JPS6060461A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6060461A
JPS6060461A JP16812483A JP16812483A JPS6060461A JP S6060461 A JPS6060461 A JP S6060461A JP 16812483 A JP16812483 A JP 16812483A JP 16812483 A JP16812483 A JP 16812483A JP S6060461 A JPS6060461 A JP S6060461A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
condenser
refrigerator
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16812483A
Other languages
Japanese (ja)
Inventor
三木 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16812483A priority Critical patent/JPS6060461A/en
Publication of JPS6060461A publication Critical patent/JPS6060461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は圧m截、凝縮器およびsg、式癌児器からなる
冷凍機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a refrigerator comprising a compressor, a condenser, an SG, and a type sieve.

〔発明の背景〕[Background of the invention]

従来、この種冷凍機では、凝縮器の液面コントロールを
行い、主としてガスバイパスを防止する方法が採用され
ている。このため蒸発器内の冷媒量(液面)は負荷に関
係なく、一定に保たれるようになっているのが一般的で
ある。
Conventionally, in this type of refrigerator, a method has been adopted in which the liquid level in the condenser is controlled to mainly prevent gas bypass. For this reason, the amount of refrigerant (liquid level) in the evaporator is generally kept constant regardless of the load.

また、オリノィスによシ流凰コントロールを行うと、結
果的には部員荷時に蒸発器内の乍殊意は瑠刀口すること
もあるが、任意に便えることができないはかシでなく、
大幅に冷媒量をコントロールすることができないため、
性能を向上させるのに限界があった。
In addition, if the flow control is performed by the orinois, the special purpose inside the evaporator may be cleared when the crew is loaded, but it is not impossible to control the flow at will.
Because it is not possible to significantly control the amount of refrigerant,
There were limits to how much performance could be improved.

一方、冷凍機における部分負荷運転、すなわち冷凍伝が
全負荷状態で運転されず、週常サクションベーンを秋っ
て運転芒れている状態では、蒸発器の性能(伝熱管の熱
通過率)は全負荷時の性す巳よりも低下している。その
理由は次に述べるとおシである。
On the other hand, in partial load operation in a refrigerator, that is, in a state in which the refrigeration transmission is not operated at full load and the suction vanes are not operated regularly, the performance of the evaporator (heat transfer rate of the heat transfer tubes) is It is lower than that of Kasumi at full load. The reason for this is explained below.

すなわち、郡分貝荷4転は全負荷運転に比べて、蒸発器
内の市媒@S、−よひ冷媒ガスの流速が小さくなること
が原因の一つである。また構成式蒸発器をMする冷媒機
では、一般に冷凍能力を100%発渾する運転において
、全部の伝熱管かはソ児全に液面につかるように設計さ
れているので、部分負荷運転では発生する蒸発ガス量も
それだけ減少するから、液面は低下して上部伝熱管は液
面につからない状況となる。
In other words, one of the reasons for the four-turning of the cargo is that the flow velocity of the refrigerant gas in the evaporator is lower than that in full-load operation. In addition, in refrigerant machines using a constituent evaporator, all heat transfer tubes are generally designed so that they are fully exposed to the liquid level during operation that generates 100% of the refrigerating capacity, so in partial load operation, Since the amount of evaporative gas generated also decreases accordingly, the liquid level drops and the upper heat exchanger tube does not come into contact with the liquid level.

〔究明の目的〕[Purpose of investigation]

不発明は上記にかんがみ冷凍負荷に応じて蒸発器内の冷
媒atコントロールすることにより、部分負荷運転時に
おける蒸発器の性能を向」二略せることを目的とするも
のである。
In view of the above, it is an object of the present invention to improve the performance of the evaporator during partial load operation by controlling the refrigerant in the evaporator according to the refrigeration load.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、圧縮機、凝縮器お
よび満額式蒸発器からなる冷凍機において、電磁弁を介
して前記#縮器および蒸発器に連通する冷媒貯蔵器を設
けたことを特徴とするものである。
In order to achieve the above object, the present invention provides a refrigerator comprising a compressor, a condenser, and a full-scale evaporator, and is provided with a refrigerant storage device that communicates with the condenser and evaporator via a solenoid valve. This is a characteristic feature.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1は圧縮機、2は伝熱管群2人を内蔵
する凝縮器、3は伝熱管群3Aとミ弧トセバレータ11
を内蔵する蒸発器、4は均圧導管5,6を介して峡縮器
2に、がっ均圧導管7を介して蒸発器3にそれぞれ連通
された冷媒貯蔵器、8〜10は均圧導管5〜7にそれぞ
れ設けられた電磁弁、12A〜12Cは前占己圧紬熾1
、凝縮器2および蒸発器3の二者を相互に連絡する配・
ぽ、13は目己看12Bの蒸発器3vA1に設けられた
オリフィスで、このオリフィス13によ’) 縦m 指
2および蒸発器3ビ」の故囲は負荷に対応して犬翅され
ている。
In FIG. 1, 1 is a compressor, 2 is a condenser containing two heat exchanger tube groups, and 3 is a heat exchanger tube group 3A and a mi-arc toseverator 11.
4 is a refrigerant storage connected to the evaporator 3 via pressure equalizing conduits 5 and 6, and to the evaporator 3 via pressure equalizing conduit 7; 8 to 10 are pressure equalizing The solenoid valves 12A to 12C provided in the conduits 5 to 7 respectively are the front self-pressure 1
, an arrangement that connects the condenser 2 and the evaporator 3 to each other.
13 is an orifice provided in the evaporator 3vA1 of the evaporator 12B, and through this orifice 13, the length of the finger 2 and the evaporator 3' are widened according to the load. .

上記冷媒貯蔵器4は第2図に示すように、長手力量に任
意数(凶では4個)に仕切シられた各部屋4a〜4dを
軸えており、−f:の各部屋4a〜4aVCは電磁弁(
図示せず)を有する均圧4管5a〜5dおよび7a〜7
dがそれぞれ接続されている。
As shown in FIG. 2, the refrigerant storage device 4 has longitudinal chambers 4a to 4d partitioned into an arbitrary number (four in the case), and each chamber 4a to 4a VC of -f: solenoid valve(
4 pressure equalizing pipes 5a to 5d and 7a to 7 (not shown)
d are connected to each other.

不芙鹿汐Iま土日己のような構成がらなシ、全員何時に
は電磁弁8,10’i閉じると共に電磁弁9を開き・l
R輛器2内の冷媒を均圧導管6を介して冷媒貯蔵器41
/Cp−%入して満杯に貯蔵する、。
Fukashio's structure is similar to that of Saturday and Sunday, but at what time does everyone close solenoid valves 8 and 10'i and open solenoid valve 9?
The refrigerant in the R vehicle 2 is transferred to the refrigerant storage 41 via the pressure equalization conduit 6.
/Cp-% and store fully.

−万、部分負荷時、例えば冷凍負荷が75%にZつだ、
!:きには、Q媒貯i!L器4の卸屋4dの冷媒を均圧
導管7dを社て蒸発器3に導入させ、さらに冷凍負荷が
50チになったときには、さらに部屋4C内の冷媒を均
圧導管7Cを経て蒸発器3に導入させる。前記蒸発器3
内の冷媒量と冷凍負荷との関係を模式的に示すと第3図
のようになる。
- 10,000, At partial load, for example, the refrigeration load is 75%.
! : When is Q medium storage i! The refrigerant from the wholesaler 4d of L unit 4 is introduced into the evaporator 3 through the pressure equalizing conduit 7d, and when the refrigeration load reaches 50 cm, the refrigerant in the room 4C is introduced into the evaporator through the pressure equalizing conduit 7C. 3 will be introduced. The evaporator 3
The relationship between the amount of refrigerant in the tank and the refrigeration load is schematically shown in Fig. 3.

上記蒸発器3では、全伝熱管3Aが冷媒液中に埋没して
いると、伝熱能力を100チ発揮するが、冷媒′fLt
hIが低下して上部の伝熱W3Aが冷媒ガスに囲まれた
状態では伝熱性能は低下する。
In the evaporator 3, if all the heat transfer tubes 3A are buried in the refrigerant liquid, the heat transfer capacity is 100 cm, but the refrigerant 'fLt
When hI decreases and the upper heat transfer W3A is surrounded by refrigerant gas, the heat transfer performance decreases.

そこで、部分負荷時には蒸発器3の液面の低下した分た
け、冷媒貯蔵器4内の冷媒液を蒸発器3に導入すれば、
蒸発器3の伝熱能力を100%近くまで上昇させること
ができ、かつミストアップも起らない。このミストアッ
プは冷媒数面の−高さばかシでなく、流れるガス流速の
関数でもめるため、部分負荷時のようにガス流速が低下
すると、100チ負荷時の液面よシもさらに液面が高く
なってもミストアップは起らない。このため前記冷媒補
充の制御について、それほど厳しい要求は回避される。
Therefore, at partial load, if the refrigerant liquid in the refrigerant storage 4 is introduced into the evaporator 3 by the amount that the liquid level in the evaporator 3 has decreased,
The heat transfer capacity of the evaporator 3 can be increased to nearly 100%, and mist-up does not occur. This mist-up is determined not only by the height of the refrigerant, but also by the flow rate of the flowing gas. Therefore, when the gas flow rate decreases as at partial load, the liquid level at 100 cm load also increases. Even if the temperature is high, mist-up will not occur. Therefore, very strict requirements regarding the control of the refrigerant replenishment can be avoided.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれは、冷媒貯蔵器内の各
卸屋の体積を任意に辿定することによシ、冷凍負荷に応
じて蒸発器内の冷媒量をコントロールすることができる
ので、部分負荷運転時における蒸発器の伝熱管のi=過
率を最大限に発揮させる、換言すれば蒸発器の性能を向
上させることができる。
As explained above, according to the present invention, by arbitrarily tracing the volume of each wholesaler in the refrigerant storage device, the amount of refrigerant in the evaporator can be controlled according to the refrigeration load. In other words, the performance of the evaporator can be improved by maximizing the i=pass ratio of the heat exchanger tubes of the evaporator during partial load operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明の冷凍機の一実施例を示す系統図、第2
図は同実施例の冷媒貯蔵器の詳細図、第3図は同実施例
の蒸発器内冷媒量と冷凍負荷との関係を示す図である。 1・・・圧縮機、2・・・凝縮器、3・・・蒸発器、4
・・・冷媒貯蔵器、4a〜4d・・・S厘、8〜10・
・・電磁弁。
Figure 1 is a system diagram showing an embodiment of the uninvented refrigerator;
The figure is a detailed view of the refrigerant storage device of the same embodiment, and FIG. 3 is a diagram showing the relationship between the amount of refrigerant in the evaporator and the refrigeration load of the same embodiment. 1... Compressor, 2... Condenser, 3... Evaporator, 4
...Refrigerant storage, 4a-4d...S, 8-10.
··solenoid valve.

Claims (1)

【特許請求の範囲】 1、圧酪機、凝縮器および満液式蒸発器からなる冷凍機
において、電磁弁を介して前記凝縮器および蒸発器に遅
進する冷媒貯蔵器を設けたことを特徴とする冷凍機。 2、上記冷媒貯蔵器は長手方間に任意数に仕切られた各
部屋を備えることを特徴とする特許請求の範囲第1項記
載の冷凍機。
[Scope of Claims] 1. A refrigerator comprising a compressor, a condenser, and a flooded evaporator, characterized in that a refrigerant storage device is provided that retards the condenser and evaporator via a solenoid valve. Freezer. 2. The refrigerator according to claim 1, wherein the refrigerant storage device is provided with an arbitrary number of rooms partitioned in the longitudinal direction.
JP16812483A 1983-09-14 1983-09-14 Refrigerator Pending JPS6060461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16812483A JPS6060461A (en) 1983-09-14 1983-09-14 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16812483A JPS6060461A (en) 1983-09-14 1983-09-14 Refrigerator

Publications (1)

Publication Number Publication Date
JPS6060461A true JPS6060461A (en) 1985-04-08

Family

ID=15862289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16812483A Pending JPS6060461A (en) 1983-09-14 1983-09-14 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6060461A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520985A (en) * 2006-11-30 2010-06-17 キャリア コーポレイション Refrigerant charge storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520985A (en) * 2006-11-30 2010-06-17 キャリア コーポレイション Refrigerant charge storage

Similar Documents

Publication Publication Date Title
US6026654A (en) Multi-unit air conditioner having a by-pass section for adjusting a flow rate of refrigerant
MY110359A (en) Heat storage type air conditioning apparatus
JPS6060461A (en) Refrigerator
US3162021A (en) Refrigeration system including charge checking means
JPS618567A (en) Heat pump
CN218722228U (en) Heat exchange device and air conditioner
JPS63286676A (en) Air conditioner
CN202648266U (en) Air conditioning coolant flow control device and air conditioner
JP3354244B2 (en) Refrigeration equipment
JPS5849863A (en) Refrigerating cycle of heat pump type hot-water supply machine
JP2868926B2 (en) Refrigerant heating multi refrigeration cycle
JPS62245058A (en) Flow diverter
JPS58142166A (en) Cooling device
JPS6284260A (en) Heating apparatus
JPS5918349A (en) Heat pump system separation type air conditioner
JPS58219366A (en) Cooling device
JPS6127459A (en) Refrigeration cycle device for multi-chamber corresponding type air conditioner
JPS60144570A (en) Air conditioner
JPH10153354A (en) Refrigeration plant
JPS58219369A (en) Absorption type refrigerator
JPS59191857A (en) Heat pump type multi-chamber air conditioner
JPS58130967A (en) Refrigerator
JPS62266362A (en) Air conditioner
JPS58150756A (en) Refrigerator
JPS61191835A (en) Gas-liquid separator of chilling unit for automobile