JPS6059926A - Voltage reactive power regulator - Google Patents

Voltage reactive power regulator

Info

Publication number
JPS6059926A
JPS6059926A JP58168019A JP16801983A JPS6059926A JP S6059926 A JPS6059926 A JP S6059926A JP 58168019 A JP58168019 A JP 58168019A JP 16801983 A JP16801983 A JP 16801983A JP S6059926 A JPS6059926 A JP S6059926A
Authority
JP
Japan
Prior art keywords
reactive power
input voltage
value
primary side
side input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58168019A
Other languages
Japanese (ja)
Inventor
関戸 勝美
若松 久芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP58168019A priority Critical patent/JPS6059926A/en
Publication of JPS6059926A publication Critical patent/JPS6059926A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、分路リアクトルあるいは電力用コンデンサな
どの調相設備の操作量(オン・オフ操作量)を制御する
ことにより変電所の変圧器1次側入力電圧を基準値全中
心とした不感帯内に調整する電圧・無効電力調整装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on the primary input voltage of a substation transformer by controlling the operation amount (on/off operation amount) of phase adjustment equipment such as a shunt reactor or a power capacitor. This invention relates to a voltage/reactive power adjustment device that adjusts the voltage within a dead band centered on all values.

従来、この種の装置においては変圧器1次側入力電圧を
、所定の不感帯内に調整する際の基準値は設計当初に予
想される負荷および系統構成に基づいて送電損失が最小
となるように設定され、これによって実際の運転時の負
荷、系統構成に大変更が生じない限り変圧器1次側入力
電圧は適切に調整される。
Conventionally, in this type of equipment, the reference value when adjusting the primary side input voltage of the transformer within a predetermined dead band is set so that transmission losses are minimized based on the load and system configuration expected at the time of design. As a result, the primary side input voltage of the transformer is appropriately adjusted unless there is a major change in the load or system configuration during actual operation.

しかし、例えば発電所の発電機の停止、変電所の調相設
備による無効電力調整能力の低下、あるいは予想を上回
る負荷の無効電力外の増加などにより、1次側系統への
無効電力の供給に予想時を上回る過不足が生じた場合、
変圧器1次側入力電圧全不感帯内に維持することができ
ず、電圧降下による送電損失の増大、過負荷あるいは電
圧上昇による送変電機器の損傷などが発生する。
However, due to, for example, a shutdown of a generator at a power plant, a decrease in the reactive power adjustment ability due to phase adjustment equipment at a substation, or an unexpected increase in the amount of load other than reactive power, the supply of reactive power to the primary system may be interrupted. If there is a surplus or deficiency that exceeds the expected amount,
The input voltage on the primary side of the transformer cannot be maintained within the total dead zone, resulting in increased power transmission loss due to voltage drop and damage to power transmission and substation equipment due to overload or voltage rise.

従来、このような事態が発生した場合は当該変電所の上
位系統である発電所の自動電圧調整設備あるいは上位変
電所の電圧・無効電力調整装置によって対処するように
構成されている。
Conventionally, when such a situation occurs, it has been configured to be dealt with by automatic voltage adjustment equipment of a power plant that is an upper system of the relevant substation, or by a voltage/reactive power adjustment device of an upper substation.

ところが、このように上位側電力系統に調整能力を順次
転嫁させる構成とした場合、上位側電力系統の調整能力
が限界に達したときに下位側電力系統の機能が完全に停
止してしまい、信頼性に欠けるという問題点があった・ 本発明は、このような問題点を解決するためになされた
もので、その目的は負荷および系統構成が予想時と大き
く異なる場合でも当該変電所の下位側電力系統の機能が
停止してしまうなどの事態が生じるの全防止し得る電圧
・無効電力調整装置を提供することにある。
However, if the configuration is such that the adjustment capacity is sequentially transferred to the upper power system, when the adjustment capacity of the upper power system reaches its limit, the functions of the lower power system will completely stop, resulting in a loss of reliability. The present invention was made to solve these problems, and its purpose is to maintain the lower side of the substation even if the load and system configuration are significantly different from the expected ones. It is an object of the present invention to provide a voltage/reactive power adjusting device that can completely prevent the occurrence of a situation such as a stoppage of the functions of an electric power system.

本発明は、変圧器1次側入力電圧全不感帯内に調整する
際の無効電力基準値を、変圧器1次側入力電圧の現在値
とその基準値との偏差に応じて補正し、この補正値に基
づき峙相設備の操作量金利!し、変圧器1次側入力電圧
が不感帯内に収束した場合にはこの時の変圧器通過無効
電力値を新たな無効電力基準値として設定し、変圧器1
次側入力電圧金各変電所毎の無効電力調整装置に応じて
適切に調整することにより、上記目的を達成するように
構成したものである。
The present invention corrects the reactive power reference value when adjusting the transformer primary side input voltage within the total dead zone according to the deviation between the current value of the transformer primary side input voltage and the reference value, and makes this correction. The operation amount interest rate of the opposing equipment based on the value! However, when the primary side input voltage of the transformer converges within the dead band, the reactive power passing through the transformer at this time is set as a new reactive power reference value, and the transformer 1
The above object is achieved by appropriately adjusting the next-side input voltage according to the reactive power adjustment device of each substation.

以下、図示する実施例に基づき本発F!I8Jヲ詳細に
説明する・ 図面は本発明の要部の一実施例全示すブロック図である
。同図において、1は変圧器1次側入力電圧Viの基準
値Vsi保持する1次電圧基準値保持回路、2は入力電
圧Viの不感帯■DZ”保持する1次電圧不感帯保持回
路、3は変圧器1次側入力電圧Viとその基準値Vsと
全比較し、■i〉■D2の条件のときにこのこと?表わ
す比較結果信号Fを出力すると共に、入力電圧Viと基
準値■8との偏差信号ΔV(=V 1−Vs ) k出
力する比較回路、4は比較結果信号Fに基づき不感帯■
Dzv11−越える入力電圧Viが所定時間継続した場
合にパルス信号Gi出力するタイマである。この場合、
タイマ4はパルス信号Gによってリセットされ、再び計
時動作全開始する・5は比較回路3がら出力される偏差
信号Δ■のうち最大値ΔV′金抽出して保持するピーク
ホールド回路であり、保持された最大値ΔV′は新たな
比較結果信号Fまたはパルス信号Gが発生した時点でリ
セットされる。そして、このリセット後において次の新
たな比較結果信号Fまたはパルス信号Gが発生するまで
の間で偏差信号Δ■のうち最大値ΔV′が抽出される。
Hereinafter, based on the illustrated example, the original F! I8J will be explained in detail. The drawing is a block diagram showing an embodiment of the main part of the present invention. In the figure, 1 is a primary voltage reference value holding circuit that maintains the reference value Vsi of the primary side input voltage Vi of the transformer, 2 is a primary voltage dead band holding circuit that maintains the input voltage Vi's dead band "DZ", and 3 is a transformer. The primary side input voltage Vi of the device is compared with its reference value Vs, and when the conditions of ■i>■D2 are met, it outputs a comparison result signal F indicating this? A comparison circuit that outputs the deviation signal ΔV (=V 1 - Vs) k, 4 is a dead zone based on the comparison result signal F.
This is a timer that outputs a pulse signal Gi when the input voltage Vi exceeding Dzv11 continues for a predetermined period of time. in this case,
The timer 4 is reset by the pulse signal G and starts the full timekeeping operation again. 5 is a peak hold circuit that extracts and holds the maximum value ΔV' of the deviation signal Δ■ output from the comparator circuit 3. The maximum value ΔV' is reset when a new comparison result signal F or pulse signal G is generated. After this reset, the maximum value ΔV' of the deviation signal Δ■ is extracted until the next new comparison result signal F or pulse signal G is generated.

6は旋圧器を通過する無効電力Qの基準値Qst−保持
する無効電力基準値保持回路、7は個々の変電所におけ
る入力電圧Viの単位変動量を回復するために必要な無
効電力Qの発生量または消費量の負担分を表わす比測定
aKt−保持する比例定数保持回路であ飢この場合の比
例定数には各変電所における調和設備の容量などに応じ
て定められる。8は無効電力Qの基準値Qsと比例定数
におよυ偏差信号の最大値ΔV′とに基づき、次の第α
)式で示す演算を実行無効電力補正値QsN′をめる演
算回路であシ。
6 is a reactive power reference value holding circuit that maintains the reference value Qst of the reactive power Q passing through the rotator, and 7 is the generation of reactive power Q necessary to recover the unit variation of the input voltage Vi at each substation. A ratio measurement aKt representing the burden of the amount or consumption amount is maintained by a proportional constant holding circuit, and the proportional constant in the case of starvation is determined according to the capacity of the harmonizing equipment at each substation. 8 is based on the reference value Qs of the reactive power Q, the proportionality constant, and the maximum value ΔV' of the υ deviation signal.
) is an arithmetic circuit that calculates the reactive power correction value QsN'.

ここで算出された補正値QSNは無効電力調整リン−(
図示せず)に送られて調和設備がオン・オフされる。
The correction value QSN calculated here is the reactive power adjustment ring (
(not shown) to turn on and off the harmonizing equipment.

Q8N=Qs十K・ΔV′・・・・・・(1)次に、9
は無効電力Qの不感帯QDZを保持する無効電力不感帯
保持回路、1oは無効電力補正値Q8N+不感帯QD2
および現在の無効電力入力。iを受け、無効電力入力Q
fが不感帯QDZを越えたときにこのことを表わす比較
結果信号Hi出カする比較回路、11は無効電力Qの過
補正を防止するために基準値Qst−更新する基準値更
新回路であシ、タイマ4からパルス信号Gが出力された
時点で比較結果信号Fが出方されておシ(vi>’vD
、)%かつ無効電力人力Qiが不感帯内にあれば(Qi
<QDZ)、この時点で演算回路8から出力されている
無効電力補正値QsN’を基準値保持回路6に設定し、
保持回路6に保持されている基準値Q9’を補正値Q8
Nに更新する。また、パルス信号Gが出力された時点で
比較結果信号Fが出力されておらず(すなわち、Vi<
VD2であってViが不感帯内にあれば)、かつ現在の
無効電力人力Qiが不感帯外にあればこの時点の無効電
力入力Qiを保持回路6に設定し、基準値QsをQiに
更新する。また、vi<vDzであって、かつ現在の無
効電力人力Qiが不感帯内にあれば、すなわち補正量が
適切である場合にはこの時点で演算回路8から出力され
ている補正値QSN ?新たな基準値Qsとして設定す
る。
Q8N=Qs10K・ΔV′・・・・・・(1) Next, 9
is a reactive power dead zone holding circuit that maintains the dead zone QDZ of reactive power Q, 1o is reactive power correction value Q8N + dead zone QD2
and current reactive power input. Receives i, reactive power input Q
a comparison circuit which outputs a comparison result signal Hi indicating this when f exceeds the dead zone QDZ; 11 is a reference value updating circuit which updates the reference value Qst to prevent over-correction of the reactive power Q; When the pulse signal G is output from timer 4, the comparison result signal F is output (vi>'vD).
, )% and if the reactive power Qi is within the dead band, then (Qi
<QDZ), set the reactive power correction value QsN' outputted from the arithmetic circuit 8 at this point in the reference value holding circuit 6,
The reference value Q9' held in the holding circuit 6 is changed to the correction value Q8.
Update to N. Furthermore, at the time when the pulse signal G is output, the comparison result signal F is not output (that is, Vi<
VD2 and Vi is within the dead band), and if the current reactive power input Qi is outside the dead band, the reactive power input Qi at this time is set in the holding circuit 6, and the reference value Qs is updated to Qi. Further, if vi<vDz and the current reactive power Qi is within the dead zone, that is, if the correction amount is appropriate, the correction value QSN? output from the arithmetic circuit 8 at this point? Set as a new reference value Qs.

以上のような構成において、変圧器1次側入力電圧Vi
が不感帯内に収束している場合には比較結果信号Fおよ
びパルス信号Gのいずれも発生しない・このため、演算
回路8からは予め設定された無効電力基準値θ5に等し
い補正値θ8Nが出力されるものとなり、無効電力調整
リレーは予め設定された無効電力基準値θ8に従ってそ
のオン・オフ動作が制御される。これによって、入力電
圧■iおよび無効電力入力Qiはそれぞれの基準値Vs
およびQSを中心とした不感帯内に調整される。
In the above configuration, the transformer primary side input voltage Vi
has converged within the dead zone, neither the comparison result signal F nor the pulse signal G is generated. Therefore, the arithmetic circuit 8 outputs a correction value θ8N that is equal to the preset reactive power reference value θ5. The on/off operation of the reactive power adjustment relay is controlled according to a preset reactive power reference value θ8. As a result, the input voltage ■i and the reactive power input Qi are set to their respective reference values Vs
and is adjusted within the dead zone centered on QS.

しかし、何らかの負荷変動が生じて入力電圧V1が不感
帯を越えると、比較回路3から比較結果信号Fが発生し
てピークホールド回路5がリセットされると共に、この
す七ット後において入力電圧Viと基準値Vsとの偏差
ΔVの最大値ΔV′が抽出されてピークホールド回路5
に保持される・すると、演算回路8はこの偏差Δ■の最
大値ΔV/ r、基に第(1)式で示した演算全実行し
、最大値Δ■′に比例した無効電力Qiの補正値QsN
e算出する。これによって、無効電力調整リレーがこの
補正値Q8Nによってオン・オフされ、変圧器通過無効
電力Q1は補正値Q8Nに対応して補正されるものとな
る。
However, if some load fluctuation occurs and the input voltage V1 exceeds the dead band, the comparison result signal F is generated from the comparison circuit 3, the peak hold circuit 5 is reset, and after this seven bits, the input voltage Vi The maximum value ΔV' of the deviation ΔV from the reference value Vs is extracted and sent to the peak hold circuit 5.
Then, the arithmetic circuit 8 executes all the calculations shown in equation (1) based on the maximum value ΔV/r of this deviation Δ■, and corrects the reactive power Qi proportional to the maximum value Δ■'. Value QsN
eCalculate. As a result, the reactive power adjustment relay is turned on and off by this correction value Q8N, and the reactive power Q1 passing through the transformer is corrected in accordance with the correction value Q8N.

このような無効電力人力Qiの補正制御全実行している
間にタイマ回路4からパルス信号Gが発生すると、基準
値更新回路11はこの時点で比較結果信号Fが発生して
いるか否か全調べ、信号Fが未だ発生している場合には
無効電力の補正が不足していることになるのでこの時点
の無効電力補正値Q8Nを新たな基準値Qsとして設定
する。これにより、演算回路8においては新たな基準値
Qsに基づいて無効電力入力の新たな補正値08Nが算
出され、この補正値θSNに従って無効電力人力Q1が
調整される。
When the pulse signal G is generated from the timer circuit 4 while the correction control of the reactive power human power Qi is being fully executed, the reference value update circuit 11 performs a full check to see if the comparison result signal F is generated at this point. , if the signal F is still occurring, it means that the reactive power correction is insufficient, so the reactive power correction value Q8N at this point is set as the new reference value Qs. As a result, the arithmetic circuit 8 calculates a new correction value 08N for the reactive power input based on the new reference value Qs, and adjusts the reactive power input Q1 according to this correction value θSN.

このような調整を繰り返した結果、入力電圧Viが不感
帯内に収束し、この直後にパルス信号Gが発生すると、
基準値更新回路11は現在の無効電力人力Qiが不感帯
内にあるか否かを比較結果信号Hに基づいて調べ、Qi
が不感帯内にあれば補正が適切になっていることになる
のでこの時点で演算回路8から出力されている無効電力
補正値Q8N全基準値QSとして設定する。!た。Qi
が不感帯外にある場合にはこの時点の無効電力入力Q[
−基準値Qsとして設定する7 これにより、負荷変動によって不感帯外となっていた入
力電圧Viは不感帯内に調整される。
As a result of repeating such adjustments, the input voltage Vi converges within the dead zone, and immediately after this, the pulse signal G is generated.
The reference value updating circuit 11 checks whether the current reactive power input Qi is within the dead zone based on the comparison result signal H, and
If it is within the dead zone, it means that the correction is appropriate, so the reactive power correction value Q8N output from the arithmetic circuit 8 at this point is set as the total reference value QS. ! Ta. Qi
is outside the dead band, the reactive power input Q[
- Set as reference value Qs 7 As a result, the input voltage Vi, which was outside the dead zone due to load fluctuation, is adjusted to within the dead zone.

この場合、無効電力補正値QSNを入力電圧v1と基準
値Vsとの偏差ΔVに比例して算出するに際し、偏差Δ
■の最大値Δ■′全抽出し、この最大値ΔV′によって
補正値QBN’を算出しているため、入力電圧Viの回
復に必要な無効電力人力Qi の補正量が不足すること
はない。すなわち、単純に偏差ΔVのみに比例して補正
値QsN’e算出した場合には、入力電圧Viの回復に
伴って補正量も小さくなシ、補正量は必ず不足するもの
となるが、入力電圧Viが不感“帯を越えた時点からの
偏差Δ■の最大値ΔV′を用いることによシ、入力電圧
Viの回復に充分な補正量を得ることができる・ 以上の説明から明らかなように本発明は、変圧器1次側
入力電圧を不感帯内に調整する際に、無効電力基準値を
1次側入力電圧の現在値とその基準値との偏差の最大値
に比例して補正し、この補正値に基づき調相設備の操作
量全制御し、1次側入力電圧が不感帯内に収束した場合
にはこの時の変圧器通過無効電力値を新たな無効電力基
準値として設定し、1次側入力電圧?各変電所毎の無効
電力調整分担に応じて調整するようにしたものである。
In this case, when calculating the reactive power correction value QSN in proportion to the deviation ΔV between the input voltage v1 and the reference value Vs, the deviation Δ
Since the maximum value Δ■' of (2) is fully extracted and the correction value QBN' is calculated using this maximum value ΔV', there is no shortage of the correction amount of the reactive power human power Qi necessary for recovering the input voltage Vi. In other words, if the correction value QsN'e is simply calculated in proportion to only the deviation ΔV, the correction amount will be small as the input voltage Vi recovers, and the correction amount will always be insufficient. By using the maximum value ΔV' of the deviation Δ■ from the point at which Vi exceeds the insensitive "band," it is possible to obtain a sufficient correction amount to recover the input voltage Vi. As is clear from the above explanation, The present invention corrects the reactive power reference value in proportion to the maximum value of the deviation between the current value of the primary side input voltage and the reference value when adjusting the transformer primary side input voltage within the dead band, The operation amount of the phase adjustment equipment is fully controlled based on this correction value, and when the primary side input voltage converges within the dead band, the value of the reactive power passing through the transformer at this time is set as the new reactive power reference value, and 1 Next-side input voltage? Adjustment is made according to the reactive power adjustment share of each substation.

このため、負荷および系統構成が予想時と大きく異なっ
た場合でも下位側電力系統の機能が停止してしまうなど
の事態は起らず、信頼性を高めることができる7また、
実施例のように無効電力補正値全算出する際に比例定数
を加味すれば。
Therefore, even if the load and system configuration are significantly different from the expected ones, situations such as the lower power system's functions will not stop will not occur, and reliability can be improved7.
If a proportionality constant is taken into account when calculating all reactive power correction values as in the embodiment.

この比例定数を変えるだけで各変−所の無効電力調整分
担を適切に配分することができ、系統全体の設計が容易
になるなどの効果があり、全体として過不足のない調整
を行い、送電損失全最小に抑えるこ去ができるなどの効
果がある。
By simply changing this proportionality constant, it is possible to appropriately allocate the reactive power adjustment share of each substation, which has the effect of facilitating the design of the entire system. This has the effect of minimizing total loss.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の要部の一実施例を示すブロック図である
。 ■・・・1次電圧基準値保持回路、2・・・1次電圧不
感帯保持回路、3・・・比較回路、4・・・タイマ、5
・・・ピークホールド回路、6・・・無効電力基準値保
持回路、7・・・比例定数保持回路、8・・・演算回路
、9−・・無効電力不感帯保持回路、10・・・比較回
路、11・・・基準値更新回路。
The drawing is a block diagram showing an embodiment of the main part of the present invention. ■...Primary voltage reference value holding circuit, 2...Primary voltage dead band holding circuit, 3...Comparison circuit, 4...Timer, 5
...Peak hold circuit, 6...Reactive power reference value holding circuit, 7...Proportional constant holding circuit, 8...Arithmetic circuit, 9-...Reactive power dead zone holding circuit, 10...Comparison circuit , 11... Reference value update circuit.

Claims (1)

【特許請求の範囲】[Claims] 調相設備の操作量を制御することにより変電所の変圧器
1次:個入力電圧を基準値を中心とした不感帯内に調整
する電圧・無効電力調整装置において、上記1次側入力
電圧の不感帯値と現在の1次側入力電圧値と全比較する
と共に1次側入力電圧の基準値と現在の1次側入力電圧
値との偏差をめる比較回路と、この比較回路の出力に基
づいて1次側入力電圧が不感帯を越えたとき上記偏差の
最大値を抽出して保持し、1次側入力電圧が不感帯に収
束したとき及び不感帯全縮える1次側入力電圧が所定時
間継続したとき保持値がリセットされるピークホールド
回路と、1次側入力電圧が不感帯を越えたとき変圧器通
過無効電力の基準値を上記ピークホールド回路に保持さ
れた偏差の最大値に比例して補正し、この補正値に基づ
いて調相設備の操作量を制御する演算回路と、上記比較
回路の出力に基づき1次側入力電圧が不感帯内に収束し
たとき変圧器通過無効電力の現在値を変圧器通過無効電
力の基準値として設定し、不感帯を越える1次側入力電
圧が所定時間継続したとき上記演算回路で算出された補
正値を変圧器通過無効電力の基準値として設定する無効
電力基準値更新回路とを備えて成る電圧・無効電力調整
装置、
In a voltage/reactive power adjustment device that adjusts the primary input voltage of a substation transformer within a dead band centered on a reference value by controlling the operation amount of phase adjustment equipment, the dead band of the primary side input voltage is A comparator circuit that compares the value with the current primary side input voltage value and also calculates the deviation between the reference value of the primary side input voltage and the current primary side input voltage value, and based on the output of this comparison circuit. When the primary side input voltage exceeds the dead band, extract and hold the maximum value of the above deviation, and when the primary side input voltage converges to the dead band, and when the primary side input voltage that completely reduces the dead band continues for a predetermined period of time. A peak hold circuit in which the held value is reset, and a reference value of the reactive power passing through the transformer when the primary side input voltage exceeds the dead zone is corrected in proportion to the maximum value of the deviation held in the peak hold circuit, An arithmetic circuit that controls the operation amount of the phase adjustment equipment based on this correction value, and an arithmetic circuit that controls the operation amount of the phase adjustment equipment based on the output of the above-mentioned comparison circuit. A reactive power reference value update circuit that sets the reference value of reactive power and sets the correction value calculated by the above calculation circuit as the reference value of reactive power passing through the transformer when the primary side input voltage exceeding the dead zone continues for a predetermined time. A voltage/reactive power regulator comprising:
JP58168019A 1983-09-12 1983-09-12 Voltage reactive power regulator Pending JPS6059926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58168019A JPS6059926A (en) 1983-09-12 1983-09-12 Voltage reactive power regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168019A JPS6059926A (en) 1983-09-12 1983-09-12 Voltage reactive power regulator

Publications (1)

Publication Number Publication Date
JPS6059926A true JPS6059926A (en) 1985-04-06

Family

ID=15860294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168019A Pending JPS6059926A (en) 1983-09-12 1983-09-12 Voltage reactive power regulator

Country Status (1)

Country Link
JP (1) JPS6059926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114825A (en) * 1988-10-25 1990-04-26 Mitsubishi Electric Corp Voltage/reactive power control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114825A (en) * 1988-10-25 1990-04-26 Mitsubishi Electric Corp Voltage/reactive power control system

Similar Documents

Publication Publication Date Title
US7550952B2 (en) Electric power control apparatus, power generation system and power grid system
EP2065996A1 (en) Power accumulator and hybrid distributed power supply system
US4064419A (en) Synchronous motor KVAR regulation system
US11817708B2 (en) Power conversion system and management apparatus for the same, and distributed power supply apparatus
JP6537761B1 (en) POWER CONVERSION SYSTEM AND POWER CONVERSION DEVICE
CN104348225B (en) A kind of battery charge-discharge circuit of Single switch and the control method of battery charging and discharging
US11476661B2 (en) Device for controlling a terminal for the compensation of a voltage disturbance
US20030122528A1 (en) Reactive power compensator
US4649466A (en) Method and circuit arrangemeant for operating a high voltage direct current line between two alternating voltage systems
JPS6059926A (en) Voltage reactive power regulator
WO2018078683A1 (en) Power supply system
CN102709985B (en) Modularized storage battery charging management system and charging management method
WO2019004606A1 (en) Hybrid control device for static synchronous compensator (statcom)
JPH02193530A (en) Receiving end reverse transmission preventing and controlling device
US4644559A (en) Procedure for controlling the type of arc in an electrical furnace, and arc furnace which employs the procedure
SU438078A1 (en) Method for automatic voltage regulation at distribution network substations
JP2003169420A (en) Voltage reactive power monitor/controller and program thereof
SU143895A1 (en) Method for automatic control of operating mode by frequency and active power of power system
JP2009130952A (en) Bus-bar voltage adjusting method
SU440741A1 (en) Method for automatic control of a compensating installation of an intermediate long-distance power transmission station
Jaggy et al. Implementation of an AGC-algorithm in different power systems and on different control levels
SU1117613A1 (en) Power supply source
RU2023337C1 (en) Method of automatic limiting of power transfer in intersystem power line
JPH0783555B2 (en) Photovoltaic power generator control method
CN118056348A (en) Air conditioner and control system