JPS6059890B2 - Production method of isobutyric acid - Google Patents

Production method of isobutyric acid

Info

Publication number
JPS6059890B2
JPS6059890B2 JP53085834A JP8583478A JPS6059890B2 JP S6059890 B2 JPS6059890 B2 JP S6059890B2 JP 53085834 A JP53085834 A JP 53085834A JP 8583478 A JP8583478 A JP 8583478A JP S6059890 B2 JPS6059890 B2 JP S6059890B2
Authority
JP
Japan
Prior art keywords
isobutyric acid
alkali metal
reaction
isobutyraldehyde
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53085834A
Other languages
Japanese (ja)
Other versions
JPS5513223A (en
Inventor
達郎 増子
成男 深谷
信行 村井
純 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP53085834A priority Critical patent/JPS6059890B2/en
Priority to US06/052,590 priority patent/US4350829A/en
Priority to DE19792928002 priority patent/DE2928002A1/en
Priority to CS487879A priority patent/CS210694B2/en
Priority to FR7918299A priority patent/FR2430929A1/en
Publication of JPS5513223A publication Critical patent/JPS5513223A/en
Publication of JPS6059890B2 publication Critical patent/JPS6059890B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は、イソ醋酸の製造法に関するものである。[Detailed description of the invention] The present invention relates to a method for producing isoacetic acid.

更に詳しくは、本発明は、イソブチルアルデヒドを分
子状酸素含有ガスで酸化してイソ醋酸を製造する方法に
関するものてある。
More specifically, the present invention relates to a method for producing isoacetic acid by oxidizing isobutyraldehyde with a molecular oxygen-containing gas.

イソ酩酊は、食品添加物あるいはメタクリル酸、メタ
クリル酸メチルの製造原料として有用な化合物である。
Iso-drunkenness is a compound useful as a food additive or a raw material for the production of methacrylic acid and methyl methacrylate.

このイソ醋酸の製造法として、イソブチルアルデヒド
を触媒の存在下で分子状酸素を用いて酸化する方法が知
られている。例えば、ジャーナルオブ ジ オーガニッ
ク ケミストリー 26巻565(196ハ、英国特許
第824116号明細書、特公昭52−39川■号公報
にこの方法が記載されている。 しカルながら、これら
の方法は、イソ醋酸の選択率、イソブチルアルデヒドの
転化率、副生物(アセトン(以下、ATと略称する。)
、過酸化物(以下、Poと略称する。)、イソプロピル
アルコール(以下、IPAと略称する。)等)の生成量
に於て、十分なものではなかつた。 本発明者等は、こ
れらの点に鑑み鋭意研究を行つた結果、本発明に到達し
た。
As a method for producing this isoacetic acid, a method is known in which isobutyraldehyde is oxidized using molecular oxygen in the presence of a catalyst. For example, this method is described in Journal of the Organic Chemistry Vol. Selectivity of acetic acid, conversion rate of isobutyraldehyde, by-product (acetone (hereinafter abbreviated as AT))
, peroxide (hereinafter abbreviated as Po), isopropyl alcohol (hereinafter abbreviated as IPA), etc.) were not sufficient. The present inventors conducted extensive research in view of these points, and as a result, arrived at the present invention.

即ち、本発明は、アルカリ金属化合物の存在下、イソブ
チルアルデヒドを液相で分子状酸素又は分子状酸素含有
ガスで連続的に酸化してイソ酪酸を製造するに際し、仕
込イソブチルアルデヒドに対する仕込酸素のモル比を0
.5以上とすることを特徴とするイソ酪酸の製造法に存
する。
That is, in the present invention, when producing isobutyric acid by continuously oxidizing isobutyraldehyde in the liquid phase with molecular oxygen or molecular oxygen-containing gas in the presence of an alkali metal compound, the molar ratio of the charged oxygen to the charged isobutyraldehyde is ratio to 0
.. 5 or more.

次に本発明を更に詳細に説明する。Next, the present invention will be explained in more detail.

反応系に存在させるアルカリ金属化合物としては、カリ
ウム、ナトリウム等のアルカリ金属の塩特にイソ酪酸の
アルカリ金属塩、具体的にはイソ酪酸カリウム、イソ酪
酸ナトリウムが挙げられる。アルカリ金属化合物の存在
量は反応液に対し、0.01〜1m011e好ましくは
0.05〜0.5m01I′である。
Examples of the alkali metal compound to be present in the reaction system include salts of alkali metals such as potassium and sodium, particularly alkali metal salts of isobutyric acid, specifically potassium isobutyrate and sodium isobutyrate. The amount of the alkali metal compound present is 0.01 to 1 m01e, preferably 0.05 to 0.5 m01I', based on the reaction solution.

これらのアルカリ金属化合物は、アルカリ金属の炭酸塩
や水酸化物を反応系に添加することにより存在させるこ
とができる。
These alkali metal compounds can be made to exist by adding an alkali metal carbonate or hydroxide to the reaction system.

イソブチルアルデヒドの酸化に使用される分子状酸素含
有ガスとしては、通常、N2ガスのような不活性ガスで
希釈した、酸素含有量5%以上のものが用いられる。
The molecular oxygen-containing gas used to oxidize isobutyraldehyde is usually a gas containing 5% or more of oxygen and diluted with an inert gas such as N2 gas.

反応温度は50〜70℃好ましくは55〜65゜C反応
圧力は常圧〜10k91cItG好ましくは3〜8k9
1dGてある。
The reaction temperature is 50 to 70°C, preferably 55 to 65°C, and the reaction pressure is normal pressure to 10k91cItG, preferably 3 to 8k9
There is 1dG.

平均滞留時間は、1〜1時間好ましくは2〜8時間であ
る。
The average residence time is 1 to 1 hour, preferably 2 to 8 hours.

酸化反応器としては、攪拌機付槽型反応器や気泡塔など
が用いられる。
As the oxidation reactor, a tank reactor with a stirrer, a bubble column, etc. are used.

本願発明では、仕込イソブチルアルデヒドに対.する仕
込酸素のモル比を0.5以上、好ましくは0.5G上と
することを必須要件とする。
In the present invention, for the charged isobutyraldehyde. It is an essential requirement that the molar ratio of the charged oxygen be 0.5 or more, preferably 0.5G or more.

イソブチルアルデヒドの酸化のような液相酸化反応ては
、転化率の低い場合には酸素吸収速度が律速になるほど
反応速度は速い。
In a liquid phase oxidation reaction such as the oxidation of isobutyraldehyde, when the conversion rate is low, the reaction rate is so fast that the oxygen absorption rate becomes rate limiting.

反応が進むと反こ応速度は極端に遅くなるので転化率を
100%近くにするには、温度を上げたり、滞留時間を
長くする等反応条件を厳しくしないと反応が進まない。
よつて、反応器を2種用い反応条件を変えて前段で反応
の速い部分、後段で反応の遅い部分を反t応させること
が経済的に有利である。速い部分で、イソブチルアルデ
ヒドを90〜95%転化させるが、この場合の仕込イソ
ブチルアルデヒドに対する仕込02のモル比は化学量論
的には、0.45〜0.475である。
As the reaction progresses, the reaction rate becomes extremely slow, so in order to achieve a conversion rate of nearly 100%, the reaction will not proceed unless the reaction conditions are made stricter, such as by raising the temperature or lengthening the residence time.
Therefore, it is economically advantageous to use two types of reactors and change the reaction conditions so that the fast-reacting part is reacted in the first stage and the slow-reacting part is reacted in the latter stage. In the fast section, the isobutyraldehyde is converted to 90-95%, where the molar ratio of charge 02 to charge isobutyraldehyde is stoichiometrically 0.45-0.475.

また、気相部の爆発を防止するには酸素はできるだけ少
なく仕込み、出口ガスの02濃度をできるだけ低くする
必要がある。
Furthermore, in order to prevent an explosion in the gas phase, it is necessary to charge as little oxygen as possible and to lower the 02 concentration of the outlet gas as much as possible.

よつて、これらの点を考慮すると仕込イソブチルアルデ
ヒドに対する仕込酸素のモル比を0.5以下で反応させ
るとよいだろうことが予測される。
Therefore, in consideration of these points, it is predicted that the reaction should be carried out at a molar ratio of charged oxygen to charged isobutyraldehyde of 0.5 or less.

然しながら、0.5より低いと、副生物の量が多く、イ
ソブチルアルデヒドの転化率、イソ酪酸の)選択率が低
下し経済的に不利である。該モル比が余り大きくなると
爆発の危険性が生じるし、またコスト面からの制約もあ
るので、反応器廃ガスの酸素濃度が爆発範囲外となるよ
う調整することが好ましい。
However, if it is lower than 0.5, the amount of by-products will be large and the conversion rate of isobutyraldehyde and selectivity (of isobutyric acid) will decrease, which is economically disadvantageous. If the molar ratio becomes too large, there will be a risk of explosion, and there will also be cost constraints, so it is preferable to adjust the oxygen concentration of the reactor waste gas so that it is outside the explosive range.

反応器廃ガスの酸素濃度は1容量%以上、好ましくは3
〜8容量%である。
The oxygen concentration of the reactor waste gas is 1% by volume or more, preferably 3% by volume.
~8% by volume.

また、反応系の水分量は、反応器出口の反応液中の水分
が2.5重量%、特に2.鍾量%以下とするのが好まし
い。
The water content of the reaction system is 2.5% by weight, especially 2.5% by weight in the reaction liquid at the outlet of the reactor. It is preferable that the amount is less than 1%.

本発明によれば、反応速度が大きいにもかかわらず、副
生物量を低く押えることができ、原料イソブチルアルデ
ヒドからイソ酪酸を高選択率、高収率で得ることができ
る。
According to the present invention, although the reaction rate is high, the amount of byproducts can be kept low, and isobutyric acid can be obtained from raw material isobutyraldehyde with high selectivity and high yield.

以下、実施例に従つて、本発明を具体的に説明するが、
本発明はその要旨を超えない限り、以下の実施例に限定
されない。
The present invention will be specifically explained below with reference to Examples.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 容量300mt(:1)攪拌機を備えたジャケット付き
反応器に0.1m011eのカリウムを含むイソ酪酸(
以下1BAcと略称する。
Example 1 Isobutyric acid containing 0.1 m011e of potassium in a jacketed reactor equipped with a capacity 300 mt (:1) stirrer
Hereinafter, it will be abbreviated as 1BAc.

)を250mt仕込み、60℃まて昇温した。これに下
記組成の液を100cc′Hr.(滞留時間:3時間)
、空気を56.2Ne1hr.(仕込み時の02/N3
Dモル比:0.54)て供給し、5k91cItG加圧
下連続反応を行つた。
) was charged and the temperature was raised to 60°C. Add a solution of the following composition to this for 100cc'Hr. (Residence time: 3 hours)
, air at 56.2 Ne1hr. (02/N3 during preparation
D molar ratio: 0.54) was supplied, and continuous reaction was carried out under pressure with 5k91cItG.

イソブチノげルデヒド(以下1BDと略称jこ″)″″
反応器から抜き出した反応混合物は、コンデンサーを通
した後、気液分離した。
Isobutynol geldehyde (hereinafter abbreviated as 1BD)''
The reaction mixture taken out from the reactor was passed through a condenser and then separated into gas and liquid.

反応液及び、ガスはそれぞれガスクロマトグラフィーに
よりその組成を測定した。AT,.PO..IPAの選
択率仕込IBD(7)IBAcへの選択率及びIBD転
化率を下記表一1に示す。実施例2 空気の供給量を69.9N′1hr.(仕込み時の02
/1BDモル比:0.67)とした以外は実施例1と同
様にして反応を行なつた。
The compositions of the reaction solution and gas were each measured by gas chromatography. AT,. P.O. .. Selectivity of IPA to IBD (7) IBAc and IBD conversion rate are shown in Table 1 below. Example 2 Air supply amount was set to 69.9N'1hr. (02 at the time of preparation)
/1BD molar ratio: 0.67) The reaction was carried out in the same manner as in Example 1.

得られた反応混合物中のAT..PO..IPAの選択
率、仕込1BD(7)IBAcへの選択率及びIBD転
化率を下記表−1に示す。実施例3供給液中の水分濃度
を3.6鍾量%、空気の供給量を61.7NeIhr.
とした以外は実施例1と同様にして反応を行なつた。
AT. .. P.O. .. The selectivity of IPA, the selectivity to charge 1BD (7) IBAc, and the IBD conversion rate are shown in Table 1 below. Example 3 The water concentration in the feed liquid was 3.6%, and the air supply amount was 61.7 NeIhr.
The reaction was carried out in the same manner as in Example 1 except for the following.

8実施例4 原料組成液を186cc′Hr.(滞留時間:1.6時
間)、空気を203.2Ne1hr.で供給した以外は
実施例1と同様にして反応を行なつた。
8 Example 4 The raw material composition liquid was heated to 186 cc'Hr. (residence time: 1.6 hours), air was pumped at 203.2 Ne1hr. The reaction was carried out in the same manner as in Example 1, except that the solution was supplied as follows.

実施例5 空気の供給量を55.6NfIhr.とした以外は実施
例1と同様にして反応を行なつた。
Example 5 The air supply amount was set to 55.6NfIhr. The reaction was carried out in the same manner as in Example 1 except for the following.

比較例1 空気の量を54.9Nf1hr.(仕込時の02/IB
Dモリレ比:0.47)とした以外は実施例1と同様に
して反応を行なつた。
Comparative Example 1 The amount of air was 54.9Nf1hr. (02/IB during preparation
The reaction was carried out in the same manner as in Example 1 except that the D-Morille ratio was 0.47).

Claims (1)

【特許請求の範囲】 1 アルカリ金属含有化合物の存在下、イソブチルアル
デヒドを液相で分子状酸素又は分子状酸素含有ガスで連
続的に酸化してイソ酪酸を製造するに際し、仕込イソブ
チルアルデヒドに対する仕込酸素のモル比を0.5以上
とすることを特徴とするイソ酪酸の製造法。 2 アルカリ金属含有化合物がアルカリ金属塩であるこ
とを特徴とする特許請求の範囲第1項記載のイソ酪酸の
製造法。 3 アルカリ金属含有化合物がイソ酪酸のアルカリ金属
塩であることを特徴とする特許請求の範囲第1項又は第
2項記載のイソ酪酸の製造法。 4 アルカリ金属含有化合物がカリウム又はナトリウム
含有化合物であることを特徴とする特許請求の範囲第1
ないし3項のいずれかに記載のイソ酪酸の製造法。 5 アルカリ金属含有化合物がイソ酪酸カリウム又はイ
ソ酪酸ナトリウムであることを特徴とする特許請求の範
囲第3項記載の方法。 6 分子状酸素含有ガスが空気であることを特徴とする
特許請求の範囲第1ないし3項のいずれかに記載のイソ
酪酸の製造法。 7 仕込イソブチルアルデヒドに対する仕込酸素のモル
比を0.54以上とすることを特徴とする特許請求の範
囲第1ないし6項のいずれかに記載のイソ酪酸の製造法
。 8 酸化反応が連続的に行われることを特徴とする特許
請求の範囲第1ないし7項のいずれかに記載のイソ酪酸
の製造法。
[Claims] 1. When producing isobutyric acid by continuously oxidizing isobutyraldehyde in the liquid phase with molecular oxygen or molecular oxygen-containing gas in the presence of an alkali metal-containing compound, A method for producing isobutyric acid, characterized in that the molar ratio of isobutyric acid is 0.5 or more. 2. The method for producing isobutyric acid according to claim 1, wherein the alkali metal-containing compound is an alkali metal salt. 3. The method for producing isobutyric acid according to claim 1 or 2, wherein the alkali metal-containing compound is an alkali metal salt of isobutyric acid. 4. Claim 1, characterized in that the alkali metal-containing compound is a potassium- or sodium-containing compound.
The method for producing isobutyric acid according to any one of items 3 to 3. 5. The method according to claim 3, wherein the alkali metal-containing compound is potassium isobutyrate or sodium isobutyrate. 6. The method for producing isobutyric acid according to any one of claims 1 to 3, wherein the molecular oxygen-containing gas is air. 7. The method for producing isobutyric acid according to any one of claims 1 to 6, characterized in that the molar ratio of charged oxygen to charged isobutyraldehyde is 0.54 or more. 8. The method for producing isobutyric acid according to any one of claims 1 to 7, characterized in that the oxidation reaction is carried out continuously.
JP53085834A 1978-07-14 1978-07-14 Production method of isobutyric acid Expired JPS6059890B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP53085834A JPS6059890B2 (en) 1978-07-14 1978-07-14 Production method of isobutyric acid
US06/052,590 US4350829A (en) 1978-07-14 1979-06-27 Process for preparing isobutyric acid
DE19792928002 DE2928002A1 (en) 1978-07-14 1979-07-11 METHOD FOR PRODUCING ISOBUTTERIC ACID
CS487879A CS210694B2 (en) 1978-07-14 1979-07-12 Method of isobutyric acid preparation
FR7918299A FR2430929A1 (en) 1978-07-14 1979-07-13 PROCESS FOR PREPARING ISOBUTYRIC ACID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53085834A JPS6059890B2 (en) 1978-07-14 1978-07-14 Production method of isobutyric acid

Publications (2)

Publication Number Publication Date
JPS5513223A JPS5513223A (en) 1980-01-30
JPS6059890B2 true JPS6059890B2 (en) 1985-12-27

Family

ID=13869876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53085834A Expired JPS6059890B2 (en) 1978-07-14 1978-07-14 Production method of isobutyric acid

Country Status (1)

Country Link
JP (1) JPS6059890B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843594B1 (en) * 2005-09-07 2008-07-03 주식회사 엘지화학 Preparation of organic acids from aldehyde compounds by means of liquid phase oxidation reaction
CA2861524A1 (en) * 2013-09-16 2014-11-03 Armstrong World Industries, Inc. Methods for preparing methacrylic acid from biobased starting materials
CN113185395B (en) * 2021-04-09 2022-12-23 润泰新材料股份有限公司 Process for the production of isobutyric acid

Also Published As

Publication number Publication date
JPS5513223A (en) 1980-01-30

Similar Documents

Publication Publication Date Title
US4197412A (en) Process for preparing terephthalic acid
US4256916A (en) Oxidation of polyethylene glycols to dicarboxylic acids
US2746990A (en) Preparation of terephthalic acid
JP3499242B2 (en) Production of N-phosphonomethylglycine and salts thereof
JPS582222B2 (en) Production method of aromatic polycarboxylic acid
JP2963396B2 (en) Method for producing methyl mercaptan
US4350829A (en) Process for preparing isobutyric acid
JPS6059890B2 (en) Production method of isobutyric acid
US5118818A (en) Process for preparing organic carbonates
US4221719A (en) Process for the preparation of arylglyoxylic acids
JPS63122645A (en) Production of biphenyl-4,4'-dicarboxylic acid
US4218380A (en) Process for the preparation of arylglyoxylic acids
HU177337B (en) Process for producing terephtaloic acid
US3637818A (en) Process for preparing mixtures of acetaldehyde acetic acid and vinyl acetate
US4214100A (en) Process for preventing blackening of phthalic acid
JPH021833B2 (en)
US3760009A (en) Hydroquinone process
JPS6214534B2 (en)
US3760008A (en) Resorcinol process
CA1107762A (en) Acid oxidation process
JPS5821642A (en) Preparation of adipic acid
US3558692A (en) Production of vinyl acetate from ethylene
JP2711517B2 (en) Method for producing 6-alkyl-2-naphthalenecarboxylic acid and 6-isopropyl-2-naphthalenecarboxylic acid
JPS58183646A (en) Preparation of p-nitrobenzoic acid
JPS638930B2 (en)