JPS6060793A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPS6060793A
JPS6060793A JP16971383A JP16971383A JPS6060793A JP S6060793 A JPS6060793 A JP S6060793A JP 16971383 A JP16971383 A JP 16971383A JP 16971383 A JP16971383 A JP 16971383A JP S6060793 A JPS6060793 A JP S6060793A
Authority
JP
Japan
Prior art keywords
laser
discharge
gas
dew point
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16971383A
Other languages
Japanese (ja)
Inventor
Masaaki Tanaka
正明 田中
Masao Hishii
菱井 正夫
Haruhiko Nagai
治彦 永井
Nobutaka Morohashi
諸橋 信孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16971383A priority Critical patent/JPS6060793A/en
Publication of JPS6060793A publication Critical patent/JPS6060793A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To satisfy the stability of discharge as well as the oscillation efficiency by operating the device with adjusting the ultimate dew point in gas laser to be -30--70 deg.C. CONSTITUTION:In the device which performs a discharge excitation in the laser gas including CO2, the operation is done with keeping the ultimate dew point in the laser gas -30--70 deg.C. For keeping the ultimate dew point within the range of -30--70 deg.C, the water adsorption agent adjusted so as to make the ultimate point -70 deg.C, e.g. molecular shieves 3A is enclosed in the laser gas similarly to the conventional art. Consequently, the laser oscillation efficiency is optimized and the high-reliability discharge can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はカスレーザ装置、とくにそのレーザガス到達
露点に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a Kaslas laser device, and particularly to the dew point reached by the laser gas.

〔従来技術〕[Prior art]

ガスレーザ装置として代表的なものはレーザ元軸、直流
グロー放電路、気体の流れ方間が互いにほぼ垂直になっ
ている三軸直交型co2レーザであるので、これについ
て従来例ン説明する。第1図は三軸直交型ガスレーザ装
置の構成図であり、第1図aは縦断面構成図、第11A
I 1)l−1:第1図aのT−■線での断面図である
。図において(11は陽極。
A typical gas laser device is a three-axis orthogonal CO2 laser in which the laser source axis, DC glow discharge path, and gas flow are substantially perpendicular to each other, so a conventional example of this will be explained. FIG. 1 is a configuration diagram of a three-axis orthogonal gas laser device, FIG. 1a is a vertical cross-sectional configuration diagram, and FIG.
I1) l-1: A sectional view taken along the line T-■ in FIG. 1a. In the figure (11 is the anode.

(2)は陰極、(31は陰極基板、(4)は安定化抵抗
、(5)は直流高電圧電源、(6)は放電励起部、(7
)は全反射鏡。
(2) is a cathode, (31 is a cathode substrate, (4) is a stabilizing resistor, (5) is a DC high voltage power supply, (6) is a discharge excitation part, (7
) is a total reflection mirror.

(8)は部分反射鏡、(9)はレーザビーム、0αけブ
ロア又は熱交換器、a))はガス流、 03はガスレー
ザ発振器の筐体を示す。
(8) is a partial reflection mirror, (9) is a laser beam, 0α blower or heat exchanger, a)) is a gas flow, and 03 is a housing of a gas laser oscillator.

次に動作について説明する。第1図で示すものけ陽極(
1)と陰極(2)との間に通常co2 、 N2 、 
Hθの混合カスから成るレーザガスを毎秒数十mの流速
で矢印(111方回に流し再循環させる言わゆるガス封
じ切りタイプである。この陽極(1)と陰極(2)との
間に直流高電圧ケ印加すると電極間にグロー放電と呼ば
れるおだやかな放電が生じ、放電励起部(6)を生成す
る。この放電励起部(6)ではレーザガス中の002分
子の特定の振動準位間に反転分布が生じ。
Next, the operation will be explained. The Mononoke anode shown in Figure 1 (
Between 1) and the cathode (2), there is usually co2, N2,
This is a so-called gas-sealing type in which the laser gas consisting of a mixture of Hθ is flowed in the direction of the arrow (111 times) at a flow rate of several tens of meters per second and recirculated. When a voltage is applied, a gentle discharge called a glow discharge occurs between the electrodes, creating a discharge excitation region (6).In this discharge excitation region (6), a population inversion occurs between specific vibrational levels of 002 molecules in the laser gas. occurs.

放電励起部(6)との間に共振系丁なわち全反射鏡(7
)と適切な反射率を有する部分反射鏡(8)とt対口さ
せて配電すると、レーザ発振が生じ1部分反射鏡(8)
から約10.6μの波長のレーザビーム(9)がでてく
る。レーザ出力は放電電力を増重と増大するが。
A resonant system, that is, a total reflection mirror (7) is installed between the discharge excitation part (6)
) and a partial reflector (8) having an appropriate reflectance and power is distributed between them, laser oscillation occurs and the partial reflector (8)
A laser beam (9) with a wavelength of approximately 10.6μ is emitted from the laser beam. Although the laser output increases with increasing discharge power.

例えは第1図の陰極(2)のピンの本数7一定とすると
、放電電力の増大1丁なわち放電電流の増大は放電密度
の増大と等価になる。レーザ装置のコンパクト化、低コ
スト化の観点からは放電密度Z増大させればよいが、あ
る程度以上の電流でグロー放電からアーク放電に移行し
てし韮う。グロー放電す放電の電子温度のみが高い放電
であり、レーザ励起が行える放電であるが、アーク放電
に移行すると分子温度も高くなり、もはやレーザ励起が
行なわれなくなり、この状態でけレーザ発振は停止下る
For example, if the number of pins of the cathode (2) in FIG. 1 is constant at 7, an increase in the discharge power by one pin, that is, an increase in the discharge current, is equivalent to an increase in the discharge density. From the point of view of making the laser device more compact and cost-reducing, it is sufficient to increase the discharge density Z, but if the current exceeds a certain level, the glow discharge shifts to the arc discharge. Glow discharge is a discharge where only the electron temperature is high, and it is a discharge that can be excited by laser, but when it transitions to arc discharge, the molecular temperature also increases, and laser excitation is no longer performed, and laser oscillation stops in this state. Go down.

従って、レーザ装置はアーク放電が発生する前の電流で
動作する様に設計されている。
Therefore, laser devices are designed to operate at currents before arcing occurs.

一方、レーザの発振効率(放電電力に対するレーザ出力
)は、基本的には、放電条件およびレーザ装置の構成が
決まると、レーザガス中成によって決定されている。
On the other hand, the oscillation efficiency of the laser (laser output relative to the discharge power) is basically determined by the formation of the laser gas once the discharge conditions and the configuration of the laser device are determined.

例えは第2図はao2o−レーザ合ガスの役割を示す説
明図で、C02レーザガスはco2とN2 とHeの混
合気体が使われており、第2図に示王様にco2レーザ
の発振はco2の上位準位(001)と下位準位(10
0)の間の主に106μmの遷移で行なわれ、N2はc
o2の(001)上位準位へのエネルギー移乗の役割ケ
けた丁。Heけco2が(ool)準位から([110
)準位をへて基底状態にいたる過程で(01り準位から
基底状態への緩和を促進させ結果的に上述の106μ帯
間の反転分子密度を大きく保つ役割Zはたし、レーザ発
振効率を増重働き乞する。従って通常、こわらのガスが
適量に混合されたものがレーザガスとして用いられてお
り、レーザ発振の効率の最適化が図られている。
For example, Fig. 2 is an explanatory diagram showing the role of the ao2o laser gas. The CO2 laser gas is a mixture of co2, N2, and He. Upper level (001) and lower level (10
0), and N2 is c
It plays a role in energy transfer to the (001) upper level of o2. Heke co2 is from (ool) level to ([110
) level to the ground state, Z plays a role in promoting the relaxation from the 01 level to the ground state, and as a result keeps the inversion molecular density between the 106μ bands high, which increases the laser oscillation efficiency. Therefore, a mixture of appropriate amounts of stiff gases is usually used as a laser gas to optimize the efficiency of laser oscillation.

ところで、これらのガスの他に水蒸気H20のレーザ発
振に与える影響も従来調べられており。
Incidentally, in addition to these gases, the influence of water vapor H20 on laser oscillation has also been investigated.

N20ガスがco2の(010) 準位から基底状態へ
の緩和を促進させることが知られている。この効果ケ利
用して、高価なHe ガスの代わりにN20 ’>用い
て002 r N2 + N20の混合ガス乞レーザガ
スに用いた例がある。
It is known that N20 gas promotes relaxation of CO2 from the (010) level to the ground state. Taking advantage of this effect, there is an example in which a mixed gas of 002 r N2 + N20 is used as a laser gas by using N20'> instead of the expensive He gas.

第3図は特許出願公告昭43−24586号に開示され
ているN20濃 す曲線図であり, co2−N2の混合ガスにN20 
Y加えて,レーザ発振効率の最適濃度Z示したものであ
り,10〜15%のN20濃 れることが示されている。しかしながらN20は第2図
に示すようにco2の上位準位(001)を直接に基底
状態に緩和させ,10.6μ帯の反転分子密度乞下げる
効果のマイナスの働きもありもともとco2’%= (
010)準位から基底状態に効果的に緩和させるHeが
比較的多く存在する場合9丁なわちco2 −N2 、
 He混合ガスにN20 Y添加する場合には上述のマ
イナスの効果が支配的となりレーザ発振効率を下げる結
果となる。従ってCO2 、 N2 、 He の混合
ガスでは従来ではN20混入濃 る様に,レーザ筐体02の中のレーザガス中に水分吸着
剤例えばモレキュラーシーブス3Aなどを封入している
がレーザガスの到達露点が何度以下であるべきと言う様
な定量的な理論的あるいは実験的検討はなされていない
Figure 3 is a N20 concentration curve diagram disclosed in Patent Application Publication No. 1986-24586.
In addition to Y, the optimal concentration Z for laser oscillation efficiency is shown, and it is shown that the N20 concentration is 10 to 15%. However, as shown in Figure 2, N20 directly relaxes the upper level (001) of CO2 to the ground state, and has the negative effect of lowering the density of inverted molecules in the 10.6μ band, so originally co2'% = (
010) When there is a relatively large amount of He that effectively relaxes the level from the ground state to the ground state, 9, that is, co2 −N2,
When N20Y is added to the He mixed gas, the above-mentioned negative effects become dominant, resulting in a decrease in laser oscillation efficiency. Therefore, in the case of a mixed gas of CO2, N2, and He, conventionally, a moisture adsorbent such as Molecular Sieves 3A is sealed in the laser gas in the laser housing 02 to increase the concentration of N20, but the dew point reached by the laser gas is There has been no quantitative theoretical or experimental study that suggests that the following should be true.

戸らに,グロー・アーク転移の電流(又は電力)と水分
濃度との関連性なども従来では明らかとされておらす,
レーザ発振器の設計仕様が不明確であった。
In the past, it has also been clarified that there is a relationship between glow-arc transition current (or power) and water concentration.
The design specifications of the laser oscillator were unclear.

〔発明の概要〕[Summary of the invention]

この発明は上記のような点w6みてなきねたもので,ガ
スレー弁中に,到達露点が一30°Cから一70℃とな
る様に調整して動作させるようにし。
This invention was developed in view of the above point w6, and the gasley valve is operated by adjusting the reached dew point from 130°C to 170°C.

レーザ発振効率を最適化し,信頼性の高い放電ン得るカ
スレーザ装置ン提供しようとするものである。
The aim is to optimize laser oscillation efficiency and provide a gas laser device that can provide highly reliable discharge.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の詳細な説明する。 This invention will be explained in detail below.

水分が放電及びレーザ発振効率に与える影響ン実験によ
りめた結果を先づ示す。実験は第1図に示す構造のレー
ザ発振器Z用いてレーザガスの組成が002 −00−
N2−He=2−1−6−3 2 、 ガス圧力60〜
1 2 0 T’orrで行なっている。ここでこの実
験の場合, COが混入している所が前述の混合例と異
る所であるが, Co はco2がCO と02に解離
するときのco2平衡濃度を上げガス封じ切りを可能に
するためのものであり、放電の初期にはレーザ発振特性
やH2Oの影響けco2 、1q2 、 He混合ガス
と同じである。
First, we will show the results obtained through experiments on the influence of moisture on discharge and laser oscillation efficiency. The experiment was conducted using a laser oscillator Z having the structure shown in Fig. 1, and the composition of the laser gas was 002 -00-.
N2-He=2-1-6-3 2, gas pressure 60~
It is performed at 1 2 0 T'orr. In the case of this experiment, the difference from the previous mixing example is that CO is mixed in, but Co increases the equilibrium concentration of CO2 when CO2 dissociates into CO and 02, making gas sealing possible. At the beginning of discharge, the laser oscillation characteristics and the influence of H2O are the same as those of a mixed gas of CO2, 1q2, and He.

第4図は水分濃度(=到達露点)と放電との関係を示1
曲線図で1図中の縦軸−Tmaxはグローからアーク放
電に移行する直前の電流(最大放電電流)である、 図の様に露点(水分限度)が−70℃(2,6ppm)
以下ではImaXは急激に低下する。、丁なわち、従来
の様に単に水分吸着用のモレキュラーシーブスを発振器
筐体内のレーザカス中に封入した場合には、露点が一8
0℃以下にもなりうるので、工maXけ大きく低下下る
こともあり、その結果信頼性のないものとなる1こめ、
従来レーザ発振器を設計するときKは、その最大定格電
流(安定グロー放電〕を一80℃8度の工maXとして
いた。
Figure 4 shows the relationship between water concentration (=achieved dew point) and discharge.
In the curve diagram, the vertical axis -Tmax in Figure 1 is the current (maximum discharge current) just before the transition from glow to arc discharge.As shown in the diagram, the dew point (moisture limit) is -70℃ (2.6ppm)
Below, ImaX decreases rapidly. In other words, if molecular sieves for moisture adsorption were simply sealed in the laser scum inside the oscillator housing as in the past, the dew point would be 18.
Since the temperature can drop below 0°C, the maX value may drop significantly, resulting in unreliability.
When designing a conventional laser oscillator, K set its maximum rated current (stable glow discharge) at -80 degrees Celsius (8 degrees Celsius).

しかしながら、レーザ発振器をコンパクトに設計する立
場からは、第4図に示されている様に水分量1&’a’
増して工max ′12r:増大(放電電力の増大〕さ
せるのが好ましいことがわかる。
However, from the standpoint of designing a compact laser oscillator, the moisture content 1&'a' is
It can be seen that it is preferable to increase the power max '12r (increase the discharge power).

第5図はレーザ発振効率と水分濃度との関係ン示す曲線
図である。前述したようにレーザガス中にHθが比較的
多く混入されている場合には、水分濃度の増大はレーザ
発振に悪影響を与える。第5図はCの影響が示されてお
り、露点(水分僕度)が−30℃(37sppm)より
大きくなるとレーザ発振効率は急激に低下し、この濃度
以下ではほぼ一定の値を示している。
FIG. 5 is a curve diagram showing the relationship between laser oscillation efficiency and water concentration. As described above, when a relatively large amount of Hθ is mixed in the laser gas, an increase in water concentration has a negative effect on laser oscillation. Figure 5 shows the influence of C, and when the dew point (moisture content) exceeds -30°C (37 sppm), the laser oscillation efficiency decreases rapidly, but below this concentration, it remains almost constant. .

こねら一連の水分に着目した実験の結果から。Based on the results of a series of experiments focusing on moisture.

放電の立場からは露点(水分9度)は−70℃(2,s
ppm) 以上と丁べきであり、またレーザ発振の立場
からは発振の効率の観点から一30℃(375p1)m
)以下と丁べきことが明確にされた。これよりレーザ発
振器のレーザカスの到達露点?−70℃〜−30℃の範
囲に保つことはレーザ発振器のコンパクト化(低コスト
化)およびレーザ発振効率の最適化の両者を満足させる
From the standpoint of discharge, the dew point (moisture 9 degrees) is -70°C (2, s
ppm) or above, and from the standpoint of laser oscillation, from the viewpoint of oscillation efficiency, it should be -30°C (375p1)m.
) It was clarified that the following should be done. Is this the dew point reached by the laser scum of the laser oscillator? Maintaining the temperature within the range of -70°C to -30°C satisfies both the requirements of making the laser oscillator more compact (lower cost) and optimizing the laser oscillation efficiency.

到達露点を一10℃〜−30℃の範囲尾保つ方法として
は、到達点が一10℃となる様に調整した水分吸着剤1
例えは従来と同様モレキュラーレーブス3Atレーザガ
ス中に封入して行う。即ちモレキュラーシーブスの特性
は第6図に示王様であり、第6図はモレキュラーシーブ
スの含水率(単位重量あたりの水分吸着量のwt %表
示)と吸着剤温度との関係を示す曲線図で、水分吸着剤
は新しいときには含水率は0〜1wt%であり。
As a method to maintain the ultimate dew point in the range of -10°C to -30°C, use moisture adsorbent 1 adjusted so that the ultimate dew point is -110°C.
For example, it is sealed in a Molecular Laves 3At laser gas as in the conventional case. In other words, the characteristics of molecular sieves are shown in Figure 6, and Figure 6 is a curve diagram showing the relationship between the moisture content of molecular sieves (expressed as wt % of water adsorption amount per unit weight) and adsorbent temperature. When a moisture adsorbent is new, its moisture content is 0 to 1 wt%.

この時従来性なわれている吸着剤設置場所温度即ち吸着
剤温度が0〜20℃ではレーザガスの到達露点は一80
℃以上になり得ることがわかる。従って到達露点乞−7
0℃(2,5ppm )以上とするためには水分吸着剤
設冒位置における温度の到達露点(水分濃度)が−70
℃以上となる水分量をあらかじめ吸着(含水)させた水
分吸着剤をレーザ発振器内のレーザガス中に封入丁れば
よい。例えば吸着剤温度20℃では4,2wt%の水分
を含水した水分吸着剤では到達露点は一70℃(2,5
I)pm)以下にはなりえない。
At this time, when the conventional adsorbent installation location temperature, that is, the adsorbent temperature, is 0 to 20°C, the dew point reached by the laser gas is -80°C.
It can be seen that the temperature can exceed ℃. Therefore, the dew point reached -7
In order to achieve a temperature of 0°C (2.5 ppm) or higher, the dew point (water concentration) reached at the location where the moisture adsorbent is installed must be -70°C.
A moisture adsorbent that has previously adsorbed (contains water) an amount of moisture above .degree. C. may be sealed in the laser gas in the laser oscillator. For example, at an adsorbent temperature of 20°C, a moisture adsorbent containing 4.2 wt% moisture will reach a dew point of -70°C (2.5 wt%).
I) pm) or less.

この様に従来用いられている水分吸着剤に数%の水をあ
らかじめ吸着させておくという非常に簡単な方法により
、レーザカスの到達露点が一70℃(2,sppm)以
上に調整できる。第6図にも示されている様に水分吸着
剤は水分を多く含水してくると到達露点は悪くなるが、
−30℃よりも水分濃度が多くなつfこ時点で交換する
As described above, the dew point of the laser scum can be adjusted to 170° C. (2,000 ppm) or higher by a very simple method in which several percent of water is adsorbed in advance on a conventionally used moisture adsorbent. As shown in Figure 6, the dew point reached by the moisture adsorbent becomes worse as it contains more water.
When the water concentration is higher than -30°C, replace it.

このようにして、到達露点を一70℃〜−30℃の範囲
に保つことにより1次のような効果も得られる。
In this way, by maintaining the ultimate dew point within the range of -70°C to -30°C, the first-order effect can also be obtained.

丁なわち9例えば直流グロー放電方式の場合にけレーザ
励起のための放電電極はco2レーザガスのco2の放
電解離によって発生する02 との反応にJ:り酸化さ
ね長時間使用していると電極表面の酸化物(絶縁物〕蓄
積のため放電が不安定になり。
For example, in the case of a DC glow discharge method, the discharge electrode for laser excitation is oxidized due to the reaction with 02 generated by discharge dissociation of CO2 in the CO2 laser gas. The discharge becomes unstable due to the accumulation of oxides (insulators) on the surface.

グローからアークに移行する電流工1naXが低下して
くる。しかし放電場に水分が存在していると放電により
H2やOHが生成されるために電極は常に還元作用ケ受
け、電極の酸化が促進されないために放電も常に安定に
なる利点Z有する。一方。
The current flow rate 1naX decreases as the glow transitions to arc. However, if moisture is present in the discharge field, H2 and OH are generated by the discharge, so the electrode always receives the reduction action, and oxidation of the electrode is not promoted, which has the advantage that the discharge is always stable. on the other hand.

水分濃度が多くなると放電部以外の金属部の腐食が発生
し、レーザカスの水分濃度を上記の範囲に保つことは放
電電極の劣化防止とレーザ発振器内の構造物の錆発生防
止の効果ももたら丁ことになり、金属電極を用いない方
式の誘電体電極に交流高電圧乞印加したときに発生する
無声放電励起方式の場合でも、その効果は絶大なものと
なる。
When the water concentration increases, corrosion of metal parts other than the discharge part occurs, so keeping the water concentration of the laser scum within the above range has the effect of preventing deterioration of the discharge electrode and rusting of the structures inside the laser oscillator. Therefore, even in the case of a silent discharge excitation method that occurs when a high AC voltage is applied to a dielectric electrode in a method that does not use metal electrodes, the effect is tremendous.

なお、上記実施例ではモレキュラーレーブス3Aン用い
たものZ説明したが、他の水分吸着剤でも。
In the above example, Molecular Reves 3A was used, but other moisture adsorbents may also be used.

到達露点が一70℃となる様に調整丁ればよいことは言
うまでもない。
Needless to say, the temperature should be adjusted so that the dew point reached is 170°C.

また、上記実施例では金属電極どうしの直流放電につい
てのべたが、金属電極間に誘電体Z介して交流電圧を印
加して無声放電ケ発生させてこれ7励起用放電として利
用するものに対しても同様の効果がある。
In addition, in the above embodiment, the DC discharge between metal electrodes has been described, but it is also possible to apply an AC voltage between the metal electrodes via the dielectric Z to generate a silent discharge and use this as an excitation discharge. has the same effect.

〔発明の効果〕〔Effect of the invention〕

以上述べ1こように、この発明によれば、レーザガス中
に到達露点が一30℃から一70℃となる様に調整して
動作させるようにしたので、放電の安定化と発振効率を
同時に満足する信頼性のあるツ7スレーザ装置ン最適設
計できる効果がある。
As stated above, according to the present invention, the operation is adjusted so that the dew point reached in the laser gas is from 130°C to 170°C, thereby satisfying discharge stability and oscillation efficiency at the same time. This has the effect of making it possible to optimally design a reliable laser device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、三軸直交型ガスレーザ装置の構成図。 第2図はco2o−レーザ合ガスの役割を示T説明図、
鉱3図はH20濃度とレーザ発振効率の関係を示1曲線
図、第4図は水分濃度と放電との関係ビ示す曲線図、第
5図はレーザ発振効率と水分濃度との関係ケ示1曲線図
、第6図はモレキュラーシーブスの含水率と吸着剤温度
との関係ケ示1曲線図である。 代理人 大 岩 増 雄 年1図 第2図 Cθ2 /J2 第3図 H2O5i□度〔〃〕 第 4 図 第5 図 ヶ 水竹儂痕(rp勿〕 第6 閃 販看制湛ル〔′C〕
FIG. 1 is a configuration diagram of a three-axis orthogonal gas laser device. Figure 2 is an explanatory diagram showing the role of co2o-laser gas,
Figure 3 shows the relationship between H20 concentration and laser oscillation efficiency. Figure 4 shows the relationship between water concentration and discharge. Figure 5 shows the relationship between laser oscillation efficiency and water concentration. FIG. 6 is a curve diagram showing the relationship between the moisture content of molecular sieves and the temperature of the adsorbent. Agent Masu Oiwa Figure 1 Figure 2 Cθ2 /J2 Figure 3 H2O5i □ degree [〃] Figure 4 Figure 5 Kazutake's traces (rp) Part 6 Senkou system ['C] ]

Claims (1)

【特許請求の範囲】 (It C!O,、y、−含むレーザガス中で放電励起
を行なうものにおいて、レーザガス中の到達露点乞−3
0℃〜−10℃に保って動作させるようにしたガスレー
ザ装置。 (2) レーザかス中に到達露点が一70℃となる様に
調整した水分吸着剤を封入したことを特徴とするガスレ
ーザ装醤。
[Claims] (It C!O,, y, - In a device that performs discharge excitation in a laser gas containing
A gas laser device that operates while maintaining the temperature between 0°C and -10°C. (2) A gas laser equipment characterized in that a moisture adsorbent adjusted to reach a dew point of 170° C. is sealed in the laser gas.
JP16971383A 1983-09-14 1983-09-14 Gas laser device Pending JPS6060793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16971383A JPS6060793A (en) 1983-09-14 1983-09-14 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16971383A JPS6060793A (en) 1983-09-14 1983-09-14 Gas laser device

Publications (1)

Publication Number Publication Date
JPS6060793A true JPS6060793A (en) 1985-04-08

Family

ID=15891483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16971383A Pending JPS6060793A (en) 1983-09-14 1983-09-14 Gas laser device

Country Status (1)

Country Link
JP (1) JPS6060793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841804A (en) * 1991-03-14 1998-11-24 Jgc Corporation Method and apparatus for regenerating gas used in carbon dioxide laser generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841804A (en) * 1991-03-14 1998-11-24 Jgc Corporation Method and apparatus for regenerating gas used in carbon dioxide laser generator

Similar Documents

Publication Publication Date Title
Burnham et al. Xenon fluoride laser excitation by transverse electric discharge
US6188710B1 (en) Narrow band gas discharge laser with gas additive
US6014398A (en) Narrow band excimer laser with gas additive
JPH10112284A (en) Small power high-pressure sodium lamp
US4757236A (en) High pressure metal halide arc lamp with xenon buffer gas
GB2083687A (en) Circulating gas laser
Nagai et al. High-pressure sealed CW CO 2 laser with high efficiency
Kannari et al. Comparison of model predictions with detailed species kinetic measurements of XeCl laser mixtures
JPS6060793A (en) Gas laser device
EP0183247A2 (en) High pressure metal halide lamp with xenon buffer gas
JPS6237892B2 (en)
US8174195B2 (en) Mercury-free arc tube for discharge lamp unit
JPH07105542B2 (en) Gain medium for radiant energy source
US4126890A (en) Lasing device and method using mercury and cadmium or ammonia
Feldman et al. Long‐lived lead‐vapor lasers
JPS6312398B2 (en)
JP2017123232A (en) Short arc type high-pressure discharge lamp
Skippon et al. Kinetics and operation of the atomic mercury laser
Apollonov et al. High-Energy HF (DF) Lasers Based on Non-Chain Chemical Reaction
WO2003023914A1 (en) Low-pressure axial direction excitation type f2 laser oscillator
Kobayashi et al. Power enhancement for argon II narrow tube lasers by a transverse magnetic field
RU2086064C1 (en) Heavy-power co2 laser which uses mix of air with carbon dioxide
Apollonov et al. N 2 O laser pumped by a self-sustained volume discharge
JP2000243348A (en) No-mercury metal halide lamp
JP3130568U (en) Discharge tube