JPS606034A - Air-fuel ratio controller - Google Patents

Air-fuel ratio controller

Info

Publication number
JPS606034A
JPS606034A JP11331483A JP11331483A JPS606034A JP S606034 A JPS606034 A JP S606034A JP 11331483 A JP11331483 A JP 11331483A JP 11331483 A JP11331483 A JP 11331483A JP S606034 A JPS606034 A JP S606034A
Authority
JP
Japan
Prior art keywords
constant
air
fuel ratio
value
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11331483A
Other languages
Japanese (ja)
Inventor
Shoji Kubota
昌治 久保田
Kazuo Hara
原 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Fuji Jukogyo KK
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Fuji Jukogyo KK, Fuji Heavy Industries Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11331483A priority Critical patent/JPS606034A/en
Priority to DE19843422939 priority patent/DE3422939A1/en
Priority to GB08415832A priority patent/GB2142170B/en
Priority to FR8409984A priority patent/FR2549147B1/en
Publication of JPS606034A publication Critical patent/JPS606034A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1487Correcting the instantaneous control value

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable an air-fuel ratio to be controlled to an optimum value at all elevations when control of an air-fuel ratio is effected through feedback of an O2 sensor, by a method wherein a correction based on a detecting signal from an atmospheric pressure sensor is added to the value of a limit constant or a hold constant. CONSTITUTION:A control circuit 24 discriminates various conditions from the output signal of an O2 sensor 19, a water temperature, the number of revolutions of an engine, the negative pressure of a suction pipe, a time elapsing after the starting, etc., the condition of the O2 sensor 19 is decided from a feedback mode, in case it is in an active condition, a limit constant is determined, and in case it is in an inactive condition, a hold constant is determined. Thereafter, the digital value of an atmospheric pressure sensor 23 is read out, and each constant is corrected based on the digital value to determine a duty ratio. Correction of the constant is effected such that, in the case of properties in which a voltage value detected by the atmospheric pressure sensor 23 is high at a high elevation and low at a low elevation, a duty ratio to be controlled reverses, whereby the digital value is inverted, and a correction is calculated by computing a constant to the resultant value to add it to the correction. This permits an air-fuel ratio to be controlled to an optimum value at any elevation.

Description

【発明の詳細な説明】 本発明は、粘気系に排気ガス浄化用の三元触媒を具備J
−るエンジンにおいて、通常は混合気空燃比をて元触媒
が最も有効に働く理論空燃比付近に保ち、成る条flで
はリミット定数により制御を制限し、又はホールド定数
により空燃比を固定づ゛るよ−うに制御づる空燃比制御
)ii置に関し、特にリミット定数や小−ルド定数のよ
うな設定定数を高度に対し−(?11i iEづるもの
に関する。
Detailed Description of the Invention The present invention provides a three-way catalyst for exhaust gas purification in the viscous system.
- In engines that operate normally, the mixture air-fuel ratio is maintained near the stoichiometric air-fuel ratio at which the primary catalyst works most effectively, and in the condition fl, control is limited by a limit constant or the air-fuel ratio is fixed by a hold constant. Regarding air-fuel ratio control (II), in particular, setting constants such as limit constants and small-hold constants relative to altitude.

高地においては、大気圧の低下に伴い空気密僚が減少す
ることから、空燃比制御にお(〕る定数が511地と同
様に設定されていると、沢合気空燃比が過濃化して燃費
、排気ガス浄化等の点で好ましくない。そこで、各定数
を定めるデユーティ信号のデユーティ比を、高地におい
てはステップ状に大キ<シて、制限又は固定される空燃
比の過濃化を回避するように補正りる方法が提案されて
いるが、ス1ツブ状の補正のため、高度変化に充分対処
し橿!14Tい。
At high altitudes, the air density decreases as atmospheric pressure decreases, so if the constant for air-fuel ratio control is set the same as at 511 altitudes, the Sawaai air-fuel ratio will become over-enriched. This is unfavorable in terms of fuel efficiency, exhaust gas purification, etc. Therefore, the duty ratio of the duty signal that determines each constant is increased in steps at high altitudes to avoid excessive enrichment of the air-fuel ratio, which is limited or fixed. A method has been proposed to compensate for this, but since it is a stub-like correction, it is difficult to adequately cope with altitude changes.

尚、空燃比の病疫補正に関しては、従来例えば実開昭5
G −29254号公報の先行技術があるが、こ:I’
L 4;L本発明の前提となるQ、tンIすによるフィ
ードバック制御を行っていない。また、この先行技術は
、高地において使用頻亀の高いバワージrツ1への吸入
管負圧作用側を高度により制御づるものであるから、バ
ワージLツトを使用づるような高負荷での高度補正に限
定される。
Regarding the epidemic correction of the air-fuel ratio, conventionally, for example,
There is a prior art in G-29254, but this: I'
L 4; L Feedback control based on Q and ton I, which is a premise of the present invention, is not performed. In addition, this prior art is designed to control the negative pressure side of the suction pipe to the bowerage 1, which is frequently used at high altitudes, depending on the altitude, so it is difficult to correct the altitude under high loads such as when using the bowerage 1. limited to.

本発明(よ、このような事情に鑑み、02センリににる
フィードバック制御で空燃比制御する際に設定される定
数を8劇変化に対してリニアに変更し、あらゆる8痕に
おいて最適な空燃比を定め1!するようにした空燃比制
御装置5′を促(J4 t ;ことを目的どづる。
In view of these circumstances, the present invention linearly changes the constant set when controlling the air-fuel ratio using feedback control starting at 02 centigrade with respect to 8-stroke changes, and achieves the optimum air-fuel ratio in all 8 strokes. The purpose is to prompt the air-fuel ratio control device 5' to determine 1! (J4 t;

この1−1的のため本発明は、種々の条件によりtシ定
されたリミッ(〜定数やボールド定数の値に、大気圧セ
ンサからの検出信号に基づく補正値を加すして各設定定
数の値を定めることを要旨とづるbのである。
For this 1-1 objective, the present invention adds a correction value based on the detection signal from the atmospheric pressure sensor to the value of the limit (~ constant or Bold's constant) determined by various conditions, and calculates the value of each setting constant. The purpose of b is to determine the value.

以干、本発明の一実施例を図面により説明づる。Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.

第1図において本発明の装置の概略を説明でると、n号
1は1ンジン木休2の」−流側に連設公ねる気化器ぐあ
り、この気化器1のフロートブーVンバ3からペンブコ
リー4のノズル5に至るメイン燃料通路6の途中にエア
ブリード7に空気補正通路8が連通しである。また、メ
イン燃11’i1通路6から分岐してスロワ(ヘル弁9
のイ]近に開口するス1」−ボー1〜10に至るスロー
燃料通路11の途中の1アブリード12にも、空気補正
通路13が連通している。
To explain the outline of the apparatus of the present invention in FIG. An air correction passage 8 is connected to an air bleed 7 in the middle of a main fuel passage 6 leading to a nozzle 5 of a penbucolly 4. In addition, it branches from the main combustion 11'i1 passage 6 and has a thrower (hell valve 9).
An air correction passage 13 also communicates with the 1-abbreed 12 in the middle of the slow fuel passage 11 that opens near the 1-bows 1 to 10.

そしてこ4″lらの各空気補正通路8,13に開開用の
電磁片14.15が設けら41、この?h磁ブp14.
15の吸入側が、エアクリ−ノー16を介しく人気に連
通しくいる。次いでエンジン本体下流側の抽気↑117
には、抽気ガス61化用三元触媒−lンバータ18が介
設され、ぞれJ、す1−ンジン本体側に02t7ンリ1
9が、IJI気ガス中の酸素′m瓜により空燃比を検出
すべく設(プIうれ′Cいる。l J、た、吸気系のスロットル弁9の下流側に吸入tス(
′1月−を検出Jる9珪センサ20が設りられ、[ンジ
ン木体2には水温ジンリ21が設けられ、これらのけン
ザ20.21、及びエンジン回転センザ229人気ルレ
ン→J23、更に上記02センリー19の各信号が制t
111回路24に入力され、制御回路24/〕t’lう
のデューンイイ1−1尼で、電磁弁14.15を開閉動
作りるように回路椙成されている。
Each of these air correction passages 8 and 13 is provided with an opening/opening electromagnetic piece 14.15, and this ?h magnetic piece p14.
The suction side of 15 is connected to the main body through an air cleaner 16. Next, the bleed air on the downstream side of the engine body ↑117
A three-way converter 18 for converting the bleed gas to 61 is interposed, and 02t7 inverter 18 is installed on the engine body side.
9 is installed to detect the air-fuel ratio using oxygen in the IJI gas.
A 9-silicon sensor 20 is installed to detect the engine speed, a water temperature sensor 21 is installed on the engine body 2, and an engine rotation sensor 229 is installed. Each signal of the above 02 sentry 19 is controlled.
111 is input to the circuit 24, and a circuit is constructed to open and close the solenoid valves 14 and 15 at the dune 1-1 of the control circuit 24/t'l.

り12図においで人気圧センサの回路について説明づる
と、人気1iセンリ23は大気圧検知へローズ23aと
、ポテンショメータ231]から成り、病疫と」tに大
気圧の変化に応じた電圧のアブ1」グ値を出カリ−る。
To explain the circuit of the human pressure sensor in Fig. 12, the popular 1i sensor 23 consists of a rose 23a and a potentiometer 231 for detecting atmospheric pressure, and it detects the voltage according to changes in atmospheric pressure. ” Outputs the log value.

そしてこの大気圧センサ23の信号が、Δ−1)三1ン
ハ〜り川の化1.5LダイA−ド25a、ノイズ防II
川Jンフ1ンリ2511を介して△−1つ=」ンパータ
2 (i lJ大入力、j′イジタル1ifiに変J灸
さ1′Iてンイク]二1プ[ルッリ27に入力される。
Then, the signal of this atmospheric pressure sensor 23 is Δ-1)
△-1='' input to input 27 via river input 2511.

尚、ンイク1」ブ[1セツリ27の出カイへ号は、1〜
ランジスク等を右づる駆0)回路28を介して“電磁弁
14.15に接続される。
In addition, the issue number for the output of 1 set 27 is 1~
It is connected to the electromagnetic valve 14.15 via the circuit 28 that drives the right drive cylinder 28.

ここて゛、フイクロブ【コレッ→ノ27では、02レン
リ19からの45号により空燃比が理論空燃比に対しχ
濶いか辞いかの判定をイjい、濃い場合にはデ」−ラー
イ比の大きいリーン仏シシを出力して電磁弁14゜1j
IにJ、る?i[i if空気帛を増1)、空燃比をリ
ーン化づる4、また逆にRvい場合にはデL−ティ比の
小さいリッf−(Fj弓を出力して電磁ブP14.15
による袖i1空気量を減じ、空燃比をリップ化づる。そ
して通常のフィードバック制御では、上記各信用を交U
に行うことぐ空燃比を理論空燃比付近に保ら、高負萄領
域ではリミッ!・定数によりチー2−ティ比を制限し−
C空燃比をi茄い]]に制御づる。一方、02セン1ノ
19の不活性状態では水温、エンジン回転、吸入管負圧
の各値に基づいてボールド定数を定め、デューアr比を
固定して空燃比を特定の値に保持りる。
Here, in Microb [Colle → No. 27], the air-fuel ratio is χ with respect to the stoichiometric air-fuel ratio according to No.
Determine whether it is dry or not, and if it is strong, output a lean pressure signal with a large de-ray ratio and turn on the solenoid valve 14°1j.
J to I? i [i if increase the air force 1), make the air-fuel ratio leaner 4, or conversely, if Rv is low, output the Fj bow and increase the electromagnetic valve P14.15
By reducing the amount of air in the sleeve i1, the air-fuel ratio is made into a lip. In normal feedback control, each of the above credits is exchanged.
The main thing to do is to keep the air-fuel ratio near the stoichiometric air-fuel ratio, and limit it in the high load region!・Limit the Q2-T ratio by a constant.
Control the air-fuel ratio to 1]. On the other hand, in the inactive state of 02 sen 1 no 19, the bold constant is determined based on each value of water temperature, engine rotation, and suction pipe negative pressure, and the duer r ratio is fixed to maintain the air-fuel ratio at a specific value.

次いで、このように構成された空燃比制御装置の作用を
第3図のフローチャートを用いて説明づるど、先’)’
、O> センザ出カイ1’l J3 +水温、エンジン
回転、吸入管負Fト、始動後の時間等により各種条イ!
1を判別し、F/+3(フィードバック)t−ドにd3
いて02セン勺の状態を判断し、活+!1状態のどぎは
リミット定数を決め、不活性状態のどきはノト−ルド定
数を決める。次いて゛、人気1iセンリ゛のノ’=rジ
タル値を読取り、このディジタル値に基づい−(各定数
を啄正し−(”7” −)−−ディ比を定める。イして
、各定数の修正は第4図の7(」−ザト一トに示づ、」
:うに、大気圧センサで検出される電圧値は11(地【
゛人、高地で小なる特性の場合、制御しようとりるデー
L−アイ比はこの逆どなる!こめ、ディジタル111■
を反転し、その値に定数を演尊して補正値を障出し、予
め設定された各定数の値に補正値を加粋する。
Next, the operation of the air-fuel ratio control device configured as described above will be explained using the flowchart shown in FIG.
, O> Sensor output 1'l J3 + Various conditions depending on water temperature, engine rotation, suction pipe negative F, time after startup, etc.
1 and d3 to F/+3 (feedback) t-do.
Then, judge the condition of 02 sen and activate it! The 1-state door determines the limit constant, and the inactive state door determines the Notold constant. Next, read the No' = r digital value of the popular 1i century, and based on this digital value - (multiply each constant - ("7" -) - - determine the di ratio. The correction is shown in Figure 4, 7 ("-Zatoichito,"
:Uni, the voltage value detected by the atmospheric pressure sensor is 11 (earth [
゛In the case of small characteristics at high altitudes, the D-L-Eye ratio that we try to control will be the opposite! Come, Digital 111■
is inverted, a constant is applied to that value to obtain a correction value, and the correction value is added to each preset value of the constant.

こ41にJ、す、第5図Qに示づように成る条件で定め
らねたア:ノーアイ比O%、2()%、40%の各定数
は、同図(b)に示すように8瓜の上y1に対して大さ
″くなるJ、うにリニアに変更される。
The constants of A: no eye ratio O%, 2()%, and 40%, which were determined under the conditions shown in Figure 5Q, are as shown in Figure 5(b). J, which increases in size with respect to the upper y1 of 8 melons, is changed linearly.

尚、各定数の変更特性は、第5図(b)の破線のように
しても良く、インジエクタを用いた電子9M it哨+
1JJによる空燃比制御にし本発明を適用しt<Jるの
は勿論である。
Incidentally, the change characteristics of each constant may be changed as shown by the broken line in FIG.
Of course, when the present invention is applied to air-fuel ratio control using 1JJ, t<J.

以上の説明から明らかなJ、うに、本発明によると、0
2廿ン]ノによるノイードバック制御で空燃比制御り−
る際に設定さ]するリミッ1〜定数やホールド定数か高
1哀変化に対してリニアに変更されるので、いかなる8
曵でも空燃比を最適に制御覆ることができ、燃費、排気
ガス浄化等が良くなる。また、人気HしンI、L23か
らの信号によりマイ二]ン処1里して補市づるので、宥
n正をff薫に行い得る。
According to the present invention, J, sea urchin, which is clear from the above explanation, is 0
The air-fuel ratio is controlled by noise back control using
It changes linearly with the limit 1 to constant, hold constant, or high 1 change, so any 8
The air-fuel ratio can be optimally controlled even during rain, improving fuel efficiency and exhaust gas purification. In addition, since the signal from the popular Hshin I and L23 sends a 1 ri distance to the main station, the correction can be made to the FF Kaoru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の一実施例を示す構成図、8
r!2図(ま要部の回路図、第3図、第4図は作用を示
づ71−1−チト一ト図、第5図(ハ)は各定数の設定
状態の一例を示す図、同図(b)は定数の変更状態の一
例を示づ線図である。 14、15・・・空気補正用電磁ブ?、19・・・02
レンサ、2()・・・負圧レジ1ノ、21・・・水温セ
ンサ、22・・・エンジン回転センサ、23・・・大気
圧ヒンリー、24・・・制()す回路。 特ン1出願人 富(T重工業株式会社 代]11人 弁伸士 小 (4侶 汁 同 弁1!I! t 利 月 進 −216− 21′1″ 5 図 (a) (b) 島鷹
FIG. 1 is a block diagram showing an embodiment of the apparatus according to the present invention, 8
r! Figure 2 (circuit diagram of the main part; Figures 3 and 4 are diagrams showing the operation; Figure 5 (c) is a diagram showing an example of the setting state of each constant; Figure (b) is a diagram showing an example of a constant change state. 14, 15...Air correction electromagnetic valve?, 19...02
Sensor, 2()... Negative pressure register 1, 21... Water temperature sensor, 22... Engine rotation sensor, 23... Atmospheric pressure Hinley, 24... Control circuit. Special feature 1 applicant Tomi (representative of T Heavy Industries Co., Ltd.) 11 people Benshinshi Ko (4 people) Ben 1!

Claims (1)

【特許請求の範囲】[Claims] ]−ンジンのIノI気系に設訂された02レンリにより
空燃比をフィードバック制御し、又はリミット定数、ホ
ールド定数により制t211りる空燃比i1i!制御装
置において、人気用に応じた信号を出力する大気圧セン
サを何し、該人気紅しンナからの信号に基づき上)IL
!リミット定数、小−ルド定数を高度変化に対しり−)
lに変更りるように椙成したことを特徴どづる空燃比制
御装置。
] - The air-fuel ratio is feedback-controlled by the 02 range set in the engine's I-I air system, or the air-fuel ratio is controlled by the limit constant and hold constant t211! In the control device, what is the atmospheric pressure sensor that outputs the signal according to the popularity?
! Limit constant, small-hold constant against altitude change-)
The air-fuel ratio control device is characterized by being developed in such a way that it changes to 1.
JP11331483A 1983-06-23 1983-06-23 Air-fuel ratio controller Pending JPS606034A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11331483A JPS606034A (en) 1983-06-23 1983-06-23 Air-fuel ratio controller
DE19843422939 DE3422939A1 (en) 1983-06-23 1984-06-20 ARRANGEMENT FOR REGULATING THE AIR FUEL RATIO OF AN INTERNAL COMBUSTION ENGINE
GB08415832A GB2142170B (en) 1983-06-23 1984-06-21 Air fuel ratio control system
FR8409984A FR2549147B1 (en) 1983-06-23 1984-06-25 AIR-FUEL RATIO REGULATION DEVICE FOR ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11331483A JPS606034A (en) 1983-06-23 1983-06-23 Air-fuel ratio controller

Publications (1)

Publication Number Publication Date
JPS606034A true JPS606034A (en) 1985-01-12

Family

ID=14609087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11331483A Pending JPS606034A (en) 1983-06-23 1983-06-23 Air-fuel ratio controller

Country Status (4)

Country Link
JP (1) JPS606034A (en)
DE (1) DE3422939A1 (en)
FR (1) FR2549147B1 (en)
GB (1) GB2142170B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114443A (en) * 1984-06-29 1986-01-22 Toyota Motor Corp Air-fuel ratio controller for internal-combustion engine
DE19643394C2 (en) * 1996-10-21 2000-03-23 Alexander Unrau Device for improved mixture formation for an internal combustion engine
DE19937154B4 (en) * 1999-08-06 2008-04-30 Robert Bosch Gmbh Method for suction pipe pressure-guided geodetic height detection in a motor vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118023B2 (en) * 1972-04-14 1976-06-07
JPS55134739A (en) * 1979-04-05 1980-10-20 Hitachi Ltd Electronically controlled carburetor
EP0028286A1 (en) * 1979-07-13 1981-05-13 Ludwig Elsbett Control system for the quantity of fuel to be injected into the combustion chamber of an internal combustion engine, Diesel or other
JPS5623545A (en) * 1979-08-02 1981-03-05 Fuji Heavy Ind Ltd Air-fuel ratio controller
JPS5623535A (en) * 1979-08-02 1981-03-05 Fuji Heavy Ind Ltd Air-fuel ratio controller
US4270503A (en) * 1979-10-17 1981-06-02 General Motors Corporation Closed loop air/fuel ratio control system
JPS56138439A (en) * 1980-03-29 1981-10-29 Mazda Motor Corp Air-fuel ratio controller for engine
JPS5791356A (en) * 1980-11-27 1982-06-07 Fuji Heavy Ind Ltd Air-fuel ratio controller
JPS57119152A (en) * 1981-01-16 1982-07-24 Fuji Heavy Ind Ltd Air-fuel ratio control device
JPS5885337A (en) * 1981-11-12 1983-05-21 Honda Motor Co Ltd Atmospheric pressure correcting method and device of air-fuel ratio in internal-combustion engine
DE3149097A1 (en) * 1981-12-11 1983-06-16 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR REGULATING THE IDLE SPEED IN AN INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
GB8415832D0 (en) 1984-07-25
GB2142170A (en) 1985-01-09
FR2549147B1 (en) 1988-11-10
GB2142170B (en) 1987-04-01
FR2549147A1 (en) 1985-01-18
DE3422939A1 (en) 1985-01-10

Similar Documents

Publication Publication Date Title
US4249374A (en) Split engine control system with exhaust gas recirculation
US3960118A (en) Air-fuel ratio adjusting device in an internal combustion engine having a carburetor
US4763634A (en) Air-fuel ratio control system for automotive engines
JP3819212B2 (en) Failure diagnosis device for evaporative fuel treatment equipment
JPS5917259B2 (en) Air fuel ratio control device
JPS6321019B2 (en)
JPS606034A (en) Air-fuel ratio controller
JPS58150057A (en) Study control method of air-fuel ratio in internal-combustion engine
JPH0123664B2 (en)
JPS6285148A (en) Engine control device
JPH05126006A (en) Control device of fuel pump for internal combustion engine
JPS60192845A (en) Air-fuel ratio control device
JPS6321018B2 (en)
JPH07113343B2 (en) Air-fuel ratio controller for internal combustion engine
JPH07151000A (en) Control device for air-fuel ratio of internal combustion engine
JP2594943Y2 (en) Fuel control device for internal combustion engine
JPH0385362A (en) Exhaust gas circulation controller of diesel engine
JPS59231146A (en) Method of controlling injection quantity of fuel
JPS60198348A (en) Engine controller
JPS6244108Y2 (en)
JPS58176436A (en) Control device for engine
JPH021473Y2 (en)
JPS57143135A (en) Method of controlling fuel injection of internal combustion engine
JPS61160554A (en) Egr control device
JPS5996452A (en) Partial lean control method for air-fuel ratio of internal-combustion engine