JPS6061000A - Formation of gallium arsenide layer - Google Patents

Formation of gallium arsenide layer

Info

Publication number
JPS6061000A
JPS6061000A JP58167455A JP16745583A JPS6061000A JP S6061000 A JPS6061000 A JP S6061000A JP 58167455 A JP58167455 A JP 58167455A JP 16745583 A JP16745583 A JP 16745583A JP S6061000 A JPS6061000 A JP S6061000A
Authority
JP
Japan
Prior art keywords
substrates
gallium
gaseous
gacl2
gallium arsenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58167455A
Other languages
Japanese (ja)
Inventor
Hidechika Yokoyama
横山 英親
Moriatsu Kondou
近藤 守厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Original Assignee
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUJIYUNDO KAGAKU KENKYUSHO KK, Kojundo Kagaku Kenkyusho KK filed Critical KOUJIYUNDO KAGAKU KENKYUSHO KK
Priority to JP58167455A priority Critical patent/JPS6061000A/en
Publication of JPS6061000A publication Critical patent/JPS6061000A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Abstract

PURPOSE:To form efficiently GaAs layers having high uniformity under mild reaction conditions in a high yield using inexpensive starting materials by bringing vaporized GaCl2 and vaporized As (compound) into contact with substrates kept in a high energy state. CONSTITUTION:Ge wafers 9 are placed on a jig 8 as substrates, and GaCl2 is charged into an evaporator 18. A reaction tube 4 is evacuated with a vacuum pump 16 while introducing gaseous Ar 19. Gaseous Ar 2 contg. AsH3 is introduced, the introduction of gaseous Ar 19 is reduced, and the substrates are heated with an oven 3. At the same time, the GaCl2 in the evaporator 18 is heated with a heater 10. The substrates 9 are kept at 500 deg.C, and when the GaCl2 is heated to 190 deg.C, gaseous Ar is introduced from a pipe 1 for 0.5hr. After stopping the introduction, the heating with the oven 3 and the evacuation with the pump 16 are stopped, and the tube 4 is filled with a gaseous mixture of Ar with AsH3 under ordinary pressure. The tube 4 is then allowed to cool, and GaAs layers deposited on the substrates 9 are taken out.

Description

【発明の詳細な説明】 本発明は砒化ガリウムの層を気相から固体表面に析出さ
せる方法に関し、特に気化した塩化ガリウム(U)と気
化した砒素または砒素化合物とが共存する気相から基体
表面に砒化ガリウム半導体層を析出させる方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for depositing a layer of gallium arsenide on a solid surface from a gas phase, and particularly to a method for depositing a layer of gallium arsenide on a substrate surface from a gas phase in which vaporized gallium chloride (U) and vaporized arsenic or an arsenic compound coexist. The present invention relates to a method for depositing a gallium arsenide semiconductor layer.

従来、基体表面に砒化ガリウム層を析出させる方法とし
て、気化した塩化ガリウム(III)と気化した砒素化
合物とを、水素を含む還元性雰囲気中で加熱された基体
の表面に接触させることが知られている。しかしこの従
来の方法は、塩化ガリウム(III)を還元する化学的
過程が必須であるため、基体の温度を約700℃以上に
しなければならず、それでもなお還元効率が低いので、
希望する厚さの砒化ガリウム層を得るためには装置の稼
働効率も低く、満足できるものではなかった。
Conventionally, as a method for depositing a gallium arsenide layer on the surface of a substrate, it has been known to bring vaporized gallium (III) chloride and vaporized arsenic compound into contact with the surface of the substrate heated in a reducing atmosphere containing hydrogen. ing. However, since this conventional method requires a chemical process to reduce gallium (III) chloride, the temperature of the substrate must be raised to approximately 700°C or higher, and even then, the reduction efficiency is low.
In order to obtain a gallium arsenide layer of the desired thickness, the operating efficiency of the apparatus was also low, which was unsatisfactory.

また、前記のように金属化合物の混合ガスを熱分解する
方法において、1分子中に2種の金属を含む物質を原料
として使用する方法(特公昭5l−13554)が提案
されており、形成される半導体結晶の化学量論比の改善
には有効であるが、前述のような従来法の欠点を改良し
ようとしたものではなかった。
In addition, in the method of thermally decomposing a mixed gas of metal compounds as described above, a method has been proposed (Japanese Patent Publication No. 51-13554) in which a substance containing two types of metals in one molecule is used as a raw material. Although this method is effective in improving the stoichiometric ratio of semiconductor crystals, it was not intended to improve the drawbacks of the conventional method as described above.

更に、トリメチルガリウムなどの有機化合物を使用する
方法が提案されているが、このような改良法は、より低
温での砒化ガリウム層の形成の効率は高いが、原料の合
成や精製が必ずしも容易ででないため、どうしてもコス
ト高になる点に問題があった。
Furthermore, methods using organic compounds such as trimethyl gallium have been proposed, but although these improved methods are highly efficient in forming gallium arsenide layers at lower temperatures, the synthesis and purification of the raw materials are not necessarily easy. Therefore, there was a problem in that the cost was inevitably high.

本発明者は、砒化ガリウム層を気相成長させる方法につ
いて種々研究を行った結果、塩化ガリウム(II)が熱
などのエネルギーによって容易に分解してガリウムと塩
化ガリウム(I[[)とを生ずる現象に着目し、これを
ヒントとして更に研究を進めた結果本発明に到達したも
のである。
As a result of conducting various studies on methods for vapor phase growth of gallium arsenide layers, the present inventor found that gallium (II) chloride is easily decomposed by energy such as heat to produce gallium and gallium chloride (I[[). The present invention was achieved as a result of paying attention to this phenomenon and proceeding with further research using this as a hint.

ずなわぢ、本発明は、気化した塩化ガリウム(■)を、
気化した砒素または砒素化合物と共にキャリヤガス中に
混合し、高エネルギー状態にある基体に接触させること
によって砒化ガリウム層を形成する方法である。
According to the present invention, vaporized gallium chloride (■) is
In this method, a gallium arsenide layer is formed by mixing vaporized arsenic or an arsenic compound in a carrier gas and bringing the mixture into contact with a substrate in a high energy state.

本発明に於ては、容易に高純度に精製することができま
た比較的に安価な原料である塩化ガリウム(II)を使
用し、制御しやすい温和な反応条件下において、高能率
でかつ高収率で、均一性の高い砒化ガリウム層を基体上
に形成することができるので、半導体素子の製造などに
利用するときは、従来に較べてはるかに経済的に、性能
の均一な製品を効率よく得ることができるの途が開けた
のである。
In the present invention, gallium (II) chloride, which can be easily purified to a high purity and is a relatively inexpensive raw material, is used, and under mild reaction conditions that are easy to control, high efficiency and high performance can be achieved. Since a gallium arsenide layer with high yield and high uniformity can be formed on a substrate, it is much more economical than conventional methods to produce products with uniform performance when used in the manufacture of semiconductor devices. This opened the door for me to be able to obtain good results.

従来技術による砒化ガリウム層の形成は次の(1)式に
よる反応を素反応として利用す 2 G a Cl 3 + 3 H2→2 G a +
 6 HCII −(1するために、原料として塩化ガ
リウム(Ill)と水素と砒素又は砒素化合物のような
砒素源との三種類が必要であり、水素分圧を高くしない
と反応が全く進まないかあるいは非常に遅く、また水素
分圧が高すぎると気相反応が主反応となって結果的に砒
化ガリウム層の均一性が低下するという問題があった。
The formation of a gallium arsenide layer according to the conventional technology utilizes the reaction according to the following equation (1) as an elementary reaction 2 Ga Cl 3 + 3 H2 → 2 Ga +
6 In order to produce HCII-(1), three types of raw materials are required: gallium chloride (Ill), hydrogen, and an arsenic source such as arsenic or an arsenic compound, and the reaction will not proceed at all unless the hydrogen partial pressure is increased. Otherwise, if the hydrogen partial pressure is too high, the gas phase reaction becomes the main reaction, resulting in a problem that the uniformity of the gallium arsenide layer deteriorates.

これに対し、本発明では、(2)の式による3GaCI
12−Ga+2GaCA3−(2)反応を素反応として
利用するので、原料とし才は塩化ガリウム(n)と砒素
源だりの二種類でよく、前述のような問題が生じない。
On the other hand, in the present invention, 3GaCI according to the formula (2)
Since the 12-Ga+2GaCA3-(2) reaction is used as an elementary reaction, two types of raw materials, gallium chloride (n) and an arsenic source, are sufficient, and the above-mentioned problems do not occur.

また、(1)の反応が700℃を必要とするのに対し、
(2)の反応は2゜OoCでも進み、500℃以上では
非常に速くかつ定量的に進行する。そして砒素源が共存
するので、400℃以上では単体のガリウムが析出する
と同時に、直ちに砒化ガリウムの層が形成されるのであ
る。
Also, while the reaction (1) requires 700°C,
The reaction (2) proceeds even at 2°OoC, and proceeds very rapidly and quantitatively at 500°C or higher. Since an arsenic source coexists, a layer of gallium arsenide is immediately formed at the same time as single gallium is precipitated at temperatures above 400°C.

3GaCj22 +As−4GaAs+2GaCff3
・・・(3) 本発明における砒素原料としては単体の砒素でもよく、
アルシン(ASH3)のような砒素化合物であってもよ
い。また砒素化合物が塩化砒素(AsCβ3)であるよ
うな場合には、析出したガリウムとの間で次のような反
応が起って砒素が還元生成するので、砒化ガリウムの収
率は低下するけれども、砒化ガリウム層の形成に特に支
障がない。
3GaCj22 +As-4GaAs+2GaCff3
...(3) The arsenic raw material in the present invention may be simple arsenic,
It may also be an arsenic compound such as arsine (ASH3). In addition, when the arsenic compound is arsenic chloride (AsCβ3), the following reaction occurs with the precipitated gallium and arsenic is reduced and produced, so the yield of gallium arsenide decreases. There is no particular problem in forming the gallium arsenide layer.

AsCj23+Ga−As4−G a C7!3− (
4)このように砒素化合物として塩化砒素のようなハロ
ゲン化物を用いる場合には、キャリヤガス中に水素を含
有させることにより砒素の還元を促進することができる
ので、砒化ガリウムの収率の低下を防ぐことが可能であ
る。しかし、本発明においては、水素の存在は塩化ガリ
ウム(III)の還元に対してはもちろん、塩化ガリウ
ム(II)からのガリウムの単離析出に関し本質的な意
義はないが、より高温の反応条件を選択するときは塩化
ガリウム(III)の還元が起りうるので、従来技術の
’lノ果も加わって一層の高収率が期待できる。
AsCj23+Ga-As4-G a C7!3- (
4) In this way, when a halide such as arsenic chloride is used as the arsenic compound, the reduction of arsenic can be promoted by containing hydrogen in the carrier gas, so a decrease in the yield of gallium arsenide can be prevented. It is possible to prevent this. However, in the present invention, the presence of hydrogen has no essential significance not only for the reduction of gallium (III) chloride but also for the isolation and precipitation of gallium from gallium (II) chloride, but under the higher temperature reaction conditions. When selecting , reduction of gallium (III) chloride can occur, so even higher yields can be expected due to the advantages of the prior art.

キャリヤガスとしては、不活性気体、例えばアルゴン、
ヘリウムなどを用いることができ、この中には前述した
ように反応雰囲気を還元性に保つためのガスとして水素
などを含有させることもできる。
As carrier gas, inert gases such as argon,
Helium or the like can be used, and hydrogen or the like can also be contained therein as a gas for keeping the reaction atmosphere reducing, as described above.

砒化ガリウム層を形成するための基体は高エネルギー状
態にある必要があるが、このエネルギーは熱、光、電子
線等反応を進行させ得るものであれば何でもよい。この
エネルギーは基体表面だけに集中して与えられるのが最
も好ましいが、経済性その他を考慮して赤外線又は熱伝
導によって基体表面を高温に保つのが便利である。この
場合、基体の温度は400℃以上が好ましく、450 
’C以上がより好ましい。
The substrate for forming the gallium arsenide layer needs to be in a high energy state, and this energy may be anything that can cause the reaction to proceed, such as heat, light, or electron beams. It is most preferable that this energy be concentrated and applied only to the substrate surface, but in consideration of economic efficiency and other considerations, it is convenient to maintain the substrate surface at a high temperature by infrared rays or thermal conduction. In this case, the temperature of the substrate is preferably 400°C or higher, and 450°C or higher.
'C or higher is more preferable.

砒化ガリウム層を形成するための基体としては、半導体
の基体として用いうるものであれば何でもよいが、砒化
ガリウムの単結晶層を得るためには、たとえば単結晶砒
化ガリウム、単結晶ゲルマニウム、サファイアなどの砒
化ガリウムと同−若しくは近接した枠子定数を有する単
結晶基体を用いるのが好ましい。このような単結晶基体
上に形成された砒化ガリウム層は、基体の結晶軸と同一
の結晶軸を有する単結晶となり、半導体素子を製造する
のに特に好適のものである。
The substrate for forming the gallium arsenide layer may be any substrate as long as it can be used as a semiconductor substrate, but in order to obtain a single crystal layer of gallium arsenide, for example, single crystal gallium arsenide, single crystal germanium, sapphire, etc. It is preferable to use a single crystal substrate having a frame constant equal to or close to that of gallium arsenide. A gallium arsenide layer formed on such a single crystal substrate becomes a single crystal having the same crystal axis as that of the substrate, and is particularly suitable for manufacturing semiconductor devices.

以下、図面と実施例に基づいて、本発明の詳細な説明す
る。
Hereinafter, the present invention will be described in detail based on drawings and examples.

図面は、本発明による一実施装置例の断面構成図である
。符号4は、直径30鰭長さ6001の石英ガラス反応
管であり、一端12は、原料気体導入のための管14と
15および不活性気体導入のための管19を融着接続し
導入管開口部以外は融封されており、反対側の開放型は
真空ポンプ16に接続されている。6は、圧力計である
。9は、反応管内の原料導入端より約50t11の位置
から順次載置された基体であり、8は、基体を支える石
英製の治具であり、5は、温度測定端である。3ば、基
体を加熱するための加熱長300 mya炉である。1
8は、塩化ガリウム(n)を収納し蒸発させるための石
英製の蒸発器であり、15の導入管によって反応管と接
続しており、1の導入管にょヮて、塩化カリウム(II
)を気化促進させるために導入されるアルゴンガスの供
給系と接続している。17は、18の内に置かれた塩化
ガリウム(■)であり、10は、蒸発器18と導入管1
5を一定温度に加温するための加熱器であり、11は、
加熱器10の温度測定用の温度計である。2は、アルコ
ンで希釈されたアルシンの導入管であり、一端は反応管
4に他端はアルシンとアルゴン混合気体供給系に接続さ
れている。19は、不活性気体の供給管であり、必要に
応じ、不活性気体を反応管内に供給できるようになって
いる。
The drawing is a cross-sectional configuration diagram of an example of an apparatus according to the present invention. Reference numeral 4 denotes a quartz glass reaction tube with a diameter of 30 and a fin length of 6001, and one end 12 has an inlet tube opening formed by fusion-connecting tubes 14 and 15 for introducing raw material gas and a tube 19 for introducing inert gas. The other side is fused and sealed, and the open type on the opposite side is connected to a vacuum pump 16. 6 is a pressure gauge. Reference numeral 9 denotes a base body placed sequentially from a position approximately 50t11 from the raw material introduction end in the reaction tube, 8 a jig made of quartz that supports the base body, and 5 a temperature measurement end. 3. A heating length 300 mya furnace for heating the substrate. 1
8 is a quartz evaporator for storing and evaporating gallium chloride (n), which is connected to the reaction tube through an introduction tube 15;
) is connected to an argon gas supply system that is introduced to promote vaporization. 17 is gallium chloride (■) placed in 18, 10 is evaporator 18 and introduction pipe 1
11 is a heater for heating 5 to a constant temperature, and 11 is a heater for heating 5 to a constant temperature.
This is a thermometer for measuring the temperature of the heater 10. Reference numeral 2 denotes an inlet tube for arsine diluted with alcone, one end of which is connected to the reaction tube 4 and the other end connected to an arsine and argon mixed gas supply system. Reference numeral 19 denotes an inert gas supply pipe, which can supply inert gas into the reaction tube as required.

以上のような装置を用いて行った本発明の実施例を次に
示す。
Examples of the present invention using the above-described apparatus will be described below.

実施例 気体としてゲルマニウムのウェハを治具8の」ニに6枚
載置し、一方塊化ガリウム(II)50gを蒸発器18
内に仕込んだ。
As an example gas, six germanium wafers were placed on the jig 8, and 50 g of agglomerated gallium (II) was placed on the evaporator 18.
I put it inside.

先づ、19よりアルゴンガスを常温常圧換算で毎分15
0m7!の割合で導入しつつ真空ポンプ16により排気
し、反応管内圧を10’mHgに保持した。0.5時間
経過後、2より、アルシンを5体積パーセント含むアル
ゴンガスを常温常圧換算で毎分120mβの割合で導入
し、ついで19からのアルゴンガスの導入を常温常圧換
算で毎分30m1に低減し、炉3により基体を加熱した
。同時に加熱器10により、蒸発器18中の塩化ガリウ
ム(n)を加熱した。
First, from 19, argon gas is converted to 15 per minute at room temperature and normal pressure.
0m7! The reactor was introduced at a rate of 100 mHg while being evacuated using the vacuum pump 16, and the internal pressure of the reaction tube was maintained at 10' mHg. After 0.5 hours, argon gas containing 5% by volume of arsine was introduced from 2 at a rate of 120 mβ per minute at room temperature and normal pressure, and then argon gas was introduced from 19 at a rate of 30 m1 per minute at room temperature and normal pressure. The substrate was heated in the furnace 3. At the same time, the heater 10 heated gallium chloride (n) in the evaporator 18 .

基体温度を5の温度測定端で測定し、500“Cに保つ
ようにしたのち、塩化ガリウム(II)の温度が、温度
計11で測定して190℃になった時、1の導入管より
アルゴンガスを常温常圧換算で毎分30mβの割合で導
入を開始し、19からのアルゴンガスの導入を停止した
。加熱器10の温度を190℃に保持しなから1からの
アルゴンガス導入を0.5時間続けたのち停止し、つづ
いて炉3による加熱と真空ポンプによる排気を停止し、
反応管内が密圧のアルゴンとアルシンの混合基体で満た
されるように保ったまま放冷した。
After measuring the temperature of the substrate with the temperature measuring end 5 and keeping it at 500"C, when the temperature of gallium (II) chloride reaches 190"C as measured with the thermometer 11, Introduction of argon gas was started at a rate of 30 mβ per minute (converted to room temperature and normal pressure), and the introduction of argon gas from 19 was stopped.The temperature of the heater 10 was maintained at 190°C, and the introduction of argon gas from 1 was stopped. After continuing for 0.5 hours, it was stopped, and then the heating by the furnace 3 and the exhaust by the vacuum pump were stopped.
The reaction tube was left to cool while being filled with a mixed substrate of argon and arsine under tight pressure.

放冷後、反応管内を、19からのアルゴンの導入と真空
ポンプ16による排気を交互に行ないアルゴン雰囲気と
してから試料を取り出し、試料について調べた。
After cooling, the inside of the reaction tube was alternately introduced with argon from 19 and evacuated using vacuum pump 16 to create an argon atmosphere, and then the sample was taken out and examined.

試料の表面ば光沢ある鏡面であり、X線回折によって砒
化ガリウムの生成を確認した。また、オージ分光により
、表面の砒素対ガリウムの含量比はモル比で1対1であ
ることを確めた。
The surface of the sample was a shiny mirror surface, and the formation of gallium arsenide was confirmed by X-ray diffraction. Furthermore, it was confirmed by audio spectroscopy that the molar ratio of arsenic to gallium on the surface was 1:1.

また、生成した砒化ガリウム膜の厚さは平均で約0.9
ミクロンあった。
Furthermore, the average thickness of the produced gallium arsenide film is approximately 0.9
It was a micron.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明を実施するための装置例の断面構成図である
。 1・・・アルゴンガス導入管、2・・・アルシン混合ア
ルゴンガス導入管、3・・・加熱炉、4・・・反応管、
5・・・温度測定端、6・・・圧力計、8・・・治具、
9・・・基体、10・・・加恭器、11・・・温度計、
16・・・真空ポンプ、17・・・塩化ガリウム(If
)、18・・・蒸発器、19・・・アルゴンガス導入管
The figure is a cross-sectional configuration diagram of an example of an apparatus for carrying out the present invention. 1... Argon gas introduction tube, 2... Arsine mixed argon gas introduction tube, 3... Heating furnace, 4... Reaction tube,
5...Temperature measurement end, 6...Pressure gauge, 8...Jig,
9... Base body, 10... Heater, 11... Thermometer,
16...Vacuum pump, 17...Gallium chloride (If
), 18...evaporator, 19... argon gas introduction pipe.

Claims (1)

【特許請求の範囲】 1、気化した塩化ガリウム(旧を、気化した砒素または
砒素化合物とともに、高エネルギー状態にある基体に接
触させることを特徴とする砒化ガリウム層形成方法。 2、砒素化合物がアルシンである特許請求の範囲第1項
記載の方法。 3、高エネルギー状態が加熱によって達成されたもので
ある特許請求の範囲第1項または第2項に記載の方法。
[Scope of Claims] 1. A method for forming a gallium arsenide layer characterized by bringing vaporized gallium chloride (or chloride) into contact with a substrate in a high energy state together with vaporized arsenic or an arsenic compound. 2. When the arsenic compound is arsine 3. The method according to claim 1 or 2, wherein the high energy state is achieved by heating.
JP58167455A 1983-09-13 1983-09-13 Formation of gallium arsenide layer Pending JPS6061000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58167455A JPS6061000A (en) 1983-09-13 1983-09-13 Formation of gallium arsenide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58167455A JPS6061000A (en) 1983-09-13 1983-09-13 Formation of gallium arsenide layer

Publications (1)

Publication Number Publication Date
JPS6061000A true JPS6061000A (en) 1985-04-08

Family

ID=15850000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58167455A Pending JPS6061000A (en) 1983-09-13 1983-09-13 Formation of gallium arsenide layer

Country Status (1)

Country Link
JP (1) JPS6061000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297867A2 (en) * 1987-07-01 1989-01-04 Nec Corporation A process for the growth of III-V group compound semiconductor crystal on a Si substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297867A2 (en) * 1987-07-01 1989-01-04 Nec Corporation A process for the growth of III-V group compound semiconductor crystal on a Si substrate

Similar Documents

Publication Publication Date Title
US6683011B2 (en) Process for forming hafnium oxide films
JPS643948B2 (en)
JPH0218379A (en) Device for pulling up semiconductor single crystal
JPS6061000A (en) Formation of gallium arsenide layer
JPH02217473A (en) Forming method of aluminum nitride film
JP2747036B2 (en) Thin film formation method
JPH0885873A (en) Production of thin film using organometallic complex
US4913887A (en) Production of boron nitride
JPS6059166B2 (en) Manufacturing method of boron nitride
JPS61222911A (en) Synthesis of phosphorated compound
JPS62228471A (en) Formation of deposited film
US4609424A (en) Plasma enhanced deposition of semiconductors
JPS63176393A (en) Production of aluminum nitride thin film
JPS6115150B2 (en)
JPS62500896A (en) Method for precipitation of gallium arsenide from gas-phase gallium-arsenic complexes
JP2575495B2 (en) Boron diffusing agent and method for producing the same
Stringfellow et al. Reactions in OMVPE Growth of InP
JPS6140034B2 (en)
JPH02230722A (en) Vapor growth method of compound semiconductor
JPH03503662A (en) Precursors for metal fluoride deposition and their use
JP2615409B2 (en) Synthesis of boron nitride by pyrolysis
Murota et al. Control of germanium atomic layer formation on silicon using flash heating in germanium CVD
JPS61242998A (en) Production of semiconductor single crystal of silicon carbide
JPH01313395A (en) Method for growing silicon in vapor phase
JPS63248797A (en) Device for vapor phase epitaxy