JPS6059771B2 - electronic circuit - Google Patents

electronic circuit

Info

Publication number
JPS6059771B2
JPS6059771B2 JP55029926A JP2992680A JPS6059771B2 JP S6059771 B2 JPS6059771 B2 JP S6059771B2 JP 55029926 A JP55029926 A JP 55029926A JP 2992680 A JP2992680 A JP 2992680A JP S6059771 B2 JPS6059771 B2 JP S6059771B2
Authority
JP
Japan
Prior art keywords
transistor
collector
diode
base
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55029926A
Other languages
Japanese (ja)
Other versions
JPS56126320A (en
Inventor
英明 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55029926A priority Critical patent/JPS6059771B2/en
Publication of JPS56126320A publication Critical patent/JPS56126320A/en
Publication of JPS6059771B2 publication Critical patent/JPS6059771B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/603Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors with coupled emitters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08146Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in bipolar transistor switches

Landscapes

  • Manipulation Of Pulses (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 本発明は、出力電圧の立上りおよび立下り特性を改善し
たカレントスイッチ構成の電子回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic circuit with a current switch configuration that improves the rise and fall characteristics of an output voltage.

カレントスイッチは第1図に示すように、pnpトラン
ジスタTl、T2のエミッタを定電流源11に共通に接
続し、トランジスタTiのコレクタと電源線1、との間
に負荷抵抗R、を接続、該コレクタを出力端としてなる
As shown in FIG. 1, the current switch connects the emitters of pnp transistors Tl and T2 to a constant current source 11 in common, and connects a load resistor R between the collector of the transistor Ti and the power supply line 1. The collector becomes the output terminal.

入力電圧V】はトランジスタTiのベースに加え、トラ
ンジスタT2のベースヘは基準電■■s(他の入力電圧
の場合もある)を加える。反転出力は不要で出力1つあ
ればよい場合は図示の如く第2のトランジスタT2のコ
レクタは負荷抵抗を接続せず、直接電薗、へ接続するこ
とが多い。動作は周知の通りで、入力電圧Viが基準電
圧■sに比べてH(ハイ)またはL(ロー)レベルに変
ると、トランジスタTlはオンまたはオフ、トランジス
タT2はその逆のオフまたはオン、出力電圧■oはLま
たはHになる。ところでバイポーラトランジスタの構造
から明らかなようにコレクタはエミッタなどに比べて大
型であり、大きな対基板容量を持つ、この容量Pcは負
荷抵抗R、と時定数を作り、コレクタ電位の上昇速度、
従つて出力電圧V。のLからHへの立上り・速度はこの
時定数により決定されることになる。出力電圧Voの立
上りは負荷抵抗R、を小さくすることで速くなるが、こ
のようにすると同じ論理振幅をとるのに消費電流の増加
が避けられない。そこで本発明者は先にpnpトランジ
スタをロードフとして負荷したECL構成のカレントス
イッチを提案した(特願昭54−446荀号)。その一
例を第2図に示す。第1図と対比すれば明らかなように
本回路ではトランジスタT2のコレクタと電源線1、と
の間にpnpトランジスタT3のエミッタ・ベース路5
を挿入し、該トランジスタT。のコレクタをトランジス
タTlのコレクタヘ接続する。他の回路構成は第1図と
同である。なお12は電源線の負側導体を示す。動作を
説明するに、入力電圧Viが基準電圧■SよりHレベル
になるとトランジスタT1がオン、T2がオフ、出力電
圧VOはLになり、入力電圧ViがLレベルになるとト
ランジスタT1がオフ、T2オン、出力電圧VOはHに
なる点は第1図と同様であるが、トランジスタT1がオ
フとなるときつまり出力電圧VOの立上り時、トランジ
スタT2がオンになり、トランジスタT3のエミッタ・
ベース路を通つて該トランジスタT2に電流が流れる。
トランジスタT3も従つてオンになり、そのコレクタ電
流(ベース電流のβ倍)が立上り中のトランジスタT1
のコレクタに流れ込む。これはトランジスタT1のコレ
クタ容量を充電する効果を持ち、負荷抵抗R1を通して
充電と共に該コレクタ容量は急速に充電され、コレクタ
電位従つてHレベル出力電圧の立上りは急激になる。こ
の回路はPnpトランジスタT3の追加によつて負荷抵
抗R1を小さくすることなく出力電圧VOの立上りを速
めたものであるが、該出力電圧VOの立下り特性に関し
ては改善すべき点が残されている。つまり、トランジス
タT1がオン、従つて出力電圧■OがHからLへの立下
り時にはトランジスタT1のコレクタ容量だけでなくト
ランジスタLのコレクタ容量に充電されていた電荷を放
電させる必要がある。もとよりトランジスタT1のオン
抵抗は小さいからこの放電が速やかに行なわれることは
充分に期待される。しかし、トランジスタT1がオフ、
T2オンの定常状態で抵抗R1とトランジスタTl,T
3の接続点Aの電位は略0V(11.=0Vとする)に
上昇するのに対し、トランジスタT3のベース電位は1
1=O■からエミッタ●ベース間のPnジャンクション
1段落ちの値、例えば一0.8■であるから、コレクタ
、ベース間が順方向にバイアスされトランジスタT3飽
和する。このためトランジスタT3のコレクタ、ベース
間のジャンクション容量に多量の電荷が蓄積され、該電
荷を放電するのに時間がか)る。即ち電圧VOの立下り
が遅くなる傾向がある。本発明は第2図のPnpトラン
ジスタT3を、その・コレクタ電位をクランプして非飽
和動作させることによりコレクタ容量を減少させるもの
である。
The input voltage V] is added to the base of the transistor Ti, and a reference voltage ■■s (another input voltage may be applied) is applied to the base of the transistor T2. When an inverted output is not necessary and only one output is required, the collector of the second transistor T2 is often connected directly to the power source without connecting a load resistor as shown in the figure. The operation is well known; when the input voltage Vi changes to H (high) or L (low) level compared to the reference voltage s, the transistor Tl turns on or off, and vice versa, the transistor T2 turns off or on, and the output Voltage ■o becomes L or H. By the way, as is clear from the structure of a bipolar transistor, the collector is larger than the emitter, etc., and has a large capacitance to the substrate.
Therefore, the output voltage V. The rising speed from L to H is determined by this time constant. The rise of the output voltage Vo can be made faster by reducing the load resistance R, but if this is done, an increase in current consumption is unavoidable even though the logic amplitude is the same. Therefore, the inventor of the present invention previously proposed a current switch having an ECL configuration in which a pnp transistor is used as a load-off (Japanese Patent Application No. 1983-446). An example is shown in FIG. As is clear from FIG. 1, in this circuit, the emitter-base path 5 of the pnp transistor T3 is connected between the collector of the transistor T2 and the power supply line 1
Insert the transistor T. The collector of the transistor Tl is connected to the collector of the transistor Tl. The other circuit configurations are the same as in FIG. Note that 12 indicates the negative conductor of the power supply line. To explain the operation, when the input voltage Vi becomes H level than the reference voltage ■S, the transistor T1 is turned on, T2 is turned off, and the output voltage VO becomes L level, and when the input voltage Vi becomes L level, the transistor T1 is turned off, and T2 is turned off. When the transistor T1 turns off, that is, when the output voltage VO rises, the transistor T2 turns on, and the emitter of the transistor T3 becomes high.
Current flows through the transistor T2 through the base path.
Transistor T3 is also turned on, and its collector current (β times the base current) flows through the rising transistor T1.
flows into the collector. This has the effect of charging the collector capacitance of the transistor T1, and the collector capacitance is rapidly charged as it is charged through the load resistor R1, and the rise of the collector potential and therefore the H level output voltage becomes rapid. Although this circuit speeds up the rise of the output voltage VO without reducing the load resistance R1 by adding the Pnp transistor T3, there are still points to be improved regarding the fall characteristics of the output voltage VO. There is. That is, when the transistor T1 is turned on, and therefore the output voltage 0 falls from H to L, it is necessary to discharge the charge stored not only in the collector capacitance of the transistor T1 but also in the collector capacitance of the transistor L. Of course, since the on-resistance of the transistor T1 is small, it is fully expected that this discharge will occur quickly. However, transistor T1 is off,
In the steady state with T2 on, resistor R1 and transistors Tl and T
The potential at the connection point A of transistor T3 rises to approximately 0V (assuming 11.=0V), while the base potential of transistor T3 rises to 1
Since the value of the Pn junction between the emitter and the base is one step down from 1=O■, for example -0.8■, the collector and base are biased in the forward direction and the transistor T3 is saturated. Therefore, a large amount of charge is accumulated in the junction capacitance between the collector and base of the transistor T3, and it takes time to discharge the charge. That is, the fall of voltage VO tends to be slow. The present invention reduces the collector capacitance of the Pnp transistor T3 shown in FIG. 2 by clamping its collector potential and causing it to operate in a non-saturated manner.

このことにより出力電圧の立上りおよび立下り特性が改
善されたカレントスイッチが実現されるが、以下図示の
実施例を参照しながらこれを詳細に説明する。第3図は
クランプ用ダイオードとしてショットキーバリアダイオ
ードSBDを用いた本発明の一実施例である。
This realizes a current switch with improved output voltage rise and fall characteristics, which will be described in detail below with reference to the illustrated embodiment. FIG. 3 shows an embodiment of the present invention in which a Schottky barrier diode SBD is used as a clamping diode.

本例てはダイオードSBDをトランジスタT3のコレク
タからベースにかけて順方向に接続したもので、他の構
成は第2図と同様である。前述したように入力ViがL
でトランジスタT2がオンしているとトランジスタT3
のベース電l位は−0.8Vである。この時トランジス
タT1はオフであるが、ダイオードSBDを設けたため
に11−R1−SBD−T2の経路て定電流11の一部
(残部はトランジスタT2,T3のベース電流)が流れ
る。このためA点の電位は抵抗R1に流れる電流によつ
て0V以下に低下するが、その値はダイオードSBDに
よつて定まる。例えばダイオードSBDの順方向電圧を
0.4Vとすれば、ベース電位−0.8Vより0.4V
高い−0.4Vにクランプされる。このようにすればト
ランジスタタT3のコレクタ、ベース間には順方向電圧
(4).8■)を越える電圧が印加されることはないの
でトランジスタT3は非飽和領域て動作する。従つてそ
のコレクタ電荷は小さいので立下り特性は改善され、入
力VlをLからHにすると出力■OはHからLへ急激に
変化する(前述したコレクタ電荷の放電が速やかに行な
われる)。なお、高レベルとなる時の出力端■Oの電位
はトランジスタT2のコレクタレベルよるSBDの順方
向電圧分高いところになるが、トランジスタT2のコレ
クタレベルは出力レベルとは何ら関係なく、上記の如き
VOの高レベルで十分なのである。
In this example, a diode SBD is connected in the forward direction from the collector to the base of the transistor T3, and the other configurations are the same as in FIG. 2. As mentioned above, the input Vi is L
When transistor T2 is on, transistor T3
The base potential l is -0.8V. At this time, the transistor T1 is off, but since the diode SBD is provided, a part of the constant current 11 (the remainder is the base current of the transistors T2 and T3) flows through the path 11-R1-SBD-T2. Therefore, the potential at point A decreases to 0V or less due to the current flowing through the resistor R1, but the value is determined by the diode SBD. For example, if the forward voltage of diode SBD is 0.4V, 0.4V is lower than the base potential of -0.8V.
Clamped to high -0.4V. In this way, a forward voltage (4) is applied between the collector and base of the transistor T3. Since a voltage exceeding 8.8) is never applied, the transistor T3 operates in a non-saturation region. Therefore, since the collector charge is small, the falling characteristic is improved, and when the input Vl is changed from L to H, the output 2O changes rapidly from H to L (the collector charge described above is quickly discharged). Note that the potential at the output terminal O when the level is high is higher by the forward voltage of SBD due to the collector level of the transistor T2, but the collector level of the transistor T2 has nothing to do with the output level and is as shown above. A high level of VO is sufficient.

第4図はクランプ用ダイオードに通常のPn接合ダイオ
ードのD1を用いた本発明の他の実施例である。
FIG. 4 shows another embodiment of the present invention in which a normal Pn junction diode D1 is used as the clamping diode.

本例は第3図のショットキーバリアダイオードSBDを
Pn接合ダイオードD1に置き換え、且つトランジスタ
T3のベースとダイオードD1のカソード(B点)との
間にシフト用の抵抗R2を挿入したものである。Pn接
合ダイオードD1はトランジスタT3のコレクタ、ベー
ス間と同様に0.8Vの順方向電圧を有する。従つて、
第3図の回路てSBDの代りに単にPn接合ダイオード
を用いてもトランジスタT3の飽和を避けることは困難
であるが、第4図のように抵抗R2によつてB点電位を
下げればその分A点電位も下がるのでトランジスタT3
の飽和は防止される。例えば抵抗R2によつて0.4V
の電圧降下を生じさせればB点はトランジスタT3のベ
ース電位−0.8Vより0.4■低い−1.2Vになる
ので、ダイオードD1によつてA点がそれより0.8V
高い電位−0.4Vにクランプされても第3図と同様の
結果になる。第5図は第3図におけるA点とダイオード
SBDとの間に抵抗R3を挿入して出力VOの振幅を増
大させた本発明の異なる実施例である。
In this example, the Schottky barrier diode SBD in FIG. 3 is replaced with a Pn junction diode D1, and a shifting resistor R2 is inserted between the base of the transistor T3 and the cathode (point B) of the diode D1. The Pn junction diode D1 has a forward voltage of 0.8V as well as between the collector and base of the transistor T3. Therefore,
Although it is difficult to avoid saturation of the transistor T3 even if a Pn junction diode is simply used instead of the SBD in the circuit of Fig. 3, it is possible to reduce the saturation of the transistor T3 by lowering the potential at point B using the resistor R2 as shown in Fig. 4. Since the potential at point A also decreases, transistor T3
saturation is prevented. For example, 0.4V by resistor R2.
If a voltage drop of
Even if the voltage is clamped to a high potential of -0.4V, a result similar to that shown in FIG. 3 is obtained. FIG. 5 shows a different embodiment of the present invention in which a resistor R3 is inserted between point A in FIG. 3 and the diode SBD to increase the amplitude of the output VO.

出力VOがHであるとき、即ちトランジスタT2がオン
の時11−R1−R3−SBD−T2の経路で電流が流
れ、トランジスタT3のコレクタはダイオードSBDに
よつて所望する電位にクランプされるが、この時抵抗R
3の電位差によつてA点の電位はトランジスタT3のコ
レクタ電位まで低下しないので出力VOのHは高く保た
れる。この振幅増大用抵抗R3は第4図の回路にも同様
に適用できる。クランプ用ダイオードとしてシヨツトキ
ーバリアタイオードを用いる場合にはシフト用抵抗も不
要て回路構成は最も簡略化されるか、素子形成上も有利
である。
When the output VO is H, that is, when the transistor T2 is on, a current flows through the path 11-R1-R3-SBD-T2, and the collector of the transistor T3 is clamped to a desired potential by the diode SBD. At this time resistance R
Because of the potential difference of 3, the potential at point A does not fall to the collector potential of transistor T3, so the H level of output VO is kept high. This amplitude increasing resistor R3 can be similarly applied to the circuit shown in FIG. When a Schottky barrier diode is used as a clamp diode, there is no need for a shift resistor, which simplifies the circuit configuration and is also advantageous in terms of element formation.

しかしPnpトランジスタにそのベース電位に対してコ
レクタ電位をクランプするSBDを設けることは一般に
は難しい。しかしこれは該トランジスタをラテラル構造
にすると簡単に実施できる。即ち、第6図はPnpトラ
ンジスタT3とショットキーバリアダイオードSBDを
同一ランドに形成する素子構造例で、2はp型シリコン
半導体基板、4はその表面に形成されたベース領域とな
るn型層、6,8はn型層4表面に形成されたp型のエ
ミッタおよびコレクタ領域、10は素子間分離領域、1
2は表面絶縁層、14E,14C,14Bはそれぞれ領
域6,8,4にオーム接触するエミッタ電極、コレクタ
電極、ベース電極であり、これらでPnpトランジスタ
T3を構成する。か)るトランジスタ構造でコレクタ電
極14Cをn型層4の一部に接触させるとそこにショッ
トキーバリアダイオードSBDが形成され、第3図の回
路と等価になる。以上述べたように本発明によぜれば、
ECL構成のカレントスイッチの動作特性を改善し、出
力電圧の立上りのみならず立下りも速くできる利点があ
る。
However, it is generally difficult to provide a Pnp transistor with an SBD that clamps the collector potential with respect to the base potential. However, this can be easily implemented if the transistor is of lateral structure. That is, FIG. 6 shows an example of an element structure in which a Pnp transistor T3 and a Schottky barrier diode SBD are formed on the same land, where 2 is a p-type silicon semiconductor substrate, 4 is an n-type layer formed on the surface thereof and becomes a base region; 6 and 8 are p-type emitter and collector regions formed on the surface of the n-type layer 4; 10 is an inter-element isolation region;
2 is a surface insulating layer, and 14E, 14C, and 14B are an emitter electrode, a collector electrode, and a base electrode that are in ohmic contact with the regions 6, 8, and 4, respectively, and these constitute a Pnp transistor T3. In such a transistor structure, when the collector electrode 14C is brought into contact with a part of the n-type layer 4, a Schottky barrier diode SBD is formed there, and the circuit becomes equivalent to the circuit shown in FIG. According to the present invention as described above,
This has the advantage of improving the operating characteristics of the ECL-configured current switch and making it possible to speed up not only the rise but also the fall of the output voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なりレントスイツチを示す回路図、第2
図は出力電圧の立上り特性が改善されたカレントスイッ
チの回路図、第3図乃至第5図は本発明の異なる実施例
を示す回路図、第6図は第3図の要部を示す素子構造図
である。 図中、Tl,T2は第1および第2のトランジスタ、T
3はPnpトランジスタ、SBD..Dlはクランプ用
ダイオード、R1は負荷抵抗、11は定電流源てある。
Figure 1 is a circuit diagram showing a general rent switch;
The figure is a circuit diagram of a current switch with improved output voltage rise characteristics, Figures 3 to 5 are circuit diagrams showing different embodiments of the present invention, and Figure 6 is an element structure showing the main part of Figure 3. It is a diagram. In the figure, Tl and T2 are the first and second transistors, T
3 is a Pnp transistor, SBD. .. Dl is a clamp diode, R1 is a load resistance, and 11 is a constant current source.

Claims (1)

【特許請求の範囲】[Claims] 1 第1、第2のnpnトランジスタのエミッタを共通
に定電流源へ接続し、第1のトランジスタのコレクタは
負荷抵抗を介して電源へ接続して該コレクタより出力を
取出し、第2のトランジスタのコレクタは第3のpnp
トランジスタを介して電源へ接続したカレントスイッチ
構成の電子回路において、該第3のトランジスタのエミ
ッタは電源へ接続し、コレクタは直接又は抵抗を介して
第1のトランジスタのコレクタへ接続し、ベースは直接
又は抵抗を介して第2のトランジスタのコレクタへ接続
し、更に、該第3のトランジスタのコレクタへダイオー
ドのアノードを、そして該ダイオードのカソードを第2
のトランジスタのコレクタへ接続したことを特徴とする
電子回路。
1. The emitters of the first and second npn transistors are commonly connected to a constant current source, the collector of the first transistor is connected to the power source via a load resistor, and the output is taken from the collector, and the The collector is the third pnp
In an electronic circuit having a current switch configuration connected to a power supply through a transistor, the emitter of the third transistor is connected to the power supply, the collector is connected directly or through a resistor to the collector of the first transistor, and the base is connected directly to the collector of the first transistor. or to the collector of the second transistor via a resistor, further connect the anode of the diode to the collector of the third transistor, and connect the cathode of the diode to the collector of the third transistor.
An electronic circuit characterized in that it is connected to the collector of a transistor.
JP55029926A 1980-03-10 1980-03-10 electronic circuit Expired JPS6059771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55029926A JPS6059771B2 (en) 1980-03-10 1980-03-10 electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55029926A JPS6059771B2 (en) 1980-03-10 1980-03-10 electronic circuit

Publications (2)

Publication Number Publication Date
JPS56126320A JPS56126320A (en) 1981-10-03
JPS6059771B2 true JPS6059771B2 (en) 1985-12-26

Family

ID=12289591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55029926A Expired JPS6059771B2 (en) 1980-03-10 1980-03-10 electronic circuit

Country Status (1)

Country Link
JP (1) JPS6059771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1209647B (en) * 1985-06-24 1989-08-30 Sgs Microelettronica Spa ANTI-SATURATION CIRCUIT FOR INTEGRATED PNP TRANSISTOR.
JPS62294328A (en) * 1986-06-13 1987-12-21 Nec Corp Current switch

Also Published As

Publication number Publication date
JPS56126320A (en) 1981-10-03

Similar Documents

Publication Publication Date Title
EP0132822B1 (en) Composite circuit of bipolar transistors and field effect transistors
US20210211125A1 (en) A circuit and device including a transistor and diode
US4191899A (en) Voltage variable integrated circuit capacitor and bootstrap driver circuit
US4223238A (en) Integrated circuit substrate charge pump
US4833344A (en) Low voltage bias circuit
JPH0720720U (en) Totem pole transistor output stage circuit
EP0018172B1 (en) High speed electronic switching circuit
US4409495A (en) Schmitt trigger circuit with low input current
US4507575A (en) NAND Logic gate circuit having improved response time
US4807009A (en) Lateral transistor
JPS58170112A (en) Voltage converting circuit
JPH0633715Y2 (en) Transistor-transistor logic circuit
JPS6059771B2 (en) electronic circuit
KR0165986B1 (en) Bicmos logic circuit
US4131806A (en) I.I.L. with injector base resistor and schottky clamp
JPH0345579B2 (en)
KR920003011B1 (en) Semiconductor memory device
EP0080254A2 (en) Transistor-transistor logic circuit
US4121116A (en) Component for logic circuits and logic circuits equipped with this component
US4675548A (en) Antisaturation circuit for TTL circuits having TTL input and output compatibility
JPS6352805B2 (en)
JP2671304B2 (en) Logic circuit
JPS59103425A (en) Switching device
US6369640B1 (en) Zero crossing control structure for a bidirectional switch with a stable threshold
JP2680952B2 (en) Delay pulse generation circuit