JPS6059594A - Semiconductor memory device - Google Patents
Semiconductor memory deviceInfo
- Publication number
- JPS6059594A JPS6059594A JP58168553A JP16855383A JPS6059594A JP S6059594 A JPS6059594 A JP S6059594A JP 58168553 A JP58168553 A JP 58168553A JP 16855383 A JP16855383 A JP 16855383A JP S6059594 A JPS6059594 A JP S6059594A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- light
- memory device
- electric conductivity
- address
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/42—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically- coupled or feedback-coupled
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Read Only Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はアモルファス(無定形)構造を含む非単結晶半
導体を用いた不揮発性の光メモリを構成せしめるための
半導体メモリ装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory device for constructing a nonvolatile optical memory using a non-single crystal semiconductor including an amorphous structure.
この発明は水素および酸素が添加されたゲルマニューム
または珪素を主成分とする非単結晶半導体であって、5
00nm以下の短波長光を照射して、この半導体の電気
伝導度を小さくして記憶の書き込みを行う工程と、逆に
1μ以上(〜50/7)の赤外または120〜300℃
の熱処理によりこの半導体(2)
の電気伝導度を向−[−さ−U、記憶の書き換えを行う
1稈とを有する書き換えが可能な不揮発性半導体メモリ
装置を提案するにある。This invention is a non-single crystal semiconductor mainly composed of germanium or silicon to which hydrogen and oxygen are added,
The process of writing memory by reducing the electrical conductivity of this semiconductor by irradiating short wavelength light of 00 nm or less, and conversely, the process of irradiating with short wavelength light of 1μ or more (~50/7) or 120 to 300°C
The present invention proposes a rewritable non-volatile semiconductor memory device having a heat treatment to increase the electrical conductivity of the semiconductor (2) and a culm for rewriting memory.
この発明は従来ステブラ・ロンスキ効果(光照射効果)
として知られている光照射による電気伝導度の減少、即
ち一般の半導体ディバイス特に光電変換装置としてはも
っとも悪い劣化減少を逆に留極的に利用して書き換え可
能なメモリ装置を設りることを特徴としている。即ち、
従来、光電変換装置等をアモルファス(非晶質)珪素を
用いて作らんとすると、その光電変換装置が光照射によ
り劣化してしまい、電気伝導度が減少してしまうことが
知られている。この要因を本発明人が詳しく調べた結果
、珪素、ゲルマニュームを主成分とする■族の非単結晶
半導体において、そのエネルギハンド(Egという)の
禁止帯(Eg内という)に存在する再結合中心密度(以
下RCという)の増加または減少に起因することが判明
した。さらにこの半導体例えば珪素半導体中において、
酸素と水素が01121(を作り、これが珪素不対結合
手と結合しく3)
たり、または分離したりして、再結合中心を増加または
減少させていることを明らかにすることができた。This invention is based on the conventional Stebla-Lonski effect (light irradiation effect).
The idea is to create a rewritable memory device by making use of the decrease in electrical conductivity due to light irradiation, which is known as a decrease in electrical conductivity, which is the worst deterioration decrease in general semiconductor devices, especially photoelectric conversion devices. It is a feature. That is,
Conventionally, it has been known that when a photoelectric conversion device or the like is manufactured using amorphous silicon, the photoelectric conversion device deteriorates due to light irradiation and its electrical conductivity decreases. As a result of detailed investigation by the present inventor into this factor, it was found that in group Ⅰ non-single crystal semiconductors whose main components are silicon and germanium, recombination centers exist in the forbidden band (hereinafter referred to as "within Eg") of the energy hand (hereinafter referred to as "Eg"). It was found that this is caused by an increase or decrease in density (hereinafter referred to as RC). Furthermore, in this semiconductor, for example, a silicon semiconductor,
We were able to demonstrate that oxygen and hydrogen form 01121 (which bonds with the silicon dangling bond3) or separate, increasing or decreasing the number of recombination centers.
そのモデルとして、
ノl Si II““Si
\/
S i −−−0・Si (110)#0 (11−)
I11]
の可逆反応過程を提案している。即ち短波長光の照射に
よりD6レベルが1)−またはD+に変化する。即ち上
式で左方向に反応が変化する。その結果、Eg内に深い
RCが形成される。このRCにより電気伝導度が低下す
る。しかしIl−、11Fは遠赤外光または加熱処理で
Doに可逆的に変化する。本発明はかかるRCが可逆的
に増加したり減少したりする特性を積極的に利用してい
る。As a model, Nol Si II""Si \/ Si ---0・Si (110) #0 (11-)
I11] has been proposed. That is, the D6 level changes to 1)- or D+ by irradiation with short wavelength light. That is, the reaction changes to the left in the above equation. As a result, a deep RC is formed within Eg. This RC reduces electrical conductivity. However, Il-, 11F reversibly changes to Do by far-infrared light or heat treatment. The present invention actively utilizes the property that RC reversibly increases or decreases.
このため本発明の真性の半導体または実質的に真性の半
導体(PまたはBが1×1018CI11−3以下の濃
度に添加された゛1i導体、以下fl′Iに1層または
■型半導体という)には、酸素および水素を積極的(4
)
に添加している。具体的には酸素はlX1020〜3X
10” cm−3例えばlXl0”cm−ヨ、また水
素は5〜30原子%例えば15原子%を含有せしめた。Therefore, the intrinsic semiconductor or substantially intrinsic semiconductor of the present invention ('1i conductor doped with P or B at a concentration of 1x1018 CI11-3 or less, hereinafter referred to as a single layer in fl'I or a ■-type semiconductor) , oxygen and hydrogen actively (4
) is added. Specifically, oxygen is 1X1020~3X
10'' cm-3, e.g. lXl0'' cm-y, and hydrogen was included in an amount of 5 to 30 atom %, e.g. 15 atom %.
本発明において、記憶された情報の読み出しはこの電気
伝導度の大小を特定の番地に対し特定の強さの角視光(
100〜10000 lx)を1〜100μφ例えば5
1ノφのスポット、例えばArレーザ(5]4.5層m
+ 48Flnm )、1le−Ncレーザ(632,
8層mを利用)により照射さ・l゛、番地の電気抵抗の
大小によりrOJ、「1」を読み出している。In the present invention, in order to read out the stored information, the magnitude of this electrical conductivity is determined by angle-viewing light of a specific intensity to a specific address (
100~10000lx) 1~100μφ e.g. 5
1 diameter spot, for example Ar laser (5) 4.5 layer m
+48Flnm), 1le-Nc laser (632,
rOJ is read out as "1" based on the magnitude of the electrical resistance of the address.
即ち、本発明の半導体装置においては、第1および第2
の電極を面電極とし、電気エネルギはこの半導体の全面
に印加する。しかしその番地の特定化のため、その所定
の番地に光照射をスポット状(1〜100μφ例えば5
μφ)に行い、その番地の電気伝導度の感度を他部(光
照射が行われないディスクの領域)に比べて102〜1
09倍とした。That is, in the semiconductor device of the present invention, the first and second
The electrode is a surface electrode, and electric energy is applied to the entire surface of this semiconductor. However, in order to specify the address, light irradiation is applied to the predetermined address in the form of a spot (1 to 100 μφ, for example, 5
μφ), and the sensitivity of the electrical conductivity at that address is 102 to 1 compared to other areas (areas of the disk where light irradiation is not performed).
09 times.
そしてその場所の電気伝導度を調べることにより、任意
の番地の記憶の読み出しを可能としたものである。かか
る構成とすることにより、光でア(5)
シストさせて電気信号の読み出しができる不揮発メモリ
を作ることが可能となった。このためこの光スボソ1−
の大きさを小さくすることにより、1〜10” Ghi
tのメモリも可能となり、光ディスクへの応用が大きく
、特にその成分が珪素で安価であり、かつ、公害材料で
はなく、また酸化テルルまたは光磁気ディスク用等の高
価な材料を用いないことにより、低コスト化、高信頼性
化を実施することができるという大きな特長を有す。By checking the electrical conductivity at that location, it was possible to read the memory at any address. With such a configuration, it has become possible to create a nonvolatile memory that can read out electrical signals by a(5) irradiation with light. For this reason, this light suboso 1-
By reducing the size of 1 to 10” Ghi
t memory, and it has great application in optical disks.In particular, it is made of silicon, which is inexpensive, and is not a polluting material, and does not use expensive materials such as tellurium oxide or for magneto-optical disks. It has the great advantage of being able to achieve lower costs and higher reliability.
さらに本発明の半導体メモリ装置の記憶の書き込みは5
00nm以下の短波長光、例えば窒素レーザ(337r
+m )を1〜100μφのスポットにて所定の番地に
照射し、最初「O」であったものを選択的に11」に変
更した。また記憶の書き換えはこのディスクのすべてを
「0」とするには120〜300°Cの熱アニール例え
ば180℃、30分の加熱処理で安定に「0」をを作る
ことができた。また選択的に書き換えを行うには700
r+m以上の長波長光(1〜3011好ましくは10.
8μ)を照射して所定の番地のみ局部加熱をしてアニー
ルを行えばよい。かく(6)
して記1.aの書き込み、書き換えを光照射のみで行う
ことができ、大容量処理が可能となるという特徴を有す
る。Furthermore, the writing of memory in the semiconductor memory device of the present invention is 5
Short wavelength light of 00 nm or less, such as nitrogen laser (337r
+m) was irradiated onto a predetermined address with a spot of 1 to 100 μφ, and the initial address “O” was selectively changed to “11”. Furthermore, in order to rewrite the memory, it was possible to stably create "0" by thermal annealing at 120 to 300 DEG C., for example, at 180 DEG C. for 30 minutes, to make all "0" on this disk. Also, to rewrite selectively, set 700.
Long wavelength light of r+m or more (1 to 3011, preferably 10.
Annealing can be performed by irradiating a beam of 8μ) to locally heat only a predetermined address. Write (6) 1. It has the feature that writing and rewriting of a can be performed only by light irradiation, and large-capacity processing is possible.
本発明はかくのごとく半導体の電気伝導度の増大、減少
を利用して、光読み出しを可能とした非接触型方式の半
導体メモリ装置を提案するにある。The present invention proposes a non-contact type semiconductor memory device that makes optical reading possible by utilizing the increase and decrease in electrical conductivity of semiconductors.
以下に図面に(足ってその内容を記す。The contents are described below in the drawing.
第1図ば透光性絶縁性基板(4)上に透光性導電膜(C
TOという)電極(3)をハロゲン元素が添加された酸
化スズを主成分として、また酸化スズが10重量%以下
添加された酸化インジューム(以下■TOという)と酸
化スズとの2層膜にて選IR的に(Elという)形成し
た。さらに第1の非単結晶半導体(ここではP型〉(5
)と第2の非単結晶半導体(ここではI型)(6)さら
に第3の非単結晶半導体(ここではN型)(7)とを積
層してPIN構造を有する半導体(1〉(Sという〉お
よびITO等の透明透光性を有する第2の電極の対抗電
極(2)〈以下E2という〉の構成をさせたEl(3)
−5(1)−E2 (2)構造の縦断面図を示している
。Figure 1 shows a transparent conductive film (C) on a transparent insulating substrate (4).
The electrode (3) (hereinafter referred to as "TO") is made of a two-layer film consisting mainly of tin oxide to which a halogen element is added, and indium oxide (hereinafter referred to as "TO") to which 10% by weight or less of tin oxide is added, and tin oxide. It was formed selectively (called El). Furthermore, a first non-single crystal semiconductor (here, P type) (5
) and a second non-single crystal semiconductor (here I type) (6) and a third non-single crystal semiconductor (here N type) (7) to form a semiconductor having a PIN structure (1>(S El (3) configured with a counter electrode (2) (hereinafter referred to as E2) of a second electrode having transparent light-transmitting properties such as ITO.
-5(1)-E2 (2) A vertical cross-sectional view of the structure is shown.
(7)
図面において、半導体(1)は、まずシラン(S−II
えJ nン]の珪化物気体をプラズマグロー放電法(P
CVD法)、光プラグV CVD法により0.1〜10
μ例えば3μの厚さに形成した。図面では第1の半導体
(5)はP型であり、C1k/ (Sil14+ cl
い一〇、2〜0.7例えば0.5として同時にBをBL
II、等により10” 〜]0”cm−ヨ例えばB z
I& / S I II) −0,5%の呈添加して
、5jxC+−x O<x< l x=0.8とした。(7) In the drawing, the semiconductor (1) is first made of silane (S-II
A plasma glow discharge method (P
CVD method), optical plug V 0.1 to 10 by CVD method
For example, it is formed to have a thickness of 3μ. In the drawing, the first semiconductor (5) is of P type, C1k/ (Sil14+ cl
10, 2 to 0.7 For example, set B to BL at the same time as 0.5
II, etc. from 10” to ]0”cm-yo e.g. B z
I&/SI II) -0.5% was added to make 5jxC+-x O<x<l x=0.8.
また第3の半導体をN型とし、C119/ (S i
It、 +C1ψ−0,05〜0.5例えば0.1 と
して同時にPをP II。Further, the third semiconductor is N type, and C119/(S i
It, +C1ψ-0,05~0.5 e.g. 0.1 and at the same time P as P II.
により1016〜1022cm−ヨ例えばPIら/5i
ll、 = 1%添加して形成し、半導体(1)内にP
IN接合を構成させた。For example, PI et al/5i
ll, = 1% to form P in the semiconductor (1).
An IN junction was constructed.
この半導体膜はスパッタ法、真空蒸着法、光プラグ?
CVD法、1.T(低温) CVD法(IIOMOCV
D法ともい・う)、減圧CVD法を用いてもよい。Is this semiconductor film made by sputtering, vacuum evaporation, or optical plug?
CVD method, 1. T (low temperature) CVD method (IIOMOCV
Alternatively, a low pressure CVD method (also referred to as D method) may be used.
さらにこの半導体を形成する1ユ程の前後工程にて透光
電極による電極(3>、< 2 )を公知の真空蒸着法
またはプラズマcvn法または減圧cvn法により形成
して第1図の構造を得た。Furthermore, in the process of about 1 unit before and after forming this semiconductor, transparent electrodes (3>, <2) are formed by a known vacuum evaporation method, plasma CVN method, or reduced pressure CVN method to obtain the structure shown in FIG. Obtained.
(8)
第1図の構造に対応してエネルギバンド図を第2図に示
す。(8) An energy band diagram corresponding to the structure shown in FIG. 1 is shown in FIG.
このエネルギバンド図において、■型半導体(6)の伝
導帯(11)に流れる電子(19)と価電子帯(12)
を流れるホール(18)とは■型半導体(6)中に存在
するl?c (13)を介して互いに再結合する。In this energy band diagram, electrons (19) flowing in the conduction band (11) of the ■-type semiconductor (6) and valence band (12)
What is the hole (18) flowing through the l? which exists in the ■-type semiconductor (6)? c (13).
このrrcは前記した光照射効果により発生、消滅する
ものと、いわゆる変化をしない珪素の不対結合によるR
Cとがある。しかしこのRC(17)、<B)が多くな
ると、電子・ホールは再結合(13)をしてしまうため
、電気伝導度も悪くなる。この電気伝導度の変化を第3
図に示す。This rrc occurs and disappears due to the above-mentioned light irradiation effect, and Rrc is caused by unpaired bonds in silicon that do not change.
There is C. However, when this RC (17), <B) increases, electrons and holes recombine (13), resulting in poor electrical conductivity. This change in electrical conductivity is
As shown in the figure.
図面において「1」は熱アニールして高い電気伝導度を
有し、「0」は短波長光の照射による低い電気伝導度を
示す。さらに曲線(13)は暗転導度であり、曲線(1
5)は^旧 (100mW /cj)の光転導度である
。(14)はアルゴンレーザを用いて光照射した時の電
気伝導度を示す。さらに図面より明らかなごとく、(4
4)、< 45 )がそれぞれ読み出(9)
し時におIdる「1」、[o−1を有しζおり、その可
逆的な変化より書き出しが可能であることがわかる。In the drawings, "1" indicates high electrical conductivity due to thermal annealing, and "0" indicates low electrical conductivity due to irradiation with short wavelength light. Furthermore, the curve (13) is the dark conductivity, and the curve (13) is the dark conductivity.
5) is the optical conductivity of (100 mW/cj). (14) shows the electrical conductivity when irradiated with light using an argon laser. Furthermore, as is clear from the drawing, (4
4) and <45) have Id "1" and [o-1 when read (9), respectively, and it can be seen from their reversible change that writing is possible.
この第1図はアモルファス珪素の場合であるが、Ge、
GexSil−x (0< x < 1 )のご上き非
単結晶化合物または混合物半導体であっても同様に可逆
変化をさせることが可能である。This figure 1 shows the case of amorphous silicon, but Ge,
Similarly, reversible changes can be made in non-single crystal compounds or mixture semiconductors such as GexSil-x (0<x<1).
本発明のいう半導体とは電流を流し得る程度における半
絶縁体をも含むことはいうまでもない。It goes without saying that the term "semiconductor" as used in the present invention includes semi-insulators to the extent that current can flow therethrough.
また本発明において、高い電圧のパルス光を加えると、
第1図において電極(2)t(3)と半導体(5)、<
7 )との界面における反応も長期使用において起き
、界面で絶縁性酸化珪素ができ、特性劣化をさせてしま
う。そのため半導体(5)、< 7 )は5ixC1−
>< (0< x < 1 )とし、信頼性の向上を図
った。In addition, in the present invention, when high voltage pulsed light is applied,
In FIG. 1, electrode (2) t(3) and semiconductor (5), <
Reactions at the interface with 7) also occur during long-term use, forming insulating silicon oxide at the interface, resulting in deterioration of characteristics. Therefore, the semiconductor (5), < 7) is 5ixC1-
><(0< x < 1) to improve reliability.
即ち、酸化スズを主成分とする電極(3)、P型Six
C1−x O< x < 1 x =0.8 (100
〜500 人1列えば200 人)−I型Sl (Si
: O: HO,1〜3 メ1例えば0.5 p )
−N型Si (500人〜1μ例えば0.2(10)
/7) −N型SixC1−x (0< x < 1
x =0.9 )(100〜500人例えば200人)
−−ITOを主成分とする電極(2)の構成とした。か
かるエネルギバンド的にヘテロ接合とすることにより、
150〜300℃の高温度にて電極と半導体との界面で
絶縁性酸化珪素の発生を防ぐごとができ、高信頼性を有
せしめることができた。That is, the electrode (3) whose main component is tin oxide, P-type Six
C1-x O< x < 1 x = 0.8 (100
~500 people (200 people per row) - Type I Sl (Si
: O: HO, 1-3 Me1 e.g. 0.5 p)
-N-type Si (500 people ~ 1μ e.g. 0.2(10) /7) -N-type SixC1-x (0< x < 1
x = 0.9) (100 to 500 people, for example 200 people)
--The structure of the electrode (2) was made mainly of ITO. By creating a heterojunction in terms of energy band,
It was possible to prevent the generation of insulating silicon oxide at the interface between the electrode and the semiconductor at a high temperature of 150 to 300°C, and high reliability was achieved.
実施例1
この実施例は第4図にその概要を示すが、光電気プログ
ラム書き換え可能な光読み出し方式のROMの不揮発光
メモリである。 この光メモリはオフィス・オートメイ
ション用の光メモリディスクとして使用し、任意にプロ
グラムをして利用する場合にきわめて有効である。Embodiment 1 This embodiment, whose outline is shown in FIG. 4, is a non-volatile light-emitting memory of an optical readout type ROM in which an opto-electrical program can be rewritten. This optical memory is extremely effective when used as an optical memory disk for office automation and can be programmed arbitrarily.
即ち、第4図において(A)は記憶の書き込みを示し、
(B)は読み出しを示す。図面においてガラス、セラミ
ック、有機フィルム等の絶縁基板(4)、<100〜5
00μの厚さ)上に第1の導電型電極(3)を反射性電
極(例えばアルミニューム)、(9)、 CTO(例え
ば酸化スズ〉(8)とにより0.5(11)
〜1μの厚さに形成した。さらにこの−にに前記したご
ときPIN接合を有して1層中に酸素、水素が添加され
た珪素を主成分とした非単結晶半導体(1)を0.7
μの厚さに形成した。さらにその上側にrTOのCTO
(2)を全面に形成した。この基板はレコード坂と同様
のディスク形状を有している。マイクロ・コンピュータ
(32)により番地を制御させて窒素レーザ光(35)
(発光波し337nm )を発光源(35)より照射し
てビーム径は1〜100μφ例えば5μφとした。かか
る500r+m以下の短波長光の紫外光を100〜20
00mW/cdの強度で加えることにより、再結合中心
を生成し、電気伝導度は第3図における「0」を有せし
めた。かくして例えば(24>、<26)に「0」を書
き込んだ。結果として他の番地(25)はIllとなっ
た。That is, in FIG. 4, (A) shows memory writing;
(B) shows reading. In the drawings, insulating substrate (4) such as glass, ceramic, organic film, <100-5
The first conductivity type electrode (3) is coated with a reflective electrode (e.g. aluminum) (9), CTO (e.g. tin oxide) (8) with a thickness of 0.5 (11) to 1 μm). Furthermore, a non-single crystal semiconductor (1) mainly composed of silicon with oxygen and hydrogen added in one layer and having a PIN junction as described above was formed to a thickness of 0.7 mm.
It was formed to a thickness of μ. Further above it is the CTO of rTO.
(2) was formed on the entire surface. This substrate has a disk shape similar to that of a record slope. The address is controlled by a microcomputer (32) and the nitrogen laser beam (35) is emitted.
(emission wave length: 337 nm) was irradiated from a light emitting source (35), and the beam diameter was set to 1 to 100 μΦ, for example, 5 μΦ. The short wavelength ultraviolet light of 500r+m or less is
By applying at an intensity of 00 mW/cd, a recombination center was generated and the electrical conductivity was "0" in FIG. Thus, for example, "0" was written in (24>, <26). As a result, the other address (25) became Ill.
この記憶の書き込みは基板全体を殺菌灯(2537人)
を照射して「0」の絶縁性としておき、逆にCOレーザ
(ウェーブガイド型)にて10.6μの遠赤外光を照射
して特定の領域を11」としてもよい。This memory was written on the entire board with a sterilizing light (2537 people)
Alternatively, a CO laser (waveguide type) may be used to irradiate far-infrared light of 10.6μ to make the specific region 11”.
かかる方式の方が読み出し時におけるノイズマ(12)
一ジンを向−1ニさせることができるという特徴を有す
る。This method has the advantage that it is possible to shift the noise mask (12) in the direction of −1 during reading.
記憶の読み出しは第4図(B)に示しであるが、所定の
番地に弱い(記憶情報が変化しない範囲で強い)光照射
をアルゴンレーザ(488nm、 515n><33)
を読み出しを行う番地に照射して指定した。その番地を
コンピュータ(32)にインプットし、その信号に同期
して電気パルス(29)を加えた。そしてこの光照射さ
れた検出番地の情報を抵抗(26)により検出(31)
した。Memory reading is shown in Figure 4 (B), where a weak (strong within the range where the stored information does not change) light irradiation is applied to a predetermined address using an argon laser (488 nm, 515n><33).
was specified by irradiating the address to be read. The address was input into the computer (32), and an electric pulse (29) was applied in synchronization with the signal. Then, the information of the detection address irradiated with light is detected by the resistor (26) (31)
did.
このタイムチャートは第5図に示しである。This time chart is shown in FIG.
即ち、第5図< A >、(B )が記憶の書込みであ
る。That is, FIGS. 5A and 5B show the writing of memory.
強光パルス照射(47)、< 48 )により光ディス
クの一部に選択的に高抵抗領域(44)、< 46 )
が第5図(B)のごとく形成される。(44>、< 4
5 )、< 46 )は第4図(A)の(24>、(2
5>、< 26 )に対応している。High-resistance regions (44), <46) are selectively formed in a part of the optical disk by intense light pulse irradiation (47), <48).
is formed as shown in FIG. 5(B). (44>, <4
5), <46) are (24>, (2) in Figure 4(A)
5>, <26).
また読み出しは第5図< c )、< D )に示され
ているが、電圧(29)を光に同期して印加し、その出
力電位を第5図(D)に示すごと< (3B>、<39
)として得ることができた。Also, readout is shown in Figure 5 (c) and <D), but voltage (29) is applied in synchronization with the light, and the output potential is as shown in Figure 5 (D). , <39
) could be obtained as follows.
(13)
即ちこの光メモリ (プログラムROM ’)は光によ
りレコード板状のディスクの一部を高抵抗領域または低
抵抗領域とし、他部を逆に相対的に低抵抗領域または高
抵抗領域としたもので、また読み出しも番地の指定を光
にて非接触で行い、読み出しを電気伝導とするため、非
接触の光電気読み出しを可能とした。このためいわゆる
光電気書込みの書き換え可能なROMを作ることができ
た。この発明は、従来より知られた基板の一部を選択的
に除去して形成させる書き換え不可能な光デイスクメモ
リとはまったく原理を異にしている。さらにその記憶情
報の書き換えが可能であり、不揮発性であることより大
容量の光デイスクメモリとして理想的であることが判明
した。(13) In other words, this optical memory (program ROM') uses light to make a part of a record-like disk into a high-resistance region or a low-resistance region, and conversely to make the other part a relatively low-resistance region or a high-resistance region. In addition, address designation is performed using light in a non-contact manner, and readout is performed by electrical conduction, making contactless photoelectric readout possible. Therefore, it was possible to create a rewritable ROM with so-called photoelectric writing. The principle of the present invention is completely different from conventionally known non-rewritable optical disk memories which are formed by selectively removing a portion of a substrate. Furthermore, it has been found that the stored information can be rewritten and is nonvolatile, making it ideal as a large-capacity optical disk memory.
以上の説明より明らかなごとく、本発明は非晶質珪素に
水素、酸素等の不純物を多量に添加しその可逆的な電気
伝導度の変化を制御することにより不揮発性メモリとし
たもので、同一半導体中に設けることはその実施態様で
あるこのPN接合を1つではなく PNIPN接合等に
よりそのrOJ rlJ(]4)
のコントラストを増大させることも有効であり、さらに
同一技術思想に基づく多くの応用が可能である。As is clear from the above explanation, the present invention creates a non-volatile memory by adding a large amount of impurities such as hydrogen and oxygen to amorphous silicon and controlling the reversible change in electrical conductivity. It is also effective to increase the contrast of rOJ rlJ(]4) by using not only one PN junction but also a PNIPN junction, which is an embodiment of providing it in a semiconductor, and furthermore, there are many applications based on the same technical idea. is possible.
第1図は本発明のN接合を用いた半導体装置の断面図で
ある。
第2図は本発明の詳細な説明するためのエネルギバンド
図である。
第3図は非単結晶半導体の電気伝導度の変化特性を示す
。
第4図は本発明の半導体メモリ装置の実施例を示す。
第5図は第4図の実施例に用いられたタイムチャー1−
を示す。
特許出願人
(15)
ギ1巴
’I O/ O/
JJ−JJ
淋3めFIG. 1 is a sectional view of a semiconductor device using an N junction of the present invention. FIG. 2 is an energy band diagram for explaining the present invention in detail. FIG. 3 shows the change characteristics of electrical conductivity of a non-single crystal semiconductor. FIG. 4 shows an embodiment of the semiconductor memory device of the present invention. Figure 5 shows the time chart 1-- used in the embodiment of Figure 4.
shows. Patent applicant (15) Gi1 Tomoe'I O/ O/ JJ-JJ Hino 3rd
Claims (1)
りなる第1の電極上に真性または実質的に真性の非単結
晶半導体を有する非単結晶半導体と、該非単結晶半導体
上に第2の電極とを設け、前記第1または第2の電極の
少なくとも一方が透光性を有する半導体装置において、
前記半導体の電気伝導度を小さくせしめる第1の工程と
、前記半導体の電気伝導度を大きくせしめる第2の工程
とを有することを特徴とする半導体メモリ装置。 2、特許請求の範囲第1項において、第1または第2の
電極側から光照射された番地の電気伝導の多少を判断し
て前記番地の記憶情報を読み出すことを特徴とする半導
体メモリ装置。 3゜特許請求の範囲第1項において、500nm以下の
短波長光を照射して半導体の電気伝導を小(1) さくせしめ、また1μ以上の長波長または120〜30
0℃以上の温度での熱アニールにより電気伝導を大きく
せしめることにより記憶書き込み、書き換えを行うこと
を特徴とする半導体メモリ装置。 4、特許請求の範囲第1項において、非単結晶半導体は
珪素またはゲルマニュームを主成分とし、さらに酸素を
lX1020〜5 X 10” cm−”、水素を1〜
30原子%含有することを特徴とする半導体メモリ装置
。[Claims] 1. A non-single crystal semiconductor having an intrinsic or substantially intrinsic non-single crystal semiconductor on a first electrode made of a conductive layer on a conductive substrate or an insulating substrate; A semiconductor device including a second electrode on a crystalline semiconductor, and at least one of the first and second electrodes having a light-transmitting property,
A semiconductor memory device comprising: a first step of reducing the electrical conductivity of the semiconductor; and a second step of increasing the electrical conductivity of the semiconductor. 2. A semiconductor memory device according to claim 1, wherein the memory information of the address is read by determining the degree of electrical conduction of the address irradiated with light from the first or second electrode side. 3. In claim 1, the electrical conduction of a semiconductor is reduced (1) by irradiation with short wavelength light of 500 nm or less, and the long wavelength light of 1 μ or more or 120 to 30
A semiconductor memory device characterized in that memory writing and rewriting are performed by increasing electrical conduction through thermal annealing at a temperature of 0° C. or higher. 4. In claim 1, the non-single crystal semiconductor mainly contains silicon or germanium, and further contains 1 x 1020 to 5 x 10" cm of oxygen and 1 to 5 x 10" cm of hydrogen.
A semiconductor memory device characterized by containing 30 atomic %.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58168553A JPS6059594A (en) | 1983-09-12 | 1983-09-12 | Semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58168553A JPS6059594A (en) | 1983-09-12 | 1983-09-12 | Semiconductor memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6059594A true JPS6059594A (en) | 1985-04-05 |
Family
ID=15870154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58168553A Pending JPS6059594A (en) | 1983-09-12 | 1983-09-12 | Semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6059594A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5262350A (en) * | 1980-06-30 | 1993-11-16 | Semiconductor Energy Laboratory Co., Ltd. | Forming a non single crystal semiconductor layer by using an electric current |
USRE34658E (en) * | 1980-06-30 | 1994-07-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device of non-single crystal-structure |
US5859443A (en) * | 1980-06-30 | 1999-01-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US6355941B1 (en) | 1980-06-30 | 2002-03-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US6900463B1 (en) | 1980-06-30 | 2005-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
-
1983
- 1983-09-12 JP JP58168553A patent/JPS6059594A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5262350A (en) * | 1980-06-30 | 1993-11-16 | Semiconductor Energy Laboratory Co., Ltd. | Forming a non single crystal semiconductor layer by using an electric current |
USRE34658E (en) * | 1980-06-30 | 1994-07-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device of non-single crystal-structure |
US5859443A (en) * | 1980-06-30 | 1999-01-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US6355941B1 (en) | 1980-06-30 | 2002-03-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US6900463B1 (en) | 1980-06-30 | 2005-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ungureanu et al. | A Light‐Controlled Resistive Switching Memory | |
US3801966A (en) | Optical memory device | |
US7121474B2 (en) | Electro-optical nanocrystal memory device | |
WO2013080784A1 (en) | Memory circuit, drive method for same, nonvolatile storage device using same, and liquid crystal display device | |
JPS62501600A (en) | EPROM with UV transparent silicon nitride passivation layer | |
CN106653789A (en) | X-ray detector and manufacturing method therefor | |
JPH07211797A (en) | Volatile memory cell and manufacture thereof | |
JPS63283000A (en) | Memory element replacing control circuit | |
US20080285337A1 (en) | Recordable electrical memory | |
EP0289642B1 (en) | Erasable electro-optic storage disk | |
KR101532313B1 (en) | Nonvolatile memory device comprising graphene and phase changing material and methods of manufacturing and operating the same | |
JPS6059594A (en) | Semiconductor memory device | |
Zhou et al. | An Ultrafast Quasi‐Non‐Volatile Semi‐Floating Gate Memory with Low‐Power Optoelectronic Memory Application | |
JPS63271984A (en) | Optical memory, optical recording, and manufacture of optical memory | |
Sun et al. | A Light‐Programmed Rewritable Lattice‐Mediated Multistate Memory for High‐Density Data Storage | |
JP2003223789A (en) | Data storage media and method utilizing layer adjacent storage layer | |
KR20210057830A (en) | Memory for embedded applications | |
JPH041931B2 (en) | ||
US4900691A (en) | Method of fabrication for optical storage apparatus | |
CN110137202A (en) | A kind of magnetic random memory based on light auxiliary write-in | |
JP2541576B2 (en) | Image optical memory device, optical recording method and optical memory manufacturing method | |
JPS6059593A (en) | Semiconductor memory device | |
US6804137B1 (en) | Data storage medium having layers acting as transistor | |
JP2537992B2 (en) | Optical storage element | |
JPH041930B2 (en) |