JP 17018883A JP S6061501 A JPS6061501 A JP S6061501A
Authority
JP
Japan
Prior art keywords
temperature
organ
perfusate
blood
perfusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17018883A
Other languages
Japanese (ja)
Other versions
JPS6156201B2 (en
Inventor
Yoichi Kasai
葛西 洋一
▲かき▼田 章
Akira Kakita
Yasuo Kuraoka
倉岡 泰郎
Nobuo Sakao
坂尾 伸夫
Hiroshi Kaneda
浩 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoxan Corp
Hokusan Co Ltd
Original Assignee
Hoxan Corp
Hokusan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoxan Corp, Hokusan Co Ltd filed Critical Hoxan Corp
Priority to JP17018883A priority Critical patent/JPS6061501A/en
Publication of JPS6061501A publication Critical patent/JPS6061501A/en
Publication of JPS6156201B2 publication Critical patent/JPS6156201B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to preserve an extirpated viscus for a long term, by reducing the temperature of the viscus to a specific temperature while perfusing the viscus with a blood equivalent solution, reducing the temperature of the viscus while perfusing the viscus with a freezing damage inhibitor, and freezing the viscus without causing cytoclasis. CONSTITUTION:A mixture solution of a blood equivalent solution 19, e.g. Collins' solution, and a blood anticoagulant 21 is injected from an artery (1a) or portal vein (1b) of an extirpated viscus 1 while passing the mixture solution through a cooling bath 13 under cooling and then discharged from a vein (1c) to carry out the first perfusion step at a reduced temperature (2 deg.C) near and above the freezing point of the above-mentioned perfusate. A freezing damage inhibitor 20, e.g. dimethyl sulfoxide (DMSO) or glycerol, in place of the above-mentioned mixture solution is used as the perfusate, and the temperture of the viscus 1 is slowly reduced from the above-mentioned temperature near and above the freezing point of the perfusate to a reduced temperature (-4 deg.C) near and above the freezing point of the freezing damage inhibitor 20 in the second perfusion step. Thus, the above-mentioned viscus 1 is preserved at the reduced temperature near the freezing point of the freezing damage inhibitor 20.

Description

【発明の詳細な説明】 本発明は人体等から摘出した各種の臓器を貯蔵しておき
、これを適時移動するため長期にわたシ当該臓器を保存
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for storing various organs extracted from the human body, etc., and preserving the organs for a long period of time in order to transfer them at a timely manner.

従来より摘出臓器を移動時まで保存することが行なわれ
ているが、当該保存手段としては臓器の動脈または門脈
から、血液と近似した性質をもつ約4℃のコリンズ液を
注入して、これを静脈から排出させる所謂潅流法なるも
のが知られており、このような潅流処理後の臓器は上記
4℃程度の温度条件にて貯蔵され、移動に際して貯蔵臓
器に血流を付与してから用いるようにしている。
Traditionally, extracted organs have been preserved until they are transported, but the preservation method involves injecting Collins solution at approximately 4°C, which has properties similar to blood, into the organ's artery or portal vein. A so-called perfusion method is known in which organs are discharged through veins, and organs after such perfusion treatment are stored at a temperature of about 4°C, and blood flow is applied to the stored organs before use before transport. That's what I do.

しかし当該保存方法によるときは臓器の保存可能限度は
肝臓の場合12時間程度、じん臓で96時間が最高であ
シ、このため臓器の供与と需要との時間的調整が難事と
な9、人命の救済にも大きな隘路となっている。
However, when using this preservation method, the maximum amount of time an organ can be preserved is about 12 hours for the liver and 96 hours for the kidney, making it difficult to coordinate the time between organ donation and demand9. This has become a major bottleneck for relief efforts.

そこで保存時間を延長させるため、貯蔵温度条件を低温
として当該臓器を凍結することも考えられるか、上記従
来法を施した臓器を凍結させると細胞破壊が起こり、臓
器自体を死滅させてしまうこと5なる。
Therefore, in order to extend the storage time, it may be possible to freeze the organ by setting the storage temperature to a low temperature.If an organ subjected to the above conventional method is frozen, cell destruction will occur and the organ itself will die5. Become.

本発明(は上記の点に鑑み、細胞破壊を起こさせること
なく摘出臓器を凍結し、長期に′わ−た−る保存を可能
にしようとするものである。
In view of the above points, the present invention aims to freeze extracted organs without causing cell destruction, thereby enabling long-term preservation.

本発明につき図面を参照して、これを詳記すれば、本発
明に係る方法を実施するため図示の如き装置を用いるこ
とができる。
The invention will now be described in more detail with reference to the drawings, in which an apparatus such as that shown can be used to carry out the method according to the invention.

すなわち後5本の如く、摘出した臓器1は一4℃程度の
冷蔵庫2に納められている潅流用容器3内の血流用環境
液4に浸漬されるが、この際当該臓器1は架台5のメツ
7ユ盤6上に載置されると共に、潅流用装置7の潅流液
供給パイプ8は、その先端部8′を当該臓器1の動脈1
aか門脈1bに連結し、その静脈1cは潅流用環境液4
に開口させ、この潅流用環境液4は、循環ポンプ9の流
入管1oおよび排出管11を、夫々泡流用容器3内に開
口させておくことで循環させ得るようになっており、上
記流入管1Qに形成の環境液熱交換部12が、冷却槽1
3のフロン等による冷媒14中に浸漬されている。
That is, like the last five organs, the extracted organ 1 is immersed in the blood flow environment fluid 4 in the perfusion container 3 stored in the refrigerator 2 at about -4°C. The perfusion fluid supply pipe 8 of the perfusion device 7 has its tip 8' connected to the artery 1 of the organ 1.
The vein a is connected to the portal vein 1b, and the vein 1c is connected to the perfusion environmental fluid 4.
The perfusion environmental liquid 4 can be circulated by opening the inflow pipe 1o and the discharge pipe 11 of the circulation pump 9 into the bubble flow container 3, respectively. The environmental liquid heat exchange section 12 formed in 1Q is connected to the cooling tank 1.
3 is immersed in a refrigerant 14 made of fluorocarbon or the like.

さて上記冷却槽13は、断熱しだ外槽16と中間槽16
との間に液体窒素LN2が貯留され、中間槽16と前記
冷媒14を収納した内槽17との間に、ヘリウムガスG
 Heが封入されたものである。
Now, the cooling tank 13 consists of an insulated outer tank 16 and an intermediate tank 16.
Liquid nitrogen LN2 is stored between the intermediate tank 16 and the inner tank 17 containing the refrigerant 14, and helium gas G
It is encapsulated with He.

そしてこの冷媒14には上記の環境液熱交換部12が没
消されているだけでなく、既述の潅流用装置7にあって
前記潅流液供給バイブ8に設けられている潅流液熱交換
部18も浸漬されている。
In this refrigerant 14, not only the above-mentioned environmental liquid heat exchange part 12 is eliminated, but also the perfusion liquid heat exchange part provided in the perfusion liquid supply vibe 8 in the above-mentioned perfusion device 7. 18 is also immersed.

そして上記潅流用装置7として図示されていいるものは
、血液均等液であるコリンズ液を収納の第1容器19、
ジメチルスルオキシドCD−MSO)かグリセリン等の
凍害防止剤が収納されている第2容器20そして血液均
等液である1φ生理的食塩水(500ml )に、ヘパ
リン(約045inA)等の薄液凝固防止剤を加えた混
合液が納められている第3容器21を具備し、これらの
各容器19.20,21は夫々第1、第2、第3開閉弁
22.23.24を介して送流ポツプ25に連結されて
いると共に、当該ポンプ25の流出側には前記の潅流液
熱交換部18を形成した層流液供給バイブ8か連結され
The perfusion device 7 shown in the figure includes a first container 19 for storing Collins fluid, which is a blood equivalent fluid;
A second container 20 contains a cryoprotectant such as dimethyl sulfoxide (CD-MSO) or glycerin, and a thin liquid anti-coagulant such as heparin (approx. A third container 21 is provided in which a mixed solution containing the agent is stored, and each of these containers 19, 20, 21 is supplied with fluid through first, second, and third on-off valves 22, 23, and 24, respectively. The pump 25 is connected to the pump 25, and to the outflow side of the pump 25, the laminar fluid supply vibe 8, which has the above-mentioned irrigation fluid heat exchange section 18, is also connected.

ておシ、−上記第1、第2、第3開閉弁21.22.2
3は冷媒温度制御機構26のコン[・ローラ27によっ
て適時開閉制御されるようになっている。
- The above first, second and third on-off valves 21.22.2
3 is controlled to open and close as appropriate by a controller 27 of a refrigerant temperature control mechanism 26.

とXで上記の冷媒温度制御機構26は、その昌度センザ
28、攪拌器29、ヒーター30が冷媒14にv潰され
ており、コントローラ27によりこれら部材を制御する
ことで、冷媒14は所望温度に調整自在となっている。
and It can be adjusted freely.

そこで上記装置を用いて本発明に係る方法を実施するに
は、先ず摘出した臓器1につき、可及的速やかにその動
脈Iaか門脈1bから1φ生理食塩水とかコリンズ液等
の血液均等潅流液と、−\バリン等の」r11液凝固剤
との混合液を注入して、当該臓器1の血管内血液と当該
混合液を置換するブこめの第1a流工程を行なうのであ
る。
Therefore, in order to carry out the method according to the present invention using the above-mentioned device, first, for the extracted organ 1, a 1φ blood perfusion solution such as physiological saline or Collins' solution is poured from the artery Ia or the portal vein 1b as soon as possible. and a liquid coagulant such as -\valine is injected to perform step 1a, which replaces the intravascular blood of the organ 1 with the mixed liquid.

第1曲流工程の実施には、臓器1を摘出後直ちに、約2
℃の1係生理的食塩水が入った図示しない容器内に投入
し、この状態で動脈1a等から前記混合液を、これまた
2℃の温度、すなわち同混合液である潅流液の凝固点以
前における近傍温度にて、注射器により住人し静脈1C
へ曲流させる手段をとることができる。
To carry out the first meandering process, immediately after removing organ 1, about 2
℃ into a container (not shown) containing physiological saline, and in this state, the mixture was poured from the artery 1a etc. at a temperature of 2℃, that is, before the freezing point of the perfusate, which is the same mixture. At near temperature, inject vein 1C with a syringe.
It is possible to take measures to bend the flow.

」二記の如き手段が最も当該工程を迅速に行なうことか
でき望ましいが、既述の図示装置を用いて当該工程を実
施するようにしてもよい。
2 is preferable because it can carry out the process most quickly, but it is also possible to carry out the process using the illustrated apparatus described above.

すなわち摘出臓器1を速やかに曲流用容器3の血流用環
境液4内にあって、架台6のメソシュ盤6」二に載置し
、コントローラ2了により第:3開閉弁24を開くと共
に送流ポンプ25を稼動して、第3v器21内の前記混
合液を、上記臓器1の動脈1a等から流入させ、静脈I
cから潅流用環境液4内に流出させるのである。
That is, the extracted organ 1 is immediately placed in the blood flow environment liquid 4 of the diversion container 3 and placed on the mesh plate 6'2 of the pedestal 6, and the controller 2 opens the third on-off valve 24 and sends the organ. The flow pump 25 is operated to cause the mixed liquid in the third v vessel 21 to flow into the artery 1a of the organ 1, etc., and into the vein I.
c into the perfusion environmental fluid 4.

尚図中25′は流−置割を示している。In the figure, 25' indicates the flow placement.

そしてこの際冷媒温度制御機構26のコノトローラ27
により、冷媒14の温度を制御し、これによって皿流用
環境液4と、血液均等潅流液である前記混合液とを何れ
も2℃程度とするのである。
At this time, the controller 27 of the refrigerant temperature control mechanism 26
Thus, the temperature of the refrigerant 14 is controlled, and thereby the temperature of both the environmental liquid 4 for dish diversion and the above-mentioned mixed liquid, which is a blood homogeneous perfusion liquid, is about 2°C.

捷だ上記工程にあって潅流用環境液4には、DMSO液
かグリセリンなどの、凍、害:防止剤を採択し、後に詳
記する次工程での便宜を計るようにしてもよいか、別途
当該混合液と同じく1係生理的食塩水とヘパリンとの混
合液を収納した曲流用容器を用意し、当該容器内で潅流
するのか最も望せしい。
In the above process, it may be possible to use an anti-freezing agent such as DMSO solution or glycerin as the perfusion environmental liquid 4 for convenience in the next process which will be detailed later. It is most desirable to separately prepare a container for perfusion containing a mixed solution of physiological saline and heparin in the same manner as the mixed solution, and perfuse within the container.

すなわち潅流液と潅流用環境液4とに同−液を選定する
ことにより、潅流用環境液としてのDMSO液か別液で
ある潅流液の流れている臓器内に滲透してし甘い、これ
により臓器1に対し溶血(赤血球の破壊)等の影響が生
ずるといった虞れを、絶滅できるからである。
That is, by selecting the same solution as the perfusate and the perfusion environmental liquid 4, the DMSO liquid as the perfusion environmental liquid or a separate perfusion liquid permeates into the organ through which it is flowing. This is because it is possible to eliminate the possibility that the organ 1 will be affected by hemolysis (destruction of red blood cells) or the like.

さて次に上記第1の血流工程が前記のように図示装置外
で行なわれたときは、血液と前記混合液とが置換された
臓器を、前記の如<DMSO液が潅流用環境液4として
収納されている潅流用容器3内にあって、架台5のメツ
シュ盤6に載置し、動脈1a寸たは門脈1bに層流液供
給パイプ8を連結することとなる。
Next, when the first blood flow step is performed outside the illustrated apparatus as described above, the organ in which the blood and the mixed liquid have been replaced is replaced with the DMSO liquid as described above. It is placed in a perfusion container 3 housed in a container 3, placed on a mesh board 6 of a pedestal 5, and a laminar fluid supply pipe 8 is connected to the artery 1a or the portal vein 1b.

そして寸だ図示装置を用いて第1a流工程を実施したと
きは、当該臓器1をDMSOiが納められている血流用
容器3に転移すること((なる。
Then, when step 1a is carried out using the illustrative apparatus, the organ 1 is transferred to the blood flow container 3 containing DMSOi.

そして第2曲流工程では、コントローラ27に」:す、
今度は第3開閉弁24を閉じて第2開閉弁23を開とす
ることで、DMSO液がグリセリン等の凍害防止剤を貯
溜している第2容器20から、送流ポンプ25により臓
器1へ当該潅流液を送るのである。
Then, in the second curve process, the controller 27
Next, by closing the third on-off valve 24 and opening the second on-off valve 23, the DMSO liquid is transferred from the second container 20 storing antifreeze agents such as glycerin to the organ 1 by the flow pump 25. The perfusion fluid is sent.

そしてこの際DMSO液たる油流環境o、4の温度は予
め2℃程度としておき、当該温度から前記の如く冷媒1
4の温度を、冷媒温度制御機構26により次第に降温さ
せていくことで、同環境液4と潅流液の温度を一4℃程
度、すなわち凍害防止剤たる当該潅流液の凝固点以前で
ある近傍降下温度とするのでちる。
At this time, the temperature of the oil flow environment o, 4 containing the DMSO liquid is set to about 2°C in advance, and from this temperature, the refrigerant 1
By gradually lowering the temperature of 4 using the refrigerant temperature control mechanism 26, the temperature of the environmental liquid 4 and the perfusate is reduced to about 14°C, that is, the near-lowering temperature that is below the freezing point of the perfusate, which is an antifreeze agent. That's why.

この際の降温速度としては0.5〜1℃j程度とするの
がよく、上記の一4℃に到達した時点で、当該温度にて
この臓器を、適宜定温装置により保存するのである。
The rate of temperature drop at this time is preferably about 0.5 to 1°C, and when the temperature reaches 14°C, the organ is stored at that temperature using an appropriate thermostat.

尚図示の装置を用いることで、潅流液と潅流用環境液4
とが等理化されるから、臓器1の内部と外表部の温度と
が均一化され、温度勾配をもたせないようにすることが
できるので、望ましい潅流工程を実施することができ、
また前記の如く臓器1が潅流用環境液4内にあって浮力
を受けた状態にあるため、空気中において所定台上に臓
器を置いて潅流した場合の如く、臓器がその自重により
台上に圧接され、この結果臓器の当該圧接による押潰箇
所に潅流液が充分流入せず、当該部分が死滅するといっ
た虞れを解消するコトができ、またメツシュ盤6上に載
置することで、板上載置に比し臓器1との当接面をも小
さくしている。
By using the illustrated device, perfusion fluid and perfusion environmental fluid 4 can be used.
Since these are equalized, the internal and external temperatures of the organ 1 are equalized, and there is no temperature gradient, so a desirable perfusion process can be carried out.
In addition, as mentioned above, since the organ 1 is in the perfusion environmental liquid 4 and is under buoyancy, the organ 1 is placed on a predetermined table in the air and perfused, and the organ 1 is placed on the table due to its own weight. This eliminates the possibility that the perfusion fluid will not flow sufficiently into the crushed part of the organ due to the pressure contact and the part will die.In addition, by placing it on the mesh board 6, The contact surface with the organ 1 is also made smaller compared to when placed on top.

さて上記第1、第2の潅流工程により凝固点以前の近傍
降下温度(−4℃)にて保持されている当該臓器1は、
これを必要に応じ移殖の用に供することになるが、当該
移動のだめの手段は、υII記凍結のだめの工程を実質
的に逆行させることによって実施することができる。
Now, the organ 1, which is maintained at a temperature drop near the freezing point (-4°C) through the first and second perfusion steps, is
This will be used for transplantation if necessary, and the means for transferring the vessel can be carried out by substantially reversing the freezing vessel step described in υII.

すなわち第1逆行潅流工程では、−4℃に保持されてい
る臓器を貯蔵箇所から取シ出して、前記の如く図示の装
置にセットしてコントローラ27により冷媒14の温度
を制御し、−4℃の状態から徐々に昇温させることで、
DMSO液でちる潅流用環境液4の温度と、第2開閉弁
23の開成によシ第2容器2oから送られる潅流液とし
てのDMSO液の温度を等温状態にて温度上昇させなが
ら潅流するのであり、当該潅流は前記潅流工程にて説示
した近傍温度たる2℃まで続行するのである。
That is, in the first retrograde perfusion step, the organ maintained at -4°C is taken out from the storage location, set in the illustrated apparatus as described above, and the temperature of the refrigerant 14 is controlled by the controller 27, and the organ is kept at -4°C. By gradually raising the temperature from the state of
Since the temperature of the perfusion environmental liquid 4 which is dripped with the DMSO liquid and the temperature of the DMSO liquid as the perfusion liquid sent from the second container 2o by opening the second on-off valve 23 are raised in an isothermal state, perfusion is performed. The perfusion continues until the temperature reaches 2°C, which is around the temperature described in the perfusion step.

次に第2逆行潅流工程として、上記第2開閉弁23を閉
じ、第1開閉弁22をコントローラ27によシ開として
第1容器19のコリンズ液たる血液均等液を、送流ポン
プ25によシ臓器1に送るのであるが、この際コントロ
ーラ27によシ冷媒14の温度を徐々に上昇させて、血
液均等液としての当該潅流液を、前記2℃から体温とな
るまで昇温させるのである。
Next, as a second retrograde perfusion step, the second on-off valve 23 is closed, the first on-off valve 22 is opened by the controller 27, and the blood equivalent liquid, which is the Collins liquid, in the first container 19 is pumped through the flow pump 25. At this time, the controller 27 gradually increases the temperature of the refrigerant 14 to raise the temperature of the perfusate, which is a blood equivalent fluid, from 2° C. to body temperature. .

そしてこの際潅流液をDMSO液から血液均等液に切替
えた時点、つま!12℃の状態にて当該血液均等籠流液
の温度を暫次、そのままの温度に保持した後、前記の如
く徐々に昇温させながらの潅流に移行させるのがよく、
このようにすることで臓器1の細胞に対するショックを
減殺することができる。
At this time, when I switched the perfusion fluid from DMSO to blood equivalent fluid, it was time to go! It is preferable to maintain the temperature of the blood homogenizer at 12° C. for a while, and then start perfusion while gradually increasing the temperature as described above.
By doing so, the shock to the cells of organ 1 can be reduced.

かくして逆行潅流工程の終った臓器には所要の血液を供
与して移殖の用に供すればよく、この際当該血液にはヘ
パリン等の血液凝固防止剤を付与するのが望ましい。
In this way, the organ after the retrograde perfusion process can be supplied with the necessary blood for transplantation, and at this time it is desirable to add a blood coagulation inhibitor such as heparin to the blood.

本願第1発明によれば、従来法の如く単に面前に魅夕で
l1il器にコリンズ液を泡箭愼才4℃爬度で保存しよ
うとするのではなく、第1潅流工程においては、摘出し
た臓器の動脈または門脈から、コリンズ液、生理的食塩
水等の血液均等潅流液とペバリンなどの血液凝固防止剤
との混合液を注入して、静脈から排出させる潅流を、当
該潅流液の凝固点以前である近傍温度(2℃程度)にて
行なうようにしたから、臓器は温度急変による影響を受
けずに、しかも1〜2℃といった未た臓器細胞の代謝が
活発なときに、血液と均等な栄養分を、血液凝固の虞れ
なしに補給することができる。
According to the first invention of the present application, instead of simply trying to store Collins solution in a 11-liter vessel at 4°C in the presence of the liquid as in the conventional method, in the first perfusion step, A mixture of a blood equalizing perfusion solution such as Collins solution or physiological saline and a blood coagulation inhibitor such as Peverin is injected from the artery or portal vein of an organ, and the perfusion is discharged from the vein until the coagulation point of the perfusion solution is applied. Since we previously performed the test at a temperature close to a certain level (about 2℃), the organs are not affected by sudden changes in temperature, and at a temperature of 1 to 2℃, when the metabolism of organ cells is active, the temperature is even with blood. nutrients can be supplied without the risk of blood clotting.

そして第2油流工程にあっては、上記混合液に替えてジ
メチルスルオキ7ド、グリセリン等の凍害防止剤を、上
記近傍温度から徐々に降温させながら、当該防止剤がそ
の凝固点以前の近傍降下温度(−4℃程度)になるまで
潅流し、その後も略当該近傍降下温度にて臓器を貯蔵す
るようにしたから、臓器は一4℃程度の低温度条件下に
おかれながら、凍結してしまうものでないから臓器細胞
内の水分が、凍結によって細胞を破壊するといった支障
が生ぜず、これにより長期にわたる、死滅させることの
ない臓器の貯蔵が可能となる。
In the second oil flow step, instead of the above-mentioned mixed liquid, a freeze damage inhibitor such as dimethyl sulfoxide or glycerin is added, while the temperature is gradually lowered from the above-mentioned vicinity, until the temperature of the inhibitor is near the freezing point. The organs were perfused until the temperature dropped (approximately -4°C), and then the organs were stored at approximately the same temperature drop, so the organs were kept at a low temperature of about -4°C and were not frozen. Since the organ cells are not permanently damaged, there is no problem such as the water inside the organ cells destroying the cells due to freezing, and this makes it possible to store the organ for a long period of time without dying.

次に第2発明では、発1発明(4:より貯蔵しておいた
冷却臓器を、移殖可能な状態とするまでの方法を提供す
るもので、当該発明では第1発明を可逆的に実施する発
想に基づき、第1発明による貯蔵臓器の動脈または門脈
から、前記凍害防止剤としての潅流液を、上記保存温度
から徐々に昇温させながら静脈へ潅流する第1逆行潅流
工程を、前記近傍温度となるまで続行し、さらに凍害防
止剤たる上記潅流液に替えて、前記血液均等潅流液とし
ての潅流液を上記近傍温度から徐々に昇温させながら静
脈へ潅流する第2逆行濯流工程を、体温に昇温する丑で
続けた後、当該臓器に所要の血液を供力するようにした
から、保存臓器を損することなく移殖可能な状態に復さ
せることができる。
Next, the second invention provides a method for bringing stored frozen organs into a transplantable state from the first invention (4), and this invention reversibly implements the first invention. Based on this idea, the first retrograde perfusion step of perfusing the perfusate as the cryoprotectant from the artery or portal vein of the storage organ according to the first invention into the vein while gradually increasing the temperature from the storage temperature is performed as described above. A second retrograde irrigation step is continued until the temperature reaches the vicinity, and then, instead of the above-mentioned perfusate as a cryoprotectant, the perfusate as the blood equalizing perfusion liquid is perfused into the vein while gradually raising the temperature from the above-mentioned vicinity temperature. After continuing to raise the temperature to the body temperature, the necessary blood is supplied to the organ concerned, so the preserved organ can be returned to a transplantable state without damage.

さら(C本願第3発明では、上記第2発明にあって体温
に昇温するまで行なわれる第2逆行工程にあって、当該
近傍温度による油流を暫時続けるようにした後にあって
、除々に外温させる方法としたので、臓器の細胞に温度
変化による急なンヨツクを与えることなく、より安定し
た望ましい結果全行ることができる。
Furthermore, in the third invention of the present application, in the second retrograde step in the second invention, which is carried out until the temperature rises to body temperature, after the oil flow is continued for a while at the temperature in the vicinity, Since the method uses ectotherm, it is possible to achieve more stable and desired results without subjecting the organ cells to sudden shock due to temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る臓器の保存方法を実施するのに用い得
る混流用装置の使用状態を示す一部切欠の全体説明図で
ある。 1・・・・・臓 器 Ia・・・・動 脈 Ib・・・・門 脈 re・・・・静 脈 特許出願人 代理人 弁理士 井 藤 誠
The figure is an overall explanatory view, partially cut away, showing the state of use of the mixed flow device that can be used to carry out the organ preservation method according to the present invention. 1... Organ Ia... Artery Ib... Portal vein re... Vein Patent applicant's agent Makoto Ito, patent attorney

Claims (2)

【特許請求の範囲】[Claims] (1) 摘出した臓器の動脈または門脈がら、コリンズ
液、生理的食塩水等の血液均等潅流液とヘパリンなどの
血液凝固防止剤との混合液を注入して、静脈から排出さ
せる第1潅流工程を、当該潅流液の凝固点以前である近
傍温度にて行ない、次にこの混合液に替えてジメチルス
ルオキ/、ド、グリセリン等の凍害防止剤を、上記近傍
温度から徐々に降温させながら潅流する第2潅流工程を
、この凍害防止剤がその凝固点以前の近傍降下温度とな
る1で続け、当該臓器を実質的にこの近傍降下温度にて
貯蔵するようにしたことを特徴とする臓器の保存方法。
(1) First perfusion in which a mixture of a blood-equalizing perfusion solution such as Collins solution or physiological saline and a blood clotting inhibitor such as heparin is injected into the artery or portal vein of the removed organ and drained through the vein. The process is carried out at a temperature near the freezing point of the perfusate, and then, in place of this mixed solution, a frost damage inhibitor such as dimethyl sulfochloride, glycerin, etc. is perfused while gradually lowering the temperature from the above temperature. Preservation of an organ, characterized in that the second perfusion step is continued at 1, at which the cryoprotectant has a temperature drop near its freezing point, so that the organ is stored substantially at a temperature drop near this temperature. Method.
(2)摘出した臓器の動脈または門脈がら、コリンズ液
、生理的食塩水等の血液均等潅流液と注入して、静脈か
ら排出させる第1潅流工程を、尚該潅流液の凝固点以前
である近傍温度にて行ない、次にこの混合液に替えてジ
ノチルスルオキシド、グリセリン等の凍害防止剤を、上
記近傍温度から徐々に降温させながら潅流する第2潅流
工程を、この凍害防止剤がその凝固点以前の近傍降下温
度となるまで続け、当該臓器を実質的にこの近傍降下温
度にて貯蔵し、この貯蔵臓器の動脈または門脈から、前
記凍害防止剤としての潅流液を、上記保存温度から徐々
に列部させながら静脈へ血流する第1逆行准流工程を、
前記近傍温度となる才で続行し、さらに凍害防止剤たる
上記潅流液に替えて、前記血液均等潅流液としての潅流
液を上記近傍温度から徐々に列温させながら静脈へ潅流
する第2逆行濯流工程を、体温に昇温する寸で続けた後
、当該臓器に所要の血液を供与するようにしたことを特
徴とする臓器の保存方法。 ノズ液、生理的食塩水等の血液均等潅流液とペパリンな
どの血液凝固防止剤との混合液を注入して、静脈かう排
出させる第1潅流工程を、当該潅流液の凝固点以前であ
る近傍温度にて行ない、次にこの混合液に替えてジメチ
ルスルオキシド、グリセリン等の凍害防止剤を、上記近
傍温度から徐々に降温させながら潅流する第2潅流工程
を、当該凍害防止剤がその凝固点以前の近傍降下温度と
なるまで続け、当該臓器を実質的にこの近傍降下温度に
て貯蔵し、この貯蔵臓器の動脈または門脈から、前記凍
害防止剤としての潅流液を、上記保存温度から徐々に昇
温させながら静脈へ潅流する第1逆行潅流工程を、前記
近傍温度となるまで続行し、さらに凍害防止剤たる上記
潅流液に替えて、前記血液均等潅流液としての潅流液を
上記近傍温度から徐々に昇温させながら静脈へ潅流する
第2逆行海流工程を、体温に昇温するまで続行するに際
し、上記近傍温度による潅流を暫時続けた後に昇温させ
るようにし、同工程を終えた臓器に所要の血液を供与す
るようにしたことを特徴とする臓器の保存方法。
(2) The first perfusion step is to inject a blood equivalent perfusate such as the artery or portal vein of the excised organ, Collins solution, or physiological saline, and drain it from the vein before the solidification point of the perfusate. The second perfusion step is carried out at a temperature in the vicinity of the above temperature range, and then replaces this mixed solution with a freeze damage inhibitor such as dinotyl sulfoxide or glycerin while gradually lowering the temperature from the above temperature range. The organ is stored at a temperature substantially below the freezing point, and the perfusate as a cryoprotectant is supplied from the artery or portal vein of the stored organ from the storage temperature. The first retrograde flow process, in which blood flows into the vein gradually in parallel,
The process continues until the temperature reaches the above-mentioned vicinity, and then, in place of the above-mentioned perfusate as a cryoprotectant, the perfusate as the blood-equalizing perfusate is perfused into the vein while gradually increasing the temperature from the above-mentioned vicinity. A method for preserving an organ, characterized in that the blood flow process is continued until the temperature reaches body temperature, and then the necessary blood is supplied to the organ. The first perfusion step, in which a mixture of a blood equalizing perfusate such as a nozzle solution or physiological saline and a blood coagulation inhibitor such as pepperin is injected and drained through the veins, is performed at a temperature near the freezing point of the perfusate. Then, in place of this mixed solution, a second perfusion step is performed in which a cryoprotectant such as dimethyl sulfoxide or glycerin is perfused while gradually lowering the temperature from the above-mentioned vicinity, until the cryoprotectant is below its freezing point. The organ is then stored at substantially this near-falling temperature, and the perfusate as the cryoprotectant is gradually raised from the storage temperature through the artery or portal vein of the stored organ. The first retrograde perfusion step of perfusing the vein while warming it is continued until the temperature reaches the above-mentioned vicinity, and then, in place of the above-mentioned perfusate as a cryoprotectant, the perfusate as the blood-equalizing perfusate is gradually added from the above-mentioned temperature to the above-mentioned vicinity. When continuing the second retrograde current step in which perfusion is carried out into the veins while raising the temperature to body temperature, the temperature is raised after the perfusion at the above-mentioned temperature has been continued for a while, and the organ after the step is given the required amount. A method for preserving organs characterized by donating the blood of
JP17018883A 1983-09-14 1983-09-14 Method for preserving viscus Granted JPS6061501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17018883A JPS6061501A (en) 1983-09-14 1983-09-14 Method for preserving viscus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17018883A JPS6061501A (en) 1983-09-14 1983-09-14 Method for preserving viscus

Publications (2)

Publication Number Publication Date
JPS6061501A true JPS6061501A (en) 1985-04-09
JPS6156201B2 JPS6156201B2 (en) 1986-12-01

Family

ID=15900310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17018883A Granted JPS6061501A (en) 1983-09-14 1983-09-14 Method for preserving viscus

Country Status (1)

Country Link
JP (1) JPS6061501A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267001A (en) * 1985-09-17 1987-03-26 Hisanori Uchida Preservation of transplanted organ
WO1994026103A1 (en) * 1993-05-07 1994-11-24 Chugai Seiyaku Kabushiki Kaisha Organ preservative
EP0664080A1 (en) * 1994-01-25 1995-07-26 Kabushiki Kaisha Seitai Kagaku Kenkyusho Method for living-tissue preservation and perfusate
US6659107B2 (en) 1998-10-09 2003-12-09 Qlt Inc. Method to prevent xenograft transplant rejection
JP2013075888A (en) * 2011-09-15 2013-04-25 Tokyo Metropolitan Univ Organ preservation device
WO2014038473A1 (en) * 2012-09-08 2014-03-13 株式会社オーガンテクノロジーズ Method for maintaining organ or tissue for transplantation use for long period

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191822U (en) * 1987-05-28 1988-12-09

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267001A (en) * 1985-09-17 1987-03-26 Hisanori Uchida Preservation of transplanted organ
JPH0688881B2 (en) * 1985-09-17 1994-11-09 久則 内田 How to store transplanted organs
WO1994026103A1 (en) * 1993-05-07 1994-11-24 Chugai Seiyaku Kabushiki Kaisha Organ preservative
EP0664080A1 (en) * 1994-01-25 1995-07-26 Kabushiki Kaisha Seitai Kagaku Kenkyusho Method for living-tissue preservation and perfusate
US6659107B2 (en) 1998-10-09 2003-12-09 Qlt Inc. Method to prevent xenograft transplant rejection
JP2013075888A (en) * 2011-09-15 2013-04-25 Tokyo Metropolitan Univ Organ preservation device
WO2014038473A1 (en) * 2012-09-08 2014-03-13 株式会社オーガンテクノロジーズ Method for maintaining organ or tissue for transplantation use for long period
JPWO2014038473A1 (en) * 2012-09-08 2016-08-08 株式会社オーガンテクノロジーズ Long-term maintenance method of organ or tissue for transplantation
US9877474B2 (en) 2012-09-08 2018-01-30 Organ Technologies, Inc. Method for maintaining organ or tissue for transplantation use for long period
JP2018154617A (en) * 2012-09-08 2018-10-04 株式会社オーガンテクノロジーズ Long term maintenance method of organ or tissue for transplanting

Also Published As

Publication number Publication date
JPS6156201B2 (en) 1986-12-01

Similar Documents

Publication Publication Date Title
CA1200507A (en) Method of preserving organ and apparatus for preserving the same
JPS62114901A (en) Method of preserving and storing biological material
US9314015B2 (en) Method and apparatus for prevention of thermo-mechanical fracturing in vitrified tissue using rapid cooling and warming by persufflation
US4471629A (en) Method of freezing and transplant of kidneys and apparatus
US6519954B1 (en) Cryogenic preservation of biologically active material using high temperature freezing
US4462215A (en) Method of preserving organ and apparatus for preserving the same
US7780712B2 (en) Laparoscopic kidney cooling device
US20100233670A1 (en) Frozen Viable Solid Organs and Method for Freezing Same
US5879876A (en) Continuous-multi-step dilution process and apparatus, for the removal of cryoprotectants from cryopreserved tissues
JPS6061501A (en) Method for preserving viscus
Ishine et al. A histological analysis of liver injury in freezing storage
Ishine et al. Transplantation of mammalian livers following freezing: vascular damage and functional recovery
JPS6156202B2 (en)
JPS6061502A (en) Perfusion method and apparatus for preserving viscus
JPS6155881B2 (en)
JP3239418B2 (en) Method and apparatus for storing and regenerating living organs
JP2632531B2 (en) How to preserve organs
JPS59184101A (en) Apparatus for storing and thawing organ
Mihara et al. MRI, Magnetic resonance influenced, organ freezing method under magnetic field
CN209995212U (en) device for cryopreservation of large-volume biological samples
WO2023106036A1 (en) Organ preservation device and organ preservation method
Hawthorne et al. Pancreas Retrieval for Whole Organ and Islet Cell Transplantation
Goldaracena et al. Subnormothermic and Normothermic Ex Vivo Liver Perfusion as a Novel Preservation Technique
Muss et al. Current opinion: advances in machine perfusion and preservation of vascularized composite allografts–will time still matter?
Olin et al. Topical Cooling of the Heart: A Valuable Adjunct to Cold Cardioplegia