JPH041931B2 - - Google Patents

Info

Publication number
JPH041931B2
JPH041931B2 JP58196583A JP19658383A JPH041931B2 JP H041931 B2 JPH041931 B2 JP H041931B2 JP 58196583 A JP58196583 A JP 58196583A JP 19658383 A JP19658383 A JP 19658383A JP H041931 B2 JPH041931 B2 JP H041931B2
Authority
JP
Japan
Prior art keywords
single crystal
electrode
crystal semiconductor
optical memory
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58196583A
Other languages
Japanese (ja)
Other versions
JPS6087444A (en
Inventor
Shunpei Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58196583A priority Critical patent/JPS6087444A/en
Publication of JPS6087444A publication Critical patent/JPS6087444A/en
Publication of JPH041931B2 publication Critical patent/JPH041931B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • G11B2007/25408Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of inorganic materials
    • G11B2007/25417Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of inorganic materials containing Group 14 elements (C, Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【発明の詳細な説明】 本発明はアモルフアス(無定形)構造を含む非
単結晶半導体を用いた不揮発性の光メモリを構成
せしめるための半導体メモリ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory device for constructing a nonvolatile optical memory using a non-single crystal semiconductor including an amorphous structure.

この発明は水素および酸素が添加されたゲルマ
ニユームまたは珪素を主成分とするとともに、周
期律表の族または族より選ばれた不純物が5
×1016〜1×1021cm-3添加された非単結晶半導体
であつて、600nm以下の短波長光を照射して、
この半導体の電気伝導度を小さくして記憶の書き
込みを行う工程と、逆に5μ以上(〜50μ)の赤外
または120〜300℃の熱処理によりこの半導体の電
気伝導度を向上させ、記憶の書き換えを行う工程
とを有する書き換えが可能な不揮発性半導体メモ
リ装置を提案するにある。
This invention contains germanium or silicon to which hydrogen and oxygen are added as a main component, and impurities selected from groups or groups of the periodic table.
×10 16 to 1 × 10 21 cm -3 doped non-single crystal semiconductor, irradiated with short wavelength light of 600 nm or less,
The process of writing memories by reducing the electrical conductivity of this semiconductor, and conversely, increasing the electrical conductivity of this semiconductor using infrared radiation of 5 μ or more (~50 μ) or heat treatment at 120 to 300°C to rewrite memories. An object of the present invention is to propose a rewritable nonvolatile semiconductor memory device having a process of performing the following steps.

この発明は従来ステブラ・ロンスキ効果(光照
射効果)として知られている光照射による電気伝
導度の減少、即ち一般の半導体デイバイス特に光
電変換装置としてはもつとも悪い劣化現象を逆に
積極的に利用して書き換え可能なメモリ装置を設
けることを特徴としている。即ち、従来、光電変
換装置等アモルフアス(非晶質)珪素を用いて作
らんとすると、その光電変換装置が光照射により
劣化してしまい、電気伝導度が減少してしまうこ
とが知られている。この要因を本発明人が詳しく
調べた結果、珪素、ゲルマニユーム主成分とする
族の非単結晶半導体において、そのエネルギバ
ンド(Egという)の禁止帯(Eg内という)に存
在する再結合中心密度(以下RCという)の増加
または減少に起因することが判明した。さらにこ
の半導体例えば珪素半導体中において、酸素と水
素がOH基を作り、これが珪素不対結合手と結合
したり、または分離したりして、再結合中心を増
加または減少させていることを明らかにすること
ができた。
This invention actively utilizes the reduction in electrical conductivity caused by light irradiation, conventionally known as the Stebla-Lonski effect (light irradiation effect), which is a deterioration phenomenon that is particularly bad for semiconductor devices in general, especially for photoelectric conversion devices. It is characterized by providing a rewritable memory device. That is, it has been known that when a photoelectric conversion device is manufactured using amorphous silicon, the photoelectric conversion device deteriorates due to light irradiation and its electrical conductivity decreases. . The inventor investigated this factor in detail and found that in non-single-crystal semiconductors whose main components are silicon and germanium, the density of recombination centers (referred to as "within Eg") existing in the forbidden band (referred to as "within Eg") of the energy band (referred to as "Eg") It was found that this was caused by an increase or decrease in RC (hereinafter referred to as RC). Furthermore, it was revealed that in this semiconductor, for example, a silicon semiconductor, oxygen and hydrogen create OH groups, which combine with or separate from silicon dangling bonds, increasing or decreasing the number of recombination centers. We were able to.

そのモデルとして、 の可逆反応過程を提案している。即ち短波長光の
照射によりD0レベルがD-またはD+に変化する。
即ち上式で左方向に反応が変化する。その結果、
Eg内に深いRCが形成される。このRCにより電
気伝導度が低下する。しかしD-,D+は遠赤外光
または加熱処理でD0に可逆的に変化する。本発
明はかかるRCが可逆的に増加したり減少したり
する特性を積極的に利用している。
As a model, A reversible reaction process is proposed. That is, the D 0 level changes to D or D + by irradiation with short wavelength light.
That is, the reaction changes to the left in the above equation. the result,
Deep RC is formed within Eg. This RC reduces electrical conductivity. However, D - and D + reversibly change to D 0 by far-infrared light or heat treatment. The present invention actively utilizes the property that RC reversibly increases or decreases.

このため本発明の真性の半導体または実質的に
真性の半導体(以下単に層または型半導体と
いう)には、酸素および水素を積極的に添加して
いる。具体的には酸素は1×1020〜5×1021cm-3
例えば5×1020cm-3、また水素は5〜30原子%例
えば15原子%を含有せしめた。
For this reason, oxygen and hydrogen are actively added to the intrinsic semiconductor or substantially intrinsic semiconductor (hereinafter simply referred to as a layer or type semiconductor) of the present invention. Specifically, oxygen is 1×10 20 to 5×10 21 cm -3
For example, 5×10 20 cm -3 , and hydrogen was contained in an amount of 5 to 30 atom %, for example, 15 atom %.

さらにかかる可逆反応にはそのフエルミレベル
をある程度伝導帯より移しN-化することがその
D-,D+,D0間の可逆過程をとらしめて有効であ
ることが判明した。即ち、活性エネルギとしてア
モルフアス珪素としては0.3〜0.7eV好ましくは
0.4〜0.6eVとした。このため周期律表の族(ナ
トリユーム、カリユーム等)、族(窒素、リン、
砒素、アンチモン等)を用いた。代表的にはNa,
K,N,Pである。
Furthermore, for such a reversible reaction, it is necessary to shift the Fermi level to some extent from the conduction band and convert it to N - .
It was found that the reversible process between D - , D + , and D 0 was established and is effective. That is, the activation energy is preferably 0.3 to 0.7 eV for amorphous silicon.
It was set to 0.4 to 0.6 eV. For this reason, groups of the periodic table (sodium, potassium, etc.), groups (nitrogen, phosphorus,
Arsenic, antimony, etc.) were used. Typically Na,
K, N, P.

本発明において、記憶された情報の読み出しは
この電気伝導度の大小を特定の番地に対し特定の
強さの可視光(100〜10000 lx)を1〜100μφ例
えば5μφのスポツト、例えばArレーザ(514.5n
m、488nm)、He−Neレーザ(632.8nmを利用)
により照射させ、番地の電気抵抗の大小により
「0」、「1」を読み出している。
In the present invention, to read out the stored information, visible light of a specific intensity (100 to 10,000 lx) is applied to a specific address using a spot of 1 to 100 μφ, for example, 5 μφ, such as an Ar laser (514.5 n
m, 488nm), He-Ne laser (using 632.8nm)
It is irradiated with 0 and 1 depending on the electrical resistance of the address.

即ち、本発明の半導体装置においては、第1お
よび第2の電極を面電極とし、電気エネルギはこ
の半導体の全面に印加する。しかしその番地の特
定化のため、その所定の番地に光照射をスポツト
状(1〜100μφ例えば5μφ)に行い、その番地の
電気伝導度の感度を他部(光照射が行われないデ
イスクの領域)に比べて102〜104とした。
That is, in the semiconductor device of the present invention, the first and second electrodes are surface electrodes, and electric energy is applied to the entire surface of the semiconductor. However, in order to specify the address, light irradiation is performed on the predetermined address in the form of a spot (1 to 100 μφ, e.g. 5 μφ), and the sensitivity of the electrical conductivity at that address is measured in other areas (areas of the disk where the light is not irradiated). ) compared to 10 2 to 10 4 .

そしてその場所の電気伝導度を調べることによ
り、任意の番地の記憶の読み出しを可能としたも
のである。かかる構成とすることにより、光でア
シストさせて電気信号の読み出しができる不揮発
メモリを作ることが可能となつた。このためこの
光スポツトの大きさを小さくすることにより、1
〜104Gbitのメモリも可能となり、光デイスク等
への応用が大きく、特にその成分が珪素で安価で
あり、かつ、公害材料ではなく、また酸化テルル
または光磁気デイスク用等の高価な材料を用いな
いことにより、低コスト化、光信頼性化を実施す
ることができるという大きな特長を有す。
By checking the electrical conductivity at that location, it was possible to read the memory at any address. With this configuration, it has become possible to create a nonvolatile memory that can read out electrical signals with optical assistance. Therefore, by reducing the size of this light spot, 1
〜10 4 Gbit memory is now possible, and it has great applications in optical disks, etc. In particular, its component is silicon, which is inexpensive, is not a polluting material, and can be used in expensive materials such as tellurium oxide or magneto-optical disks. By not using it, it has the great advantage of reducing costs and improving optical reliability.

さらに本発明の半導体メモリ装置の記憶の書き
込みは600nm以下の短波長光、例えば窒素レー
ザ(337nm)を1〜100μφのスポツトにて所定の
番地に照射し、最初「0」であつたものを選択的
に「1」に変更した。また記憶の書き換えはこの
デイスクのすべてを「0」とするには120〜300℃
の熱アニール例えば150℃、30分の加熱処理で安
定に「0」を作ることができた。また選択的に書
き換えを行うには5μ以上の長波長光(1〜30μ好
ましくは10.8μ)を照射して所定の番地のみ局部
加熱をしてアニールを行えばよい。かくして記憶
の書き込み、書き換えを光照射のみで行うことが
でき、大容量処理が可能となるという特徴を有す
る。
Furthermore, to write data in the semiconductor memory device of the present invention, a short wavelength light of 600 nm or less, such as a nitrogen laser (337 nm), is irradiated to a predetermined address with a spot of 1 to 100 μφ, and the address that was initially “0” is selected. changed to "1". Also, to rewrite the memory, the temperature must be 120 to 300℃ to set everything on this disk to "0".
We were able to stably create "0" by thermal annealing, for example, at 150°C for 30 minutes. For selective rewriting, long wavelength light of 5 microns or more (1 to 30 microns, preferably 10.8 microns) may be irradiated to locally heat and anneal only a predetermined address. In this way, it is possible to write and rewrite memory only by irradiating light, and it has the feature that large-capacity processing is possible.

本発明はかくのごとく半導体の電気伝導度の増
大、減少を利用して、光読み出しを可能とした非
接触型方式の半導体メモリ装置を提案するにあ
る。
The present invention proposes a non-contact type semiconductor memory device that makes optical reading possible by utilizing the increase and decrease in electrical conductivity of semiconductors.

以下に図面に従つてその内容を記す。 The contents are described below according to the drawings.

第1図は透光性絶縁性基板4上に透光性導電膜
(CTOという)電極3をハロゲン元素が添加され
た酸化スズを主成分として、また酸化スズが10重
量%以下添加された酸化インジユーム(以下ITO
という)と酸化スズとの2層膜にて選択的に(E
1という)形成した。さらに第1の非単結晶半導
体(ここではN型)5と第2の非単結晶半導体
(ここではI型)6、さらに第3の非単結晶半導
体(ここではP型)7と積層してPIN構造を有す
る半導体1(Sという)およびITO等の透明透光
性を有する第2の電極の対抗電極2(以下E2と
いう)の構成をさせたE1 3−S1−E2 2
構造の縦断面図を示している。
Figure 1 shows a transparent conductive film (referred to as CTO) electrode 3 on a transparent insulating substrate 4, the main component of which is tin oxide to which a halogen element is added. Indium (hereinafter referred to as ITO)
) and tin oxide selectively (E
1) was formed. Furthermore, a first non-single crystal semiconductor (here, N type) 5, a second non-single crystal semiconductor (here, I type) 6, and a third non-single crystal semiconductor (here, P type) 7 are stacked. A counter electrode 2 (hereinafter referred to as E2) of a semiconductor 1 having a PIN structure (referred to as S) and a second electrode having transparent light-transmitting properties such as ITO 3-S1-E2 2
A longitudinal cross-sectional view of the structure is shown.

図面において、半導体1は、まずシラン
(SinH)n>1の珪化物気体をプラズマグロー放
電法(PCVD法)光プラズマCVD法により0.1〜
10μ例えば3μの厚さに形成した。図面では第1の
半導体5はP型であり、H2Si(CH32/(SiH4
H2Si(CH32)=0.2〜0.7例えば0.5として同時にB
をB2H6等により1016〜1×1022cm-3例えば
B2H6/SiH4=0.5%の量添加して、SixC1-X
<x<1 x=0.8とした。第2の半導体はI型
半導体であり、Bの不純物の変化を少なくするに
加えてNa、K、P、Nを5×1016〜1×1021cm-3
添加した。例えばNを5×1019cm-3添加した。さ
らにこの半導体をNaまたはKをNaCl、KCl
(0.1N水温は100℃)に約10分間浸漬し、添加不
純物を例えば1×1020cm-3とした。これを乾燥さ
せてこの上面にN型半導体を形成した。
In the drawings, a semiconductor 1 is manufactured by first using silane (SinH), a silicide gas with n>1, by a plasma glow discharge method (PCVD method) or a light plasma CVD method.
It is formed to have a thickness of 10μ, for example 3μ. In the drawing, the first semiconductor 5 is of P type and has a structure of H 2 Si(CH 3 ) 2 /(SiH 4 +
H 2 Si (CH 3 ) 2 ) = 0.2 to 0.7, for example 0.5, and B
10 16 ~ 1×10 22 cm -3 by B 2 H 6 etc.
By adding B 2 H 6 /SiH 4 =0.5%, SixC 1-X 0
<x<1 x=0.8. The second semiconductor is an I-type semiconductor, in which in addition to reducing the change in impurities of B, Na, K, P, and N are added at 5×10 16 to 1×10 21 cm -3
Added. For example, 5×10 19 cm −3 of N was added. Furthermore, this semiconductor is changed to Na or K to NaCl or KCl.
(0.1N water temperature is 100°C) for about 10 minutes, and the added impurity was set to, for example, 1×10 20 cm -3 . This was dried to form an N-type semiconductor on the upper surface.

また第3の半導体をN型とし、H2Si(CH32
(SiH4+H2Si(CH32)=0.05〜0.5例えば0.1として
同時にPをPH3により1016〜×1022cm-3例えばPH
/SiH4=1%添加して形成し、半導体1内に
PIN接合を構成させた。
In addition, the third semiconductor is N type, and H 2 Si (CH 3 ) 2 /
(SiH 4 + H 2 Si (CH 3 ) 2 ) = 0.05 to 0.5, for example, 0.1, and P at the same time to 10 16 to × 10 22 cm -3 , for example, PH
3 /SiH 4 = 1% and formed in the semiconductor 1.
A PIN junction was constructed.

この半導体膜はスパツタ法、真空蒸着法、光プ
ラズマCVD法、LT(低温)CVD法(HOMO
CVD法ともいう)、減圧CVD法を用いてもよい。
This semiconductor film can be manufactured using sputtering method, vacuum evaporation method, light plasma CVD method, LT (low temperature) CVD method (HOMO
(also referred to as CVD method) or reduced pressure CVD method may be used.

さらにこの半導体を形成する工程の前後工程に
て透光電極による電極3,2を公知の真空蒸着
法、プラズマCVD法または減圧CVD法により形
成して第1図の構造を得た。
Further, before and after the process of forming this semiconductor, electrodes 3 and 2 made of transparent electrodes were formed by a known vacuum evaporation method, plasma CVD method, or low pressure CVD method to obtain the structure shown in FIG.

第1図の構造に対応してエネルギバンド図を第
2図に示す。
An energy band diagram corresponding to the structure shown in FIG. 1 is shown in FIG.

このエネルギバンド図において、I型半導体は
活性エネルギ領域14は0.3〜0.7eV例えば0.5eV
を有しており、N型の導電型を有する。さらにこ
の半導体6の伝導帯11に流れる電子19と価電
子帯12を流れるホール18とはI型半導体6中
に存在するRC13を介して互いに再結合する。
In this energy band diagram, the active energy region 14 of the I-type semiconductor is 0.3 to 0.7 eV, for example, 0.5 eV.
It has an N-type conductivity type. Further, the electrons 19 flowing in the conduction band 11 and the holes 18 flowing in the valence band 12 of the semiconductor 6 recombine with each other via the RC 13 present in the I-type semiconductor 6.

このRCは前記した光照射効果により発生、消
滅するものと、いわゆる変化をしない珪素の不対
結合によるRCとがある。しかしこのRC17,B
が多くなると、電子・ホールは再結合13をして
しまうため、電気伝導度も悪くなる。この電気伝
導度の変化を第3図に示す。
There are two types of RC: one that occurs and disappears due to the above-mentioned light irradiation effect, and the other that is caused by unpaired bonds in silicon that do not change. However, this RC17,B
When the number increases, electrons and holes recombine 13, resulting in poor electrical conductivity. This change in electrical conductivity is shown in FIG.

図面において「1」は熱アニールして高い電気
伝導度を有し、「0」は短波長光の照射による低
い電気伝導度を示す。さらに曲線13″は暗伝導
度であり、曲線15″はAM1(100mW/cm2)の
光伝導度である。14はアルゴンレーザを用いて
光照射した時の電気伝導度を示す。さらに図面よ
り明らかなごとく、さらにここにリンを添加して
増加させると曲線13,15を得ることができ
た。
In the drawings, "1" indicates high electrical conductivity due to thermal annealing, and "0" indicates low electrical conductivity due to irradiation with short wavelength light. Further, curve 13'' is the dark conductivity, and curve 15'' is the optical conductivity of AM1 (100 mW/cm 2 ). 14 indicates the electrical conductivity when irradiated with light using an argon laser. Furthermore, as is clear from the drawings, curves 13 and 15 could be obtained by adding phosphorus thereto to increase the amount.

即ちその光照射により「0」「1」のS/N比
を1桁近くも大きくするこのができた。44,4
5がそれぞれ読み出し時における「1」、「0」を
有しており、その可逆的な変化より書き出しが可
能であることがわかる。
That is, by irradiating the light, the S/N ratio of "0" and "1" was increased by nearly an order of magnitude. 44,4
5 has "1" and "0" respectively at the time of reading, and it can be seen from the reversible change that writing is possible.

この第1図はアモルフアス珪素の場合である
が、Ge、GexSi1-X(0<x<1)のごとき非単結
晶化合物または混合物半導体であつても同様に可
逆変化をさせることが可能である。
Although this figure 1 shows the case of amorphous silicon, it is also possible to cause reversible changes in non-single crystal compounds or mixture semiconductors such as Ge and GexSi 1-X (0<x<1). .

本発明のいう半導体とは電流を流し得る程度に
おける半導縁体をも含むことはいうまでもない。
また本発明において、高い電圧のパルス光を加え
ると、第1図において電極2,3と半導体5,7
との界面における反応も長期使用において起き、
界面では絶縁性酸化珪素ができ、特性劣化をさせ
てしまう。そのため半導体5,7はSixC1-X(0
<x<1)とし、信頼性の向上を図つた。
It goes without saying that the term "semiconductor" as used in the present invention includes semiconductors to the extent that current can flow therethrough.
Furthermore, in the present invention, when high voltage pulsed light is applied, the electrodes 2 and 3 and the semiconductors 5 and 7 in FIG.
Reactions at the interface with the material also occur during long-term use,
Insulating silicon oxide is formed at the interface, resulting in deterioration of characteristics. Therefore, semiconductors 5 and 7 are SixC 1-X (0
<x<1) to improve reliability.

即ち、酸化スズを主成分とする電極3、P型
SixC1-X 0<x<1 x=0.8(100〜500Å例え
ば200Å)−I型Si(Si:O:H+Na、K、P、N
0.1〜3μ例えば0.5μ)−N型Si(500Å〜1μ例えば
0.2μ)N型SixC1-X(0<x<1x=0.9)(100〜500
Å例えば200Å)−ITOを主成分とする電極2の構
成とした。かかるエネルギバンド的にヘテロ接合
とすることにより、150〜300℃の高温度にて電極
と半導体との界面で絶縁性酸化珪素の発生を防ぐ
ことができ、高信頼性を有せしめることができ
た。
That is, the electrode 3 whose main component is tin oxide, P type
SixC 1-X 0<x<1
0.1~3μ e.g. 0.5μ) - N-type Si (500A~1μ e.g.
0.2μ) N type SixC 1-X (0<x<1x=0.9) (100~500
The electrode 2 has a structure in which the main component is ITO (for example, 200 Å). By creating a heterojunction in this energy band, it was possible to prevent the generation of insulating silicon oxide at the interface between the electrode and the semiconductor at high temperatures of 150 to 300 degrees Celsius, resulting in high reliability. .

実施例 1 この実施例は第4図にその概要を示すが、光電
気プログラム書き換え可能な光読み出し方式の
ROMの不揮発性メモリである。この光メモリは
オフイス・オートメイシヨン用の光メモリデイス
クとして使用し、任意にプログラムをして利用す
る場合にきわめて有効である。
Example 1 This example, whose outline is shown in Fig. 4, uses an optical readout method that allows photoelectric program rewriting.
ROM is non-volatile memory. This optical memory is extremely effective when used as an optical memory disk for office automation and can be programmed and used as desired.

即ち、第4図においてAは記憶の書き込みを示
し、Bは読み出しを示す。図面においてガラス、
セラミツク、有機フイルム等の絶縁基板4(100
〜500μの厚さ)上に第1の導電型電極3を反射
性電極(例えばアルミユーム)、9、CTO(例え
ば酸化ズス)8とにより0.5〜1μの厚さに形成し
た。さらにこの上に前記したごときPIN接合を有
してI層中に酸素、水素およびNa、K、P、N
より少なくとも1つは1×1016〜1×1021cm-3
えばN−×1019、N×1020cm-3が添加された
珪素を主成分とした非単結晶半導体1を0.7μの厚
さに形成した。さらにその上側にITOのCTO2
を全面に形成した。この基板はレコード板と同様
のデイスク形状を有している。マイクロ・コンピ
ユータ32により番地を制御させて窒素レーザ光
35(発光波長337nm)を発光源35より照射
してビーム径は1〜100μφ例えば5μφとした。か
かる500nm以下の短波長光の紫外光を100〜2000
mW/cm2の強度で加えることにより、再結合中心
を生成し、電気伝導度は第3図における「0」を
有せしめた。かくして例えば24,26に「0」
を書き込んだ。結果として他の番地25は「1」
となつた。
That is, in FIG. 4, A indicates memory writing, and B indicates reading. Glass in the drawing,
Insulating substrate 4 (100
A first conductivity type electrode 3 of 0.5 to 1 .mu. thick was formed on the substrate by a reflective electrode (for example, aluminum) 9 and CTO (for example, tin oxide) 8. Further, on top of this, a PIN junction as described above is provided, and oxygen, hydrogen and Na, K, P, N are present in the I layer.
At least one of the silicon-based non-single crystal semiconductors 1 doped with 1 x 10 16 to 1 x 10 21 cm -3 , for example, N- x 10 19 and N x 10 20 cm -3 , has a thickness of 0.7μ. formed to a thickness. Further above it is ITO's CTO2
was formed on the entire surface. This board has a disc shape similar to a record board. The address was controlled by a microcomputer 32, and a nitrogen laser beam 35 (emission wavelength: 337 nm) was irradiated from a light source 35 with a beam diameter of 1 to 100 μφ, for example, 5 μφ. 100 to 2000 of such short wavelength ultraviolet light of 500 nm or less
By applying at an intensity of mW/cm 2 , recombination centers were generated and the electrical conductivity was “0” in FIG. Thus, for example, "0" in 24, 26
I wrote. As a result, the other address 25 is "1"
It became.

この記憶の書き込みは基板全体を超高圧水銀灯
(2537Å)を照射して「0」の絶縁性としておき、
逆にCOレーザ(ウエーブガイド型)にて10.6μの
遠赤外光を照射して特定の領域を「1」としても
よい。
To write this memory, the entire board is irradiated with an ultra-high pressure mercury lamp (2537 Å) to make it insulated to "0".
Conversely, a specific area may be set to "1" by irradiating 10.6μ far infrared light with a CO laser (waveguide type).

かかる方式の方が読み出し時におけるノイズマ
ージンを向上させることができるという特徴を有
する。
This method has the feature that it is possible to improve the noise margin during reading.

記憶の読み出しは第4図Bに示してあるが、所
定の番地に弱い(記憶情報が変化しない範囲で強
い)光照射をアルゴンレーザ(488nm、515nm)
33を読み出しを行う番地に照射して指定した。
その番地をコンピユータ32にインプツトし、そ
の信号に同期して電気パルス29を加えた。そし
てこの光照射された検出番地の情報を抵抗26に
より検出31した。
Memory reading is shown in Figure 4B, where a weak (strong within the range where the stored information does not change) light irradiation is applied to a predetermined address using an argon laser (488 nm, 515 nm).
33 was specified by irradiating the address to be read.
The address was input into the computer 32, and an electric pulse 29 was applied in synchronization with the signal. Then, the information of the detection address irradiated with light is detected 31 by the resistor 26.

このタイムチヤートは第5図に示してある。 This time chart is shown in FIG.

即ち、第5図A,Bが記憶の書込みである。 That is, FIGS. 5A and 5B are the memory writing.

強光パルス照射47,48により光デイスクの
一部に選択的に高抵抗領域44,46が第5図B
のごとく形成される。44,45,46は第4図
Aの24,25,26に対応している。
High resistance regions 44 and 46 are selectively formed in a part of the optical disk by intense light pulse irradiation 47 and 48 in FIG. 5B.
It is formed as follows. 44, 45, and 46 correspond to 24, 25, and 26 in FIG. 4A.

また読み出しは第5図C,Dに示されている
が、電圧29を光に同期して印加し、その出力電
位を第5図Dに示すごとく38,39として得る
ことができた。
Furthermore, as shown in FIGS. 5C and 5D, a voltage 29 was applied in synchronization with the light, and the output potentials were obtained as 38 and 39 as shown in FIG. 5D.

即ちこの光メモリ(プログラムROM)は光に
よりレコード板状のデイスクの一部を高抵抗領域
または低抵抗領域とし、他部を逆に相対的に低抵
抗領域または高抵抗領域としたもので、また読み
出しも番地の指定を光にて非接触で行い、読み出
しを電気伝導とするため、非接触の高電気読み出
しを可能とした。このためいわゆる光電気書込み
の書き換え可能なROMを作ることができた。こ
の発明は、従来より知られた基板の一部を選択的
に除去して形成させる書き換え不可能な光デイス
クメモリとはまつたく原理を異にしている。さら
にその記憶情報の書き換えが可能であり、不揮発
性であることより大容量の光デイスクメモリとし
て理想的であることが判明した。
In other words, this optical memory (program ROM) uses light to make a part of a record-like disk a high resistance area or a low resistance area, and conversely makes the other part a relatively low resistance area or a high resistance area. Address designation is performed using light without contact, and readout is conducted through electrical conduction, making contactless high-electricity readout possible. For this reason, we were able to create a rewritable ROM with so-called photoelectric writing. The present invention differs in principle from the conventionally known non-rewritable optical disk memory which is formed by selectively removing a portion of a substrate. Furthermore, it has been found that the stored information can be rewritten and is nonvolatile, making it ideal as a large-capacity optical disk memory.

以上の説明より明らかなごとく、本発明は非晶
質珪素に水素、酸素等の不純物を多量に添加しそ
の可逆的な電気伝導度の変化を制御することによ
り不揮発性メモリとしたもので、同一半導体中に
設けることはその実施態様であるこのPN接合を
1つではなくPNIPN接合等によりその「0」
「1」のコントラストを増大させることも有効で
あり、さらに同一技術思想に基づく多くの応用が
可能である。
As is clear from the above explanation, the present invention creates a non-volatile memory by adding a large amount of impurities such as hydrogen and oxygen to amorphous silicon and controlling the reversible change in electrical conductivity. Providing this PN junction in a semiconductor is an embodiment of this, and its "0" is not just one PN junction, but a PNIPN junction, etc.
Increasing the contrast of "1" is also effective, and many applications based on the same technical idea are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のPIN接合を用いた半導体装置
の断面図である。第2図は本発明の理論を説明す
るためのエネルギバンド図である。第3図は非単
結晶半導体の電気伝導度の変化特性を示す。第4
図は本発明の半導体メモリ装置の実施例を示す。
第5図は第4図の実施例に用いられたタイムチヤ
ートを示す。
FIG. 1 is a sectional view of a semiconductor device using the PIN junction of the present invention. FIG. 2 is an energy band diagram for explaining the theory of the present invention. FIG. 3 shows the change characteristics of electrical conductivity of a non-single crystal semiconductor. Fourth
The figure shows an embodiment of a semiconductor memory device of the present invention.
FIG. 5 shows a time chart used in the embodiment of FIG.

Claims (1)

【特許請求の範囲】 1 導電性基板または絶縁性を有する基板上の導
電層よりなる第1の電極上に水素および酸素が添
加された珪素または珪素を主成分とする非単結晶
半導体と、該非単結晶半導体上に第2の電極とを
設け、前記第1または第2の電極の少なくとも一
方が透光性を有する不揮発性光メモリと、該光メ
モリに光ビームを局部的に照射して低電気伝導領
域を形成する手段と、局部的または部分的に赤外
線または熱エネルギを照射して高電気伝導領域を
形成する手段と、前記低電気伝導領域および高電
気伝導領域とに第1または第2の電極側から光を
照射し、光照射された番地の電気伝導の多少を検
出する手段とを具備することを特徴とする光メモ
リ装置。 2 特許請求の範囲第1項において、非単結晶半
導体はNa、K、P、N等の周期律表の族およ
び族より選ばれた不純物が5×1016〜1×1021
cm-3添加されたことを特徴とする光メモリ装置。 3 特許請求の範囲第1項において、PIN接合を
有する非単結晶半導体に逆バイアスを加えて光ビ
ームを照射することで、低電気伝導度領域を形成
することを特徴とする光メモリ装置。 4 導電性基板または絶縁性を有する基板上の導
電層よりなる第1の電極上に水素および酸素が添
加された珪素または珪素を主成分とする非単結晶
半導体と、該非単結晶半導体上に第2の電極とを
設け、前記第1または第2の電極の少なくとも一
方が透光性を有する不揮発性光メモリと、該光メ
モリに光ビームを局部的に照射して前記半導体に
低電気伝導領域を形成する工程と、前記半導体に
局部的または部分的に赤外線または熱エネルギを
照射して高電気伝導領域を形成する工程と、前記
光メモリ上の低電気伝導領域と高電気伝導領域と
に第1または第2の電極側から光を照射し、光照
射された番地の電気伝導の多少を検出することに
より、記憶されたメモリ情報を読み出す工程を有
することを特徴とする光メモリ装置書込み読み出
し方式。 5 特許請求の範囲第4項において、非単結晶半
導体はNa、K、P、N等の周期律表の族およ
び族より選ばれた不純物が5×1016〜1×1021
cm-3添加されたことを特徴とする光メモリ装置書
込み読み出し方式。 6 特許請求の範囲第4項において、PIN接合を
有する非単結晶半導体に逆バイアスを加えて光ビ
ームを照射することで、低電気伝導度領域を形成
することを特徴とする光メモリ装置書込み読み出
し方式。
[Scope of Claims] 1. Silicon to which hydrogen and oxygen are added, or a non-single crystal semiconductor mainly composed of silicon, on a first electrode consisting of a conductive layer on a conductive substrate or an insulating substrate; A second electrode is provided on a single crystal semiconductor, and at least one of the first and second electrodes is transparent. means for forming a region, means for locally or partially irradiating infrared rays or thermal energy to form a high electrically conductive region, and a first or second electrode in the low electrically conductive region and the high electrically conductive region. 1. An optical memory device comprising means for emitting light from the side and detecting the degree of electrical conduction at an address irradiated with light. 2. In claim 1, the non-single crystal semiconductor contains impurities selected from groups of the periodic table such as Na, K, P, N, etc. in an amount of 5×10 16 to 1×10 21
An optical memory device characterized by being doped with cm -3 . 3. An optical memory device according to claim 1, characterized in that a low electrical conductivity region is formed by applying a reverse bias to a non-single crystal semiconductor having a PIN junction and irradiating it with a light beam. 4 A first electrode consisting of a conductive layer on a conductive substrate or an insulating substrate, silicon to which hydrogen and oxygen are added, or a non-single crystal semiconductor mainly composed of silicon, and a second electrode on the non-single crystal semiconductor. a non-volatile optical memory having a second electrode, at least one of the first or second electrode being translucent, and forming a low electrical conductivity region in the semiconductor by locally irradiating the optical memory with a light beam; forming a high electrically conductive region by locally or partially irradiating the semiconductor with infrared rays or thermal energy; 1. An optical memory device write/read method comprising a step of reading out stored memory information by irradiating light from the second electrode side and detecting the level of electrical conduction at an address irradiated with light. 5 In claim 4, the non-single crystal semiconductor contains impurities selected from groups of the periodic table such as Na, K, P, N, etc. in an amount of 5×10 16 to 1×10 21
An optical memory device write/read method characterized by cm -3 doping. 6. An optical memory device read/write method according to claim 4, characterized in that a low electrical conductivity region is formed by irradiating a non-single crystal semiconductor having a PIN junction with a light beam while applying a reverse bias. .
JP58196583A 1983-10-20 1983-10-20 Semiconductor memory device Granted JPS6087444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58196583A JPS6087444A (en) 1983-10-20 1983-10-20 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196583A JPS6087444A (en) 1983-10-20 1983-10-20 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS6087444A JPS6087444A (en) 1985-05-17
JPH041931B2 true JPH041931B2 (en) 1992-01-14

Family

ID=16360152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196583A Granted JPS6087444A (en) 1983-10-20 1983-10-20 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS6087444A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298942A (en) * 1986-06-19 1987-12-26 Canon Inc Recording medium and method and device for recording and reproducing information

Also Published As

Publication number Publication date
JPS6087444A (en) 1985-05-17

Similar Documents

Publication Publication Date Title
US5335219A (en) Homogeneous composition of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5596522A (en) Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
JP2764043B2 (en) Ultraviolet transparent silicon nitride
US20080179762A1 (en) Layered structure with laser-induced aggregation silicon nano-dots in a silicon-rich dielectric layer, and applications of the same
JPH0432554B2 (en)
US7163837B2 (en) Method of forming a resistance variable memory element
US4855950A (en) Optical storage apparatus including a reversible, doping modulated, multilayer, amorphous element
JPH041931B2 (en)
Zhou et al. An Ultrafast Quasi‐Non‐Volatile Semi‐Floating Gate Memory with Low‐Power Optoelectronic Memory Application
Matsushita et al. Photovoltaic Effect of Amorphous InxSe1-x Film–SnO2 Structure
JPS6059594A (en) Semiconductor memory device
JP2000106401A (en) Memory element, manufacture thereof and integrated circuit
US4900691A (en) Method of fabrication for optical storage apparatus
US4593306A (en) Information storage medium and method of recording and retrieving information thereon
JPH0575154A (en) Photovoltaic device
JPH041930B2 (en)
JPS6059593A (en) Semiconductor memory device
JPH0424878B2 (en)
US4747077A (en) Method of detecting the conductance state of a non-volatile memory device
JP2541576B2 (en) Image optical memory device, optical recording method and optical memory manufacturing method
Pascual Sánchez Crystalline silicon Heterojunction solar cells
JPH0584065B2 (en)
JPS6055675A (en) Semiconductor memory device
JPS63170976A (en) Manufacture of a-si photodiode
Frieiro et al. Electroforming of Si NCs/p-Si photovoltaic devices: Enhancement of the conversion efficiency through resistive switching